
Paper 928
Complex Group-By Queries for XML

C. Gokhale+, N. Gupta+, P. Kumar+, L.V.S. Lakshmanan∗, R. Ng∗, and B.A. Prakash+
+ Indian Institute of Technology, Bombay
∗ University of British Columbia, Canada

1 Introduction

The popularity of XML as a data exchange standard has
led to the emergence of powerful XML query languages like
XQuery [21] and studies on XML query optimization. Of
late, there is considerable interest in analytical processing
of XML data (e.g.,[2, 3]). As pointed out by Borkar and
Carey in [3], even for data integration, there is a compelling
need for performing various group-by style aggregate oper-
ations. A core operator needed for analytics is thegroup-
by operator, which is widely used in relational as well as
OLAP database applications. XQuery requires group-by
operations to be simulated using nesting [2].

Studies addressing the need for XML grouping fall into
two broad categories: (1) Provide support for grouping at
the logical or physical level [6] and recognize grouping op-
erations from nested queries and rewrite them with group-
ing operations [4, 5, 9, 12]. (2) Extend XQuery FLWOR
expressions with explicit constructs similar to the group-by,
order-by and having clauses in SQL [3, 2]. However, direct
algorithmic support for a group-by operator is not explored.

In this paper, we focus on efficient processing of a group-
by operator for XML – with the additional goal of sup-
porting a full spectrum of aggregation operations, including
holistic ones such asmedian() [8] and complex nested
aggregations, together with having clause, as well as mov-
ing window aggregation.

Consider the simple catalogue example in Figure 1. This
can be part of an input XML database, or intermediate re-
sult of a query. The catalogue is heterogeneous: it contains
information about books, music CDs, etc. Books are orga-
nized bySubject, e.g.,physics, chemistry. For
each book, there is information on itsTitle, Author,
Year, #Sold, Price, (publisher)Name, etc. Books may
have multiple authors. The data value at a leaf node is
shown in italics. The node id of a node is also shown for
future discussion.

Consider the following nested group-by queryQ1.
While we could follow the syntax proposed by [2], syntax
not being our main focus, we use a more concise form. We

also omit the selection part of the query, and just focus on
the aggregation part.

group //Book
by //Name return (

//Name, avg(/Price), count(*)
then by /Year return (

/Year, median(/#Sold)
))

The intent of the query is to groupBook nodes first
by (publisher)Name. For each group, we get the average
Price, and the number ofBook nodes in the group. More-
over, for each publisher group, the book nodes are further
sub-grouped byYear. For each of these nested groups, the
median#Sold per year is returned.

Name
Kaufman

Q1−Answer

Name−group Name−group

avg
(Price)
$70

count()
258

Year−group

Year
1999

median
(#Sold)
5600

Year−group

Year
2000

median
(#Sold)
26000

Name
Wesley

avg
(Price)
$120

count()
175

Year
1999 (#Sold)

median

2300

Year−group

Figure 2. Partial Result ofQ1

Figure 2 shows the answer to queryQ1 for the (par-
tial) data in Figure 1. The first group shown, for instance,
is for Name = Kaufman. Among the 258 books in this
group, the average price is $70. These books are further
sub-grouped byYear. For each year that appears in the in-
put data, the median number of copies sold is also returned
(e.g., 5600 for 1999). We can enhance nested group-by
queryQ1 with two features, as illustrated by queryQ2:

group //Book
by //Name
having count(*) ≥ 100 return (

//Name, avg(/Price), count(*)
then by /Year return (

/Year(10,5), median(/#Sold)
))

In Q2, the having-clause for the outer block removes
publishers with the total number of book nodes less than
100. Besides, we form moving windows over years – with
each window having a width of 10 years and a step size
of 5 years (e.g., [1990,2000], [1995,2005], etc.). While in

1

(33)

Name
Kaufman

5600SmithNewtonMechnics 1999

Book

1999 8000

Name

$25Carbon
Compounds

Johnson

Book

PubInfo Title Author Year #Sold Price

$60 2000 800

Name
Wesley

Sound
Waves

$96Mcmanus

Catalogue

Name
Chemistry

Subject

Physics
Name

City
NYKaufman

Subject

Book

City
LA

City
NY

AuthorTitle Author Year #Sold PricePubInfo

Book

PubInfo Title Author Year #Sold Price

Music CD (1)

(2) (3)

(4)

(5) (6) (7) (8) (9) (10)

(11)
(12)

(13)

(14) (15) (16) (17) (18) (19)

(20)
(21)

(22)

(23) (24)

(25) (26) (27) (28) (29) (30)

(31)

(32)

Figure 1. The Catalogue Example

the next section we will present a more comprehensive set
of moving window options, it should be easy to appreci-
ate the value of supporting nested group-bys with having
clauses and moving windows for XML querying. In princi-
ple, all value aggregations required of XML can be obtained
by shredding it to relations and using SQL (the “SQL ap-
proach”). We examine this issue empirically in Section 7
with an emphasis on queries involving grouping together
with nesting. Indeed, owing to XML’s inherent hierarchical
nature, nested group-by (e.g., queryQ1) is a fundamental
type of group-by that merits study. In our experiments, we
observed an order of magnitude difference between the per-
formance of the SQL approach (using Oracle) and ours. We
make the following contributions.
• We propose a framework for expressing complex ag-

gregation queries on XML data featuring nested group-
by, having cluase, and moving windows (Section 3).

• We develop a disk-based algorithm for efficient eval-
uation of queries involving any subset of the above
fearures (Section 5).

