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ABSTRACT
Given an noisy or sampled snapshot of a network, like a
contact-network or the blogosphere, in which an infection
(or meme/virus) has been spreading for some time, what
are the best nodes to immunize (vaccinate)? Manipulating
graphs via node removal by itself is an important problem in
multiple different domains like epidemiology, public health
and social media. Moreover, it is important to account for
uncertainty as typically surveillance data on who is infected
is limited or the data is sampled. Efficient algorithms for
such a problem can help public-health experts take more
informed decisions.

In this paper, we study the problem of designing vaccine-
distribution algorithms under an uncertain environment, with
known information consisting of confirmed cases as well as a
probability distribution of unknown cases. We formulate the
NP-Hard Uncertain Data-Aware Vaccination problem, and
design multiple efficient algorithms for factorizable distri-
butions (including a novel sub-quadratic algorithm) which
naturally take into account the uncertainty, while provid-
ing robust solutions. Finally, we show the effectiveness and
scalability of our methods via extensive experiments on real
datasets, including large epidemiological and social networks.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications–
Data mining

Keywords
Graph Mining; Uncertainty; Immunization; Diffusion

1. INTRODUCTION
What is the best way to distribute vaccines to prevent the

spread of diseases on a socio-contact network? Most pre-
vious works (see Related Work) for controlling propagation
have concentrated on developing strategies for vaccination
(node/edge removal) pre-emptively before the start of an
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epidemic. While very useful to provide insights in to which
baseline policies can best control an infection, they may not
be ideal to help make real-time decisions as the infection
is progressing. Consider also social media and cyber secu-
rity. Popular phrases or links or rumors are re-posted/re-
tweeted on Facebook/Twitter, ‘infecting’ followers to do the
same. How should Twitter decide which accounts to sus-
pend/delete to stop active rumors/spam/malware as much
as possible? Which machines should install patches first,
in presence of malware attacks? All these problems can
be thought of as immunization/vaccination in a network,
in presence of already infected nodes [46].

However, in reality contagions usually spread over uncer-
tain environments and the sources of such uncertainty are
many. For example, in public health, due to the so-called
multi-layered surveillance pyramid [39, 16, 30] at each layer
the number of detected infections is a fraction of the infec-
tions in the layer below it. Hence the total detected infec-
tions at the top of the pyramid is a fraction of the actual
infections in the population at the bottom. Another exam-
ple is the likelihood ratios used in diagnostic testing [13]. For
each a person who gets the negative test outcome, she has
some probability that her test was a false-negative. In so-
cial media, as externals we rarely get access to the complete
cascade. Researchers usually have access to only a uniform
sample of cases (e.g. the Twitter API). In Facebook, most
users keep their activity and profiles private. Moreover, if
only because of the extreme velocity of social media data,
one has to resort to using only a sample of the data. Hence
this implies that we will have to make do with only an un-
certain snapshot.

In this paper, we study the problem of how to best dis-
tribute vaccines to nodes in large networks, in presence of
uncertain prior information. Our goal is not to fill-in the
missing information; instead we want to take robust deci-
sions in presence of uncertain information. Our contribu-
tions include:

1. Problem Formulation: We formulate the Uncertain
Data-Aware Vaccination problem, which takes into ac-
count multiple natural uncertainty models arising from
social media and epidemiology.

2. Efficient Algorithms: As the problem is NP-hard
and hard to approximate within absolute error, we de-
velop multiple polynomial-time algorithms of varying
efficiency, namely (a) Sample-Cas, based on the sam-
ple average approximation; and (b) Expect-Max, a
faster hybrid algorithm which leverages the so-called



expected graph and two complementary approaches to
estimate benefits.

3. Extensive Experiments: We demonstrate the effec-
tiveness and scalability of our algorithms on multiple
real datasets including large epidemiological and social
networks, over different uncertainty distributions and
initial conditions. Our algorithms outperform several
other competitor algorithms, getting substantial gains
in both number of nodes saved, and running time.

The rest of the paper is organized as follows. Section 2
presents some preliminaries while Section 3 sets up the Un-
certain Data-Aware Vaccination problem, and discusses the
computational complexity of our problem, Section 4 presents
our algorithms and Section 5 presents experimental results
on several datasets. We give related work in Section 6, and
finally conclude in Section 7.

2. PRELIMINARIES
Table 1 lists the main symbols used in this paper. There

exists an underlying contact network G on which the conta-
gion (disease/virus/meme etc.) can spread. We assume that
our network is weighted and undirected, but all our methods
can be naturally generalized to directed graphs.