• We discuss the results of a comprehensive set of exper-
iments comparing our approach with that of shredding
XML into relations and using SQL, and with those of
Galax [7] and Qizx [17], validating the efficiency of
our algorithm and the effectiveness of the optimiza-
tions developed (Section 7).

Related work appears in the next section. Section 8 sum-
marizes the paper and discusses future work.

2 Related Work

While for relational data, SQL provides explicit support
for group-by, XQuery requires us to simulate it using nest-
ing. It has been noted that this leads to expressions that are
hard to read, write, and process efficiently [2, 3]. Beyer et
al. [2] and Borkar and Carey [3] propose syntactic exten-
sions to XQuery FLOWR expressions to provide explicit
support for group-by. They also demonstrate how related
analytics such as moving window aggregations and cube
can also be expressed in the extended syntax. Beyer et
al. report preliminary experimental results indicating better

performance than simulating grouping via nesting. None
of these papers discuss algorithms for directly computing
group-bys (with possible nesting, having, and moving win-
dows).

A second line of studies investigates how to support
group-by at a logical or physical level [6], and detect
group-bys from nested queries and rewrite them with ex-
plicit grouping operations [4, 5, 9, 12]. However, detect-
ing grouping inherent in nested queries is challenging and
such queries are hard to express and understand. In partic-
ular, the focus of [12] is on structural aggregation by node
types as opposed to value aggregation. Studies by Fiebig
and Moerkotte [6], Pedersen et al. [13], and Deutsch et
al. [4] all consider using query optimization-style rewrite
rules for various kinds of grouping. The transformed query
plan would be based on nested loops.

There is an extensive body of work on efficient com-
putation of group-by and cube queries for relational data
(e.g., [8, 10]). These algorithms are not directly applica-
ble to hierarchical data especially when group-by elements
(β’s) may involve combination of forward and backward
axes and aggregations on values may be nested and may
occur at multiple levels (e.g.,Q2). Of course, by shred-
ding XML to relations, all such queries can be expressed in
SQL. The performance impact of this approach compared
with our direct approach is discussed in Section 7.

Finally, [15, 19] study XPath selectivity estimation to
obtain statistical summaries and approximate answers for
XPath expressions. They do not directly support exact com-
putation of group-bys.

3 Class of Nested Group-bys

3.1 General Form of 1-level Nesting and Examples

The examples discussed so far are instances of the gen-
eral form of a one-level nested group-by query below.

group α
where Cons

by βout
1 (mwout

1) . . . βout
k (mwout

k)

having AggConsout return (
βout

1 , . . . , βout
k , aggout

1 (γout
1), . . . , aggout

m (γout
m)

then by βin
1 (mwin

1), . . . , βin
p (mwin

p)

2

$15

Catalogue

Publisher Publisher

Name Location Location

Name Year Year

Value Book Book

Subject Title #Sold Review

RatingReviewer

Review Price

Penguin

New York

1999

Science Fiction
Foundation

200,000

John Doe 9

Figure 3. An Example Illustrating Node Type Inversion

having AggConsin return (
βin

1 , . . . , βin
p , aggin

1 (γin
1), . . . , aggin

q (γin
q)

))
Path Expressions: Here,α is an absolute XPath expres-
sion, whileβ’s andγ’s are relative toα. That is, for every
node $x that binds toα, those nodes that bind to the related
β’s andγ’s are returned.

Note that theβ’s andγ’s are not restricted to be descen-
dants ofα. Hierarchy “inversion” is supported by using the
keywords (axes)par andanc to denote the parent and the
ancestor node type ofα. Consider the catalogue database
of Figure 3, which is more complex than the one previously
discussed. The database contains details of books classi-
fied byPublisher, Location, Year, and other pieces
of information such asReview. Consider the following
nested group-by queryQ3.

group //Book
by anc::Publisher/Name, Subject return (

anc::Publisher/Name, Subject,
count(distinct(anc::Location/Name)), count(*)

then by par::Year/Value return (
par::Year/Value, median(/Price)

))
The intent of the query is to groupBook nodes first

by (publisher)Name andSubject, and then to further
sub-group byYear. For each outer group, it returns the
number of locations the publisher is in and the number
of books in the group. For each inner sub-group, it finds
the median price of books. Observe that theβ and γ

node types are related to theα Book node by forward
(child/descendant) orbackward (parent/ancestor) relation-
ships or a combination thereof (e.g.,par::Year/Value
andcount(distinct(anc::Location/Name))).
Aggregation Operations: All of aggout’s and aggin’s
are aggregation operations such asmin(), count(),
avg(),median(), etc. Some of theγ elements are multi-
valued (e.g.,Author, Review). Aggregations applied on
suchγ’s can be nested. (Nested group-bys and nested ag-
gregations are orthogonal concepts.) For example, ifmedi-
anMax(/Review/Rating) was specified in the inner block
of queryQ3, the query would first compute foreach book,
the highest or best rating. Then it would obtain the me-
dian among all the best ratings of the books in the group
(for a given publisher, subject, and year). Simiarly,min-
Count(/Review) obtains the minimum number of reviews

any book received in a group. As a last example of nested
aggregation,spread(Rating)=def max(Rating) −

min(Rating) combinesmin() andmax().
Aggregation Conditions: Cons, AggConsout and
AggConsin are sets of conditions. Cons in the
where clause are the usual node-level selection conditions.
AggConsout and AggConsin are sets of aggregation
conditions of the formaggi(γi)θi ci, whereθi ∈ {=, 6=
, >, <,≥, leq}, andci is a constant. With the use of the
having clause, iceberg queries can be easily expressed in
the proposed framework.
Moving windows: Moving window queries have been
studied extensively for relational databases [18]. We
adopt a similar framework for XML data here. The
mwout’s and mwin’s denote moving window specifica-
tions. If the correspondingβi is non-numeric,mwi is
null. Otherwise,mwi can be null or of the general form:
mwi ≡ (width, step, winType, domType). The two
most prevalent parameters of a moving window are the
width (i.e.,width) and step size (i.e.,step) of the window.
The parameterwinType can either becummulative or
fixedWidth. For a cummulative moving window, the
first window is of sizewidth; subsequent windows expand
in size bystep at a time. For a fixed width moving window,
the window moves bystep units at a time. There are two
kinds of domains:active or standard. For an active
domain, only the values that appear in the database are in-
cluded in the formation of a moving window. For a standard
domain, the entire interval[min, max] is used, wheremin

andmax correspond to the minimum and maximum values
that appear in the data. E.g., consider the following query
Q4 which modifiesQ3.

group //Book
by anc::Publisher/Name, Subject return (

anc::Publisher/Name, Subject, count(*)
then by par::Year/Value(2,5,fixedWidth,active) return (

par::Year/Value, avg(/#Sold)
))

Q4 specifies an outer group involving each combination
of publisher and subject. For the inner groups, it picks
“samples” of only 2 (consecutive) years in every 5 years. As
an example, let the set of years appearing in Book nodes that
satisfy the where clause be{91, 93, 95, 96, 97, 00, . . . , 06}.
Then the sequence of moving windows thatQ4 obtains is:
{91,93}, {00,01} and {05,06}. If Q4 is specified with
domType being standard, then the set of year values used
is {91, . . . , 06}, and the corresponding sequence becomes:
{91,92}, {96,97}, {01,02}, and{06}.

In the full paper, we also show how percentiles can be
expressed and evaluated within the same framework.

While we have given the template for a one level nest-
ing, it is trivial to generalize it to arbitrary levels. Further,
to simplify exposition, we assume, unless otherwise speci-
fied, that a moving window specification is haswinType =

fixedWidth anddomType = standard, and so omit these

3

outer−beta1
v1

outer−betak
vk

inner−beta1
w1

inner−betap
wp

inner−beta−group inner−beta−group outer−gamma1
vog1

outer−gammam
vogm

Q−Answer

outer−beta−group outer−beta−group

inner−gamma1 inner−gammaq
wig1 wigq

Figure 4. Answer tree of a 1-level nested group-by

Name
Kaufman

Name
Kaufman

count()

Year
(#Sold)

Year

Q4−Answer

Name−Subject−group

Physics

Subject
63

Year−mw−group Year−mw−group Year−mw−group

{91,93}
avg

700
{00,01}

avg
(#Sold)
450

Year avg
(#Sold){05,06}
480

Name−Subject−group

Subject count()
Computer 280

Figure 5. (Partial) Result ofQ4

components from the specification;Q2 is an example of
this.

Figure 4 depicts the form of answer tree for the query
template given in this section. Figure 5 shows the result of
Q4 against the input data of Figure 1.

4 Overview of a Group-by Operator

We first consider a single block group-by. In [1], we
propose a group-by operator and develop a main-memory
based algorithm, called Merge-GB, for computing it. In this
section, we give an overview of Merge-GB (which does not
support nesting, having, or moving windows). It consists
of three steps: (i) initialization, (ii) the merge* phase where
the node merge operation is repeatedly applied, and (iii) the
answer extraction step.

4.1 Algorithm MERGE-GB: Initialization

Given a group-by query identifying node typesα, β’s,
and γ’s, we prune nodes other than those types. The
outcome of this step is the creation of a “canonical tree”
Tcan, containing only these nodes but following the input
data tree structure. We use the following running example
Q7 throughout this section: ‘‘group //Book
by //Year, return Year, median(#Sold),
spread(Price), count(*)’’ We use the input
tree shown in Figure 1. Figure 6 shows the canonical tree
after initialization.

MERGE-GB computes group-bys by repeated merging
of nodes of the same type. Theα (e.g.,Book) nodes are

[25,25]

Year(8)

1999
#Sold (9)

(10)
Price Year

2000

(17) (18) (19)
Price

Book

Catalogue

Book
(24)

Book

#Sold Year
(28) (29)

#Sold
1999

Price
(30)

(13)
{2000} {1999}

(3)
{1999}

1 1
1

<5600,1>

[60,60]
<800,1> [96,96]

<8000,1>

Figure 6. Canonical Tree forQ7 after Initialization

merged based on equality of the associatedβ values, which
serve as theirgroup-by label. In addition, child nodes of
α nodes that are of a given type are merged the same way
(e.g.,Price, #Sold, etc.).
Counter Initialization : Based on the aggregate functions
in the query, an appropriate counter is associated with cer-
tain edge types. E.g., forcount(*), we associate a sim-
ple counter with each edge of type (Catalogue, Book)
and initialize it to 1. All these (Catalogue, Book) edges
are eventually merged, and the counter is updated to give
the answer to the aggregationcount(*) in Q7. For
spread(Price), the edge type (Book, Price) is as-
sociated with a counter [min, max] containing the mini-
mum/maximum price of books in a group. For the first edge,
this is initialized to[60, 60] (cf: Figures 1 and 6). When
Price nodes are merged, this counter is updated appro-
priately (see Section 4.2). Formedian(#Sold), since
it’s a holistic function, we need a frequency table as the
counter, which keeps track of the frequency for each value.
In Figure 6, the first book has a frequency table edge counter
〈5600, 1〉, indicating that there is 1 book with 5600 copies
sold.