Table 1: Terms and Symbols

Symbol Definition and Description

UDAV Uncertain Data-Aware Vaccination problem

IC Independent Cascade Model

SIR Susceptible-Infected-Recovered Model

footprint number of infected nodes at the end

benefit number of nodes saved

G(V,E) graph G with nodes set V and edges set E

U uncertainty model

βi,j propagation probability from node i to j
(weight over edges)

pi probability that i is infected at the start

k the budget (i.e., the number of vaccines avail-
able)

S set of nodes to give vaccines to

ES(F ) the expected footprint after vaccinating S

δZ(S) given graph Z, the expected benefit of vacci-
nating S in Z

l number of samples

α percentage of nodes that have pi > 0 in U

We use two widely used propagation models to describe
how the virus spreads on the network: the Independent
Cascade (IC) model and the Susceptible-Infected-Recovered
(SIR) model. SIR is a well-known epidemiological model to
model mumps-like infections [17, 2]. A node in this model
can be healthy (susceptible), infectious or recovered. When
a node u becomes infected at the timestamp t, it will try to
infect each of its direct healthy neighbors v with the propa-
gation probability βu,v. If u succeeds, v will become infec-
tious at the timestamp t+ 1. At the end of each timestamp

t, each infected node u has a curing probability ρ to become
‘recovered’ at the next timestamp t + 1. Once recovered, u
will never be infected further. The process stops when no
additional node becomes infectious. The IC model [21], a
special case of SIR, has been extensively studied in the so-
cial media to model the viral marketing. Unlike SIR, a node
u in IC has only single chance to infect its healthy neighbors
(hence the curing probability, ρ = 1 here).

3. OUR PROBLEM FORMULATION

3.1 Uncertainty model
In this paper, we are concerned with the scenario when

we know the underlying contact network, but we do not
know the exact current infected state of the network. One
source of uncertainty is public-health surveillance [39, 16, 34,
30, 12, 5]. Generally there are three types of surveillance:
population-based, health provider-based and lab-based. Al-
though different types of surveillance may have different
probabilities to miss the truly infected person, we can sim-
ply use a set of probabilities P (over the nodes) to model
such uncertainty. Another example is the likelihood ratios
used in diagnostic testing; each a person has a probability p
that her test was a false-negative. In Twitter, each relevant
‘infected’ tweet can be modeled as having some probability
of being missed (because of uniform samples [32]).

Table 2 summarizes common probability distributions mod-
els U we use in this paper to model the uncertainty in
observed infections. Each gives the probability of a node
i not observed as infected being truly infected. We fo-
cus on fully factorizable distributions (over nodes) for sim-
plicity1. Hence, if Gj denotes a particular configuration
of infections in the network (i.e. a ‘possible world’), then
Pr(G ≡ Gj) =

∏
a∈I pa

∏
b∈H(1 − pb) where I and H are

the set of infected and healthy nodes in Gj , and the proba-
bilities pi for any node i come from U .

3.2 Problem Definition
Now we are ready to state our problem formally. We as-

sume that a contagion can travel in principle from any node
to any other node i.e. the graph is connected (strongly con-
nected if directed). We are given a fixed-set I0 with infected
nodes, and an uncertainty model U as above. We are also
given a budget k of vaccines. Giving a vaccine to a node ren-
ders it immune to the virus and hence it can not get infected
further (effectively removing it from the network). Our goal
is to find the ‘best’ set S of nodes to vaccinate to minimize
the spread of the contagion, which can be measured by the
so-called ‘footprint’, the number of infected nodes at the
end. A subtle point is that vaccination is meaningful only
for healthy nodes. Hence when we select a node-set S, not all
the nodes in S can be vaccinated (removed) in all possible
sampled graphs: if a node i is infected in a possible world
Gj , then it can not be vaccinated in Gj , and it does not give
us any benefit there.

More specifically, suppose S is the set of nodes selected
initially for vaccination and Gi is a particular realization
(‘world’) sampled from U . There only exist infected or
healthy nodes in Gi. Denote Si ⊆ S as the subset of nodes

1Extending our results to more general forms e.g. distri-
butions factorizing over groups of nodes being infected is
interesting future work.



Table 2: Uncertainty models for initial infections used in this paper.
Name Distribution Description

UNIFORM pi = p All nodes have identical probability to be infected. Can be thought of sampling rate in
case of Twitter API [32].

SURVEILLANCE pi ∈ P Each node takes a probability from P (which is a finite set of probabilities like
{0.1, 0.5, 0.9}). See Surveillance pyramid [39, 34, 30].

PROP-DEG pi ∝ di The probability to be infected for each node is proportional to its degree, i.e., people
with larger number of connections have higher probabilities to be infected.

GENERAL pi Each node has its own infected probability.

in S that are healthy in Gi—these are the nodes which will
be vaccinated in Gi. Denote σGi(Si) as the expected num-
ber of infected nodes after running the epidemiology model
e.g. IC, on Gi starting from the infected nodes in Gi but af-
ter removing nodes in set Si. Let F be the random variable
denoting the number of infected nodes after choosing set S
under U . Then ES(F ) =

∑
Gi∼U Pr(Gi)σGi(Si) and we are

trying to find the best set S to minimize ES(F ). Formally:

Problem 1: Uncertain Data-Aware Vaccination Problem:
UDAV(G,U , I0, k).
Given: A graph G(V,E) with node set V and edge set

E, the uncertainty model U , the infected node set I0, prop-
agation probability on each edge {i, j} βi,j, and an integer
(budget) k.
Find: A set of nodes S∗ = argmin

S
ES(F ) s.t. |S| = k.