4.2 The Merge* Phase of MERGE-GB

When nodes are merged, counters get updated. Counter
update differs for nodes that were siblings in the original
data tree compared to nodes that weren’t. E.g., in Fig-
ure 6, all theBook nodes are siblings while all thePrice
nodes are non-siblings. For siblings, the counters can be
“summed” together. ForQ7, Figure 7 shows the interme-
diate stage when all the siblingBook nodes are merged.
Suppose there are 258Book nodes with the group-by label
1999 and 317 with group-by label2000. These respective
sets of nodes are merged in Figure 7. The relevant child
nodes ofall the 1999Book nodes in Figure 6 are now con-
solidated to have the same parent. The situation forYear
= 2000 is similar. The edge counters are updated to re-
flect the summation. The counter on the (Catalogue,
Book) edge in Figure 7 yieldscount(*). We use proce-
duredomergesiblings() (not shown) for implement-
ing this.

The next phase is to merge non-sibling nodes and

4

{2000}

(8)

1999
#Sold (9)

(10)
Price Year

2000

(17) (18) (19)
Price

Book

<5600,1>

(3)
{1999}

[60,60]

(29)
#Sold

(30)
Price

<8000,1>

[25,25]

Catalogue

258 317

Book

#Sold

<800,1>
[96,96]

(13)

Year

Figure 7. End of the Merge Siblings Pass forQ7

update their counters, for which we use procedure
domergenonsiblings() (not shown). For our ex-
ample, all thePrice sibling nodes in Figure 7 (which
were non-siblings in Figure 6) are merged. For brevity,
the resulting tree is suppressed. Suppose of the 258
1999-books in Figure 7, the minimum price is $25
and the maximum price is $130. Then the counter for
the first (Book, Price) edge from left is updated to
[min{60, 25, ..., 130, ...}, max{60, 25, ..., 130, ...}] =

[25, 130]. Similarly, the frequency table of
the first (Book, #Sold) edge is updated to say
{〈5600, 5〉, 〈8000, 3〉, 〈200, 10〉, . . .}. In effect, this
says, the price of the 258 1999-books is in the range
[25, 130], there were 5 books which sold 5600 copies, 3 for
8000 copies, etc. Notice that we need frequency table for
#Sold since median is required.

Both procedures domergesiblings() and
domergenonsiblings() are invoked in Figure 8.
The group-by summary tree after merging non-siblings
contains the necessary information to construct the an-
swer forQ7. We omit the obvious detail on answer tree
construction.

5 A Disk-based Algorithm for Nested Group-
bys with Having Clauses

In this section, we develop a disk-based algorithm for
processing nested group-by queries. Section 5.2 deals with
having clause, and Section 6 with moving windows.

5.1 Dealing with Nesting

We assume the worst case, where there is no associated
index for quickly selecting the required node types, and as-
sume we have to scan the input data tree with nodes stored
in pre-order fashion. As the input data is scanned, all nodes
that are not ofα, β’s andγ’s node types are ignored. The
answer tree is constructed with aggregation computed on-
the-fly as much as possible. For simplicity of presentation,
we assume that the answer tree fits in main memory.
Proceesingβ nodes: Whenever aβ node is encountered,
the algorithm checks to see if this is a new value. If so,
the value is used to create the corresponding group-by label

in the answer tree. Otherwise, appropriate updating may
take place. For instance, forQ1 and the tree shown in Fig-
ure 1, the first timeName = Kaufman is encountered, a
newBook group node is created in the answer tree as a new
child node of the root, with{Kaufman} as the group-by
label. This node, in turn, has 3 child nodes: aName child
with valueKaufman and child nodes foravg(Price)
andcount(*) with associated counters properly initial-
ized.

As more input data are scanned,γ nodesPrice are en-
countered. Let us defer the discussion onγ nodes. Instead,
let us consider the processing of the innerβ nodesYear.
Exactly like how outerβ nodes are processed, if a new
Year value is encountered, a newYear group node is cre-
ated. E.g., the first timeYear = 1999 is encountered, a
new group node is created as a child node of the appropriate
Name group node, with group-by label{Kaufman,1999}
. This node in turn has two child nodes. The first child
node isYear with value 1999. The second child node is
median(#Sold) with the counter initialized approrpri-
ately.

Q1 discussed so far is simpler than the general case.
E.g., considerQ3. Ignore for now the node inversion part
(i.e.,anc::Publisher). Here there are twoβ elements
–Name andSubject. As discussed above, there is check-
ing to see if a newName or a newSubject is encountered,
which is implemented by hashing. Furthermore, associated
with eachβ is a list of values. This list facilitates the cre-
ation of group nodes. For instance, when a newSubject
values is encountered, then there is a new group node cre-
ated corresponding to the pair(n, s) for eachName value
n in the list ofName values seen so far. The appropriate
group-by label is created as well.

For node inversion, one complication is that theβ node
(or γ node) may be read before theα node. This is easily
dealt with by using a dummyα node. That is, the nodes in
the answer tree are created in exactly the same way, except
there may be nodes with missing values to be filled in later
when they are read. The set of nodes to be created in this
manner is completely determined by the query, as discussed
before.
Processingγ nodes and Updating counters: There are
two cases for actions to be taken on reading aγ node. If
the aggregate operation is holistic, then all the values of the
γ node for the specificβ combination have to be collected
before the aggregation can be carried out. As these val-
ues are being read one by one, they are accumulated in a
frequency table in main memory. However, our algorithm
does not assume that all the frequency tables will fit in main
memory simultaneously. Thus, these values are written out
to a file, called a gamma file. ForQ1, median(#Sold) is
a holistic aggregation, and each#Sold value encountered
is written out to the gamma file with the associatedα-id. As

5

Algorithm NGB-Disk
Input: XML tree-file, query
Output: answer tree

(1) Open input file and initialize answer tree.
(2) for each node encountered{
(3) if the node is not anα, β, or γ node, skip the node
(4) if it is anα node{
(5) update appropriate counter ifcount(*) is specified
(6) if node type inversion is involved, update the dummyα node}
(7) if it is a β node{
(8) if a newβ value is encountered
(9) create a new set of group nodes with the group-by label
(10) otherwise, update appropriate counters ifcount(*) is specified}
(11) if it is aγ node{
(12) if the aggregation is holistic,
(13) output the value and theα-node id to the gamma file
(14) otherwise{
(15) if the parent-id associated with the counter is the same

as the parent-id of the current node, invoke domergesiblings()
(16) otherwise, invoke domergenonsiblings()} }
(17)} /* end-for */
(18) scan through the gamma file, using theα-node ids to form groups
(19) use domergenonsiblings() to compute the aggregation for each group
(20) put the computed values in the appropriate ndoes of the answer tree}

Figure 8. Algorithm NGB-Disk

shown in Figure 8, there is a separate gamma file pass after
all the input has been read.

If the aggregation operation is not holistic, then the ag-
gregation can be computed on-the-fly by updating the ap-
propriate counters. The updating can be done by invoking
either the domergesiblings() or domergenonsiblings() pro-
cedures discussed earlier. To decide between which proce-
dure to use, the algorithm compares the current parent-id
with the stored parent-id associated with the last update of
the counter. If the two id’s match, then the currentγ node
is a sibling of the lastγ node, and domergesiblings() is in-
voked; else domergenonsiblings() is invoked.

To complete the discussion of processingQ1, when the
Price nodes are read, foravg(Price) two counters –
sum and count – are maintained and updated as usual. At
the end, the average value can be computed from the two.
For count(*), the first time whenName = Kaufman
is encountered, the required set of nodes are created in
the answer tree as discussed before. Furthermore, the
counter associated withcount(*) is initialized to 1. Next
time whenName = Kaufman is encountered again, the
counter is incremented. Finally, formedian(#Sold), a
gamma file is used. Eachγ value is associated with theα-id
so that in the final pass when these values are re-read into
main memory, the procedure domergenonsiblings() can be
used to compute the median. For our example, a frequency
table is used to aggregate the#Sold values, from which
the median can be computed.

Recall that the proposed framework sup-
ports nested aggregation. Suppose that
medianMax(Review/Rating) is specified inQ3. As
the Review/Rating nodes are read, domergesiblings()
is used to compute the highest rating for that particular
Book group. This highest rating is then written out to the

gamma file and processed in the final pass to compute the
median as discussed in the previous paragraph.

5.2 Dealing with a Having Clause

We first consider a having clause in an unnested group-
by query and then generalize to nested queries.
Anti-monotonic early pruning: In an unnested group-by
query, the obvious naive solution to process a having clause
is to compute the aggregation in the clause and then to
check if the aggregation result satisfies the constraint. How-
ever, for some constraints, it is possible to apply early prun-
ing. As studied in [11], an anti-monotonic constraint is
a constraint that will remain false once it is first violated.
For instance, if the having clause includes the constraint:
max(Price) ≤ 10, then as soon as we have encoun-
tered a single item in that group with price> 10, then
no item encountered later can reverse the violation of the
constraint. Other examples include:count(*) ≤ 100,
min(Price) ≥ 100, sum(Price) ≤ 1000. The
class of anti-monotone constraints has been extended by the
notion of convertible constraints studied in [14]. Both anti-
monotonic and convertible constraints allow early pruning
of groups violating the constraint.
With Nesting: Let us first consider how early pruning can
be incorporated into Figure 8. First, whenever a counter is
updated in line (15) or (16), the constraint is checked if it
is anti-monotonic or convertible. If the constraint is already
violated, then the correspondingβ group is flagged. Lines
(10), (15) and (16) check if the group to be updated is a
flaggedβ group. If so, no updating is required. E.g., sup-
pose inQ2 that the having clause iscount(*) ≤ 100
instead. Then once a particularβ group (i.e.,Name in this
example) is flagged, there is no need to update the counters
corresponding tocount(*), andavg(/Price). We
use a hash table to map aβ group to a corresponding node
in the answer tree. Hereafter, we usehash(βv) to return
the corresponding node in the answer tree for a particular
β valueβv. Eachβ node has a flag that indicates whether
the group has been flagged due to the violation of a having
clause.

Similar to the skipping of outerγ’s, all the processing
within the inner query can be skipped once aβ group has
been flagged. ForQ2, once the outer having clause fails,
the processing for the innerβ (i.e.,Year) and the innerγ
(i.e., #Sold) can be skipped. Thus, to process a having
clause, lines (7) and (11) in Figure 8 are modified with the
condition that the nodes are not flagged.

So far the discussion focuses on the situation when anti-
monotonic early pruning has flagged aβ node. However, a
similar kind of processing can be applied when there is an
outer having clause. Recall that lines (18) and (20) deal with
holistic aggregations. A condition is added to make sure
that a holistic aggregation inan inner block is not processed

6

until the having clauses in all the outer blocks have been
processed. To have the maximum benefit, it is not sufficient
to have a single gamma file for all the holistic aggregations.
In the best case, for eachβ group in a query block with
a having clause, there should be a separate gamma file for
each holistic aggregation. ForQ2, this corresponds to the
situation when each publisherName has a separate gamma
file. (The#Sold values of all the years for a particular
publisher shares the same gamma file.) In this way, if the
β group is flagged because of failing the having clause, the
entire gamma file need not be re-read. This leads to the
following guarantee for minimizing I/O’s.

Lemma 1 With the aforementioned setup, aγ value in an
inner block that does not appear in the answer is not read
after the value was written into the appropriate gamma file.

6 Dealing With Moving Windows

First, we consider the simpler case of no having clause in
the query (but possibly with nested group-bys). We propose
two evaluation strategies. Later we consider more genaral
cases.

6.1 The Repeated-aggregation Strategy

A natural strategy for processing a moving window
mw ≡ (width, step, winType, domType) is to enumer-
ate all the groups apriori, and then to aggregate for all
these groups as if they were independent. E.g., first con-
sider a standard domain moving window, i.e.,domType =

standard. Because the range is known without reading the
data, all the groups that are specified bymw can be enumer-
ated apriori. For these groups, the corresponding nodes are
created in the answer tree even before the data are read.

E.g., let mw1 ≡ (5, 1, fixedWidth, standard) be
specified for Year and let that range of values be
[1991,2006]. Thus, all the groups can be enumerated apri-
ori, e.g., 1991-1995, 1992-1996, and so on. With these
groups created, the one extension to Figure 8 that is nec-
essary is line (7). When aβ node with a particular value
βv is read, there may be multiple groups that have to be
engaged. For instance, formw1, if βv = 1993, coun-
ters of the three groups 1991-1995, 1992-1996 and 1993-
1997 should be updated. This is implemented by extending
the hash indexhash(βv) so as to direct the updating of
all the appropriate group counters. This strategy is called
repeated-aggregation. The casewinType = cumulative

is handled similarly.
Whenstep > width, someβv values may not partic-

ipate in the aggregation, and for themhash(βv) returns a
null list of locations.

So far we have considereddomType = standard.
The situation fordomType = active is handled in like

manner.

6.2 The Rolling-over Strategy

One potential drawback of repeated aggregation is that
aggregation may need to be repeated many times. E.g.,
for the abovemw1 example, for a specificβv value, say
1993, since this year value is engaged with the three groups
1991-1995, 1992-1996 and 1993-1997, all the 1993 values
are essentially aggregated three separate times. In general,
the larger the ratiowidth/step, the more often the aggre-
gations are repeated. The rolling-over strategy avoids this
potential inefficiency by making sure that eachβ value is
aggregated at most once.

The strategy consists of 2 main steps, given a queryQ

with at least one moving window. (1) RunQmw, which is
formed by removing the moving window specification inQ.
Essentially,Qmw represents a degenerate moving window
with width = 1 andstep = 1. The outcome is an interme-
diate answer treeTmw. (2) UseTmw to compute the mov-
ing window part ofQ and to return the final answer tree.
The specific computation depends on the nature of the ag-
gregate function. First, consider a distributive functionsuch
assum. Once the sum for a particular window is calculated
(e.g., for 1991-1995), the sum for the next window (e.g.,
1992-1996) is obtained by subtracting the sums for those
years that left the window (e.g., 1991) and adding the sum
for those years that entered the window (e.g., 1996). If the
aggregate function is algebraic such asavg, by breaking it
into corresponding distributive functionssum andcount,
we can use the same technique. If the aggregate is holis-
tic like median, then the counter used is the frequency ta-
ble. The frequency table for 1992-1996 is obtained from
that of 1991-1995 by removing rows corresponding to 1991
and adding rows corresponding to 1996. Active domain and
cumulative windows are handled similarly. For the rolling-
over strategy, we have:

Lemma 2 For each value ofβ, the rolling-over strategy
guarantees that aggregation is done at most once.

While the above lemma guarantees that aggregation is
done at most once for each value ofβ, the rolling-over strat-
egy may perform aggregation for values that are not needed
in the answer, whenwidth < step. It may incur unnec-
essary overhead in first executingQmw. In contrast, when
width < step, repeated aggregation does not perform un-
necessary aggregation for values not required. In the next
section, we will give empirical results quantifying the per-
formance tradeoff between the two strategies under various
circumstances.

Nested group-bys with a single moving window in the
outer inner clause can be handled in a straightforward way.
The foregoing discussion essentially says how to extend the
algorithm in Figure 8.

7

6.3 Multiple Moving Windows

A natural question to ask is whether the two strate-
gies work when there are multiple moving windows either
in the same block or in a nested relationship. Multiple
moving windows in the same block give rise to “hyper-
rectangular” windows. Essentially, the attributes with mov-
ing window specifications are orthogonal to each other. For
the repeated-aggregation strategy, the formation of moving
window groups essentially performs a “cartesian product”
on the moving window groups from each such attribute.
The resultant answer tree may be big, but both repeated ag-
gregation and rolling over work just as before.

Finally, consider the situation when there is a moving
window in both the outer and the inner blocks. The pro-
cessing for both the repeated-aggregation and the rolling-
over strategies is, modulo the nesting involved, similar to
the previous discussion on multiple moving windows.

6.4 Combined with Having Clauses

The discussion so far on moving windows assumes there
is no having clause. For moving windows with (nesting
and) having clauses, repeated aggregation works with no
changes. For rolling-over, as long as there is no holistic
aggregation, no change is needed. If a holistic aggrega-
tion is involved, we only need to delay the processing of
the gamma files. In sum, the algorithm follows the same
principle of not processing an inner block until the having
clauses in all the outer blocks have been processed. For lack
of space, we omit the details here.

7 Experimental Evaluation

7.1 Experimental Setup

We implemented Algorithm N-GB in Java. For compar-
ision, we picked Galax [7] (the single major complete ref-
erence implementation of XQuery), and Qizx [17] (one of
the most efficient XQuery engines available). We used the
well known synthetic dataset XMark (50-500 MB) and real
data sets DBLP (250 MB and 400 MB), and Protein [16]
(13 MB), chosen for its high heterogeneity. Experiments
were run on 2GHz CPU, 1GB RAM machine. All the run-
times are trimmed averages of 10 runs. We consider three
broad classes of queries for which we ran several tests. For
Galax and Qizx, we had to simulate grouping via nesting.
For Oracle, we used the corresponding group-by features of
SQL.

7.2 Simple Nested Group-bys

Here we consider simple group-by queries with nesting
only. We analyze the performance on varying parameters

such as levels of nesting etc. and also compare with com-
peting XML systems. We also did some intial probing to
see how the “SQL approach” (using Oracle) compares with
N-GB.

7.2.1 Comparision with Oracle

For comparing with Oracle, we shredded the XML data and
loaded the relational database. We used XMark as a basis
for this comparison. For shredding, we followed the ap-
proach of [20]. For lack of space, we suppress the graphs,
but while for single block group-bys the performance was
comparable, even with 1 level of nesting, Oracle was 2-3
times worse than N-GB. This factor went up to 12 with 2
levels of nesting. Since nested group-by is fairly fundamen-
tal to XML, this motivates the need for direct efficient algo-
rithms for this purpose.

7.2.2 Comparision with Galax

As a sanity check, we compared N-GB wit Galax. As ex-
pected, Galax performance was quite poor, taking more than
1000 sec in many cases. E.g., for a typical 1-level nested
group-by on XMark 100 MB data set, Galax took 5 min –
some 30 times more than N-GB. We do not compare with
Galax further.

7.2.3 Comparision with Qizx

We considered various parameters of interest for testing
against Qizx.
Size and Number of Groups : We measured the perfor-
mance when we vary the number and size of the groups in
the answer. We designed two types of queries, one produc-
ing small number of large groups (Query Q1 and Q3) and
other producing large number of small groups (Query Q2
and Q4). Figure 9(a) shows how runtime varies for Qizx and
N-GB for various datasets and sizes. Note the cutoff of 1000
secs and logscale on the Y-axis. Clearly, N-GB outperforms
Qizx (sometimes by more than two orders of magnitude)
when there are a large number of groups in the answer. But,
for queries producing small answers, Qizx performs excel-
lently – one of the reasons why we chose it for comparision.
Another important observation is that, unlike Qizx, N-GB is
very stable w.r.t. group number and size. Moreover, on the
very heterogenous yet small Protein dataset, Qizx performs
very poorly onboth the queries. N-GB has consistent effi-
cient performance.
Fully Vs. Partially Specified Paths : We tested two types
of queries which differ only in the fact that theα-path is
fully specified in one (Q5 and Q7) and partially specified
in other (Q6 and Q8). Figure 9(b) shows the results for
different datasets. Surprisingly, whether paths are fullyor

8

partially specified affects the performance of Qizx quite dra-
matically (up to an order of magnitude difference). On the
other hand, the performance of N-GB is stable.
Increasing levels of nesting :To study the effect of levels
of nesting, we designed simple nested queries where we in-
creased the number of nesting levels from 0 (flat query with
no nesting) to 3. Due to lack of space, we show the results
only for Xmark dataset of size 100MB (Figure 9(c)). Inter-
estingly, we observe that N-GB is stable even in this case:
the number of levels hardly affects its performance. Qizx
performance rapidly degrades (by more than two orders of
magnitude) from the flat query as the levels increase to 3.
Scalability : From the above graphs, we can draw conclu-
sions about scalability of N-GB. For example, both Figure
9(a) & (b) show results for XMark dataset (50 MB to 200
MB). Qizx doesn’t run for XMark, size 500 MB and more
on a 1GB RAM machine (insufficient heapspace). (N-GB
completed in 45-50 sec on XMark 500 MB.) For N-GB, we
observed the parsing time of course increases linearly, but
the rest of the computation and I/O grow sub-linearly. On
the other hand, the scalability of Qizx is is sensitive to path
expressions (fully/partially specified) and the number/size
of groups.

7.3 Nested Queries with Having Clause

Our objective was to measure the benefits of early prun-
ing on nested queries with having clause. We consider two
types of 1-level nested queries with having and an anti-
monotonic constraint in the outer block. One has a non-
holistic aggregate in the inner block (Q9 and Q11) and the
other has a holistic aggregate in the inner block (Q10 and
Q12). Figure 9(d) shows the results for each query with
and without early pruning. Since the main impact of early
pruning is on computation and not parsing, in this graph,
we show only the total aggregation time and gamma file I/O
time. As expected, there are substantial savings (200-300%)
for early pruning in all the cases. Moreover, note that the
savings are more for queries in which the inner-aggregate is
holistic. This is expected as holistic aggregate computation
involves gamma-file I/O as well as more intensive compu-
tation and early pruning avoids aggregate computation for
those inner groups whose outer group has been pruned.

7.4 Moving Windows (MW)

For group-by queries involving MW clauses, we
wanted to measure the gain of rolling-over over repeated-
aggregation as a function of the ratio of window width to
step size. Since the gain is only w.r.t. the moving window
aggregation time, this is what we show in the graph (Figure
9(e)). The figure shows the percentage gain in the com-
putation time of rolling-over over repeated-aggregation for
DBLP 250 MB dataset. The query used was a flat group-

by query with MW clause and we varied the Width to Step
ratio. Clearly for ratio< 1, repeated-aggregation is bet-
ter whereas for ratios> 1, rolling-over is more efficient.
Also the percentage gain increases as the ratio increases.
We also measured the effect of early pruning on the above
two strategies. We used 1-level nested group-by queries
with moving window aggregate in the inner block and hav-
ing clause with an anti-monotonic constraint in the outer
block. Figure 9(f) shows the variation in computation time
for the four self-explanatory exhaustive cases for DBLP
dataset of sizes 250 MB and 400 MB. Note that the gains
with early pruning are greater for the repeated-aggregation
strategy as against the gains for rolling-over. As already
discussed in Section 6, the reason is that repeated aggre-
gation involves updating counters for multiple groups for
eachβ value as against a single group in case of rolling-
over. On the other hand, early pruning prunes away many
groups - which explains the reduced gains for rolling-over
over repeated-aggregation in this case.

8 Conclusions

Using a rich framework for expressing sophisticated ag-
gregate queries on XML data with grouping, nesting, hav-
ing, and moving window aggregations, we developed an ef-
ficient disk-based algorithm for computing all such queries.
Using a comprehensive set of experiments, we showed
that our algorithm has stability, scalability, and efficiency,
and is often orders of magnitude faster than existing ap-
proaches. Furthermore, our algorithm naturally supports
several optimizations which improve its efficiency even fur-
ther. In ongoing work, we are exploring these ideas for
fast computation of cube on XML data. The complete set
of our experimental data, queries, and results are avail-
able from http://www.cs.ubc.ca/̃chai2006/
xmlGBExperiments.

References

[1] N. Bansal et al. Deep Processing of Group-bys for XML Analytics. submitted
to a technical journal. July 2006.

[2] K. Beyer et al. “Extending XQuery for Analytics,” SIGMOD2005, pp. 503–
514.

[3] V. Borkar and M. Carey. Extending XQuery for Grouping, Duplicate Elimina-
tion, and Outer Joins. XML Conference and Expo., Nov. 2004.

[4] A. Deutsch et al. “The NEXT framework for logical XQuery optimization,”
VLDB 2004, pp. 168–179.

[5] L. Fegaras et al. Query processing of streamed XML data. CIKM 2002: 126-
133.

[6] T. Fiebig and G. Moerkotte. “Algebraic XML Constructionand its Optimiza-
tion in Natix,” World Wide Web, 4(3), pp. 167–187, 2001.

[7] Galax. Galax XQuery engine. http://www.galaxquery.org.

[8] J. Gray et al. Data Cube: A Relational Aggregation Operator Generalizing
Group-by, Cross-Tab, and Sub Totals. Data Min. Knowl. Discov. 1(1): 29-53
(1997).

[9] N. May et al. Three Cases for Query Decorrelation in XQuery. 70-84.

[10] A.O. Mendelzon et al. Data warehousing and OLAP: A research oriented bib-
liography. http://www.daniel-lemire.com/OLAP/index.html.

9

(a) Varying Size of Groups (b) Fully vs Partially Specified Paths

(c) Increasing levels of Nesting (d) Early Pruning

(e) MW with varying ratios (f) MW with having clause

Figure 9. Experimental Results.

[11] R. Ng et al. Exploratory Mining and Pruning Optimizations of Constrained
Association Rules. SIGMOD 1998: 13-24.

[12] S. Paparizos et al., “Grouping in XML,” EDBT 2002 Workshop, LNCS 2490,
pp. 128–147.

[13] D. Pedersen et al. “Query Optimization for OLAP-XML Federations,” ACM
Workshop on Data Warehousing and OLAP 2002, pp. 57–64.

[14] J. Pei et al. Mining Frequent Item Sets with ConvertibleConstraints. ICDE
2001: 433-442.

[15] N. Polyzotis et al. ”Approximate XML Query Answers,” SIGMOD 2004, pp.
263-274.

[16] Georgetown Protein Information Resource.
http://pir.georgetown.edu/home.shtml.

[17] Qizx/open. Qizx/open XQuery engine.http://www.xfra.net/qizxopen.

[18] R. Ramakrishnan et al. SRQL: Sorted Relational Query Language. SSDBM
1998: 84-95.

[19] M. Ramanath et al. “IMAX: The Big Picture of XML Dynamic Statistics,”
ICDE 2005.

[20] J. Shanmugasundaram et al. Relational Databases for Querying XML Docu-
ments: Limitations and Opportunities. VLDB 1999: 302-314.

[21] World Web Consortium (W3C) “XQuery 1.0: an XML Query Language,”
April 2005. http://www.w3.org/TR/xquery/ .

10