Note that as vaccination will be applied only to healthy
nodes in a possible world, this formulation also naturally
generalizes the corresponding deterministic version of this
problem (data-ware vaccination problem studied in DAV [46]).

Complexity. UDAV is NP-hard, and cannot be approxi-
mated within an absolute error since its deterministic coun-
terpart DAV is itself NP-hard, and cannot be approximated
within an absolute error [46].

4. OUR PROPOSED METHODS
Overview. In this section, we first present a sampling al-
gorithm Sample-Cas for UDAV , which is a stochastic al-
gorithm under the SAA framework. However, Sample-Cas
is not scalable to large networks. Hence, we propose two
faster algorithms: Expect-Dom and Expect-Eig, which
are based on the expected graph and measuring benefits of
vaccinations. After analyzing the performance of Expect-
Dom and Expect-Eig, we show that these two algorithms
are complementary w.r.t. the support of the uncertainty
model, and hence we present a hybrid algorithm called Expect-
Max with sub-quadratic running time.

We assume the GENERAL model everywhere in this section
(as the rest in Table 2 are just special cases of GENERAL).
Further we describe the algorithms assuming the IC model
first(Section 4.1 and 4.2)—later, we will discuss how to ex-
tend to the SIR model (Section 4.3).

4.1 The Sample-Cascade Algorithm
Main Idea. Since UDAV is a stochastic optimization prob-
lem, we try to apply the SAA (Sample Average Approxima-
tion) [22] framework to solve it. The idea is to reduce the
stochastic optimization problem to the deterministic version
by sampling the uncertainty distribution to generate a finite

number of deterministic cases. Unfortunately, as we men-
tioned in the previous section, even the deterministic version
of UDAV is NP-hard. Hence we leverage the solution in [46],
which utilizes a spanning tree called dominator tree, and
then find a suitable sub-modular structure to solve UDAV
approximately.
Details. Let δGi(Si) be the expected benefit after vacci-
nating the healthy node set Si in a graph Gi, i.e.:

δGi(Si) = σGi(∅)− σGi(Si) (1)

So

ES(F ) =
∑
Gi

Pr(Gi)σGi(Si)

=
∑
Gi

Pr(Gi)(σGi(∅)− δGi(Si)) (2)

Since
∑
Gi

Pr(Gi)σGi(∅) is constant, UDAV (Problem 1)
can be rewritten as:
S∗ = argmax

S

∑
Gi

Pr(Gi)δGi(Si) s.t. |S| = k.

So we need to compute δGi(Si) for each Gi, which is es-
sentially the deterministic problem on graph Gi. Hence we
re-purpose the solution from [46]: first merge all the infected
nodes in Gi into a super node I0 (I0 is infected). If a healthy
node has multiple infected neighbors, I0 will connect to the
node with the probability that is the logical-OR of the indi-
vidual probabilities (so if a node u has two infected neighbors
x and y, βI0,u = 1− (1− βx,u)(1− βy,u)). Secondly, build a
dominator tree DomGi on this merged graph, and properly
weight it. Briefly, given a source node I0, a node v dominates
another node u if every path from I0 to u contains v. Node
v is the immediate dominator of u, denoted by v = idom(u),
if v dominates u and every other dominator of u dominates
v. We can build a dominator tree rooted at I0 by adding an
edge between the nodes u and v if v = idom(u) (totally in
near-linear time [7, 26]). Finally we approximate δGi(Si) as
δDomGi (Si) (i.e. the benefit after removing nodes in Si in

DomGi).
In fact, can further prove that the real benefit of removing

Si from graph Gi is lower-bounded by δDomGi (Si).

Lemma 1. (Lower Bound of δGi(Si)) The nodes we can
save from G must be greater than nodes we save from its
dominator tree, that is, δDomGi (Si) ≤ δGi(Si) (where the

inequality is saturated when the merged graph is a tree).

Proof. (Sketch) For any node u in Si, the benefit we can
get on Gi is at least all nodes under the subtree of u in the
dominator tree of Gi (because there is no path from I0 to
those nodes). Hence, δDomGi (Si) ≤ δGi(Si).

Let Q(S) =
∑
Gi

Pr(Gi)δDomGi (Si); then using Lemma 1,

we get Q(S) ≤
∑
Gi

Pr(Gi)δGi(Si). The gap between Q(S)



and
∑
Gi

Pr(Gi)δGi(Si) depends on the structure of the graph

(if the merged-graph is a tree, there is no gap). Hence,
Lemma 1 suggests that we can use Q(S) to approximate∑
Gi

Pr(Gi)δGi(S). Hence we formulate Problem 2 next, to

approximate UDAV (Problem 1).
Problem 2: Given: G(V,E), U , I0, and k.
Find: A set of nodes S∗ = argmax

S
Q(S) s.t. |S| = k.

Interestingly, Q(S) is a submodular function, while δGi(S)
is not submodular [46].

Lemma 2. (Submodularity of Q(S)) Q(S) is a submodu-
lar function.

Proof. (Sketch) First of all, we prove that given a set
S, δDomGi (S) is a submodular function of S (this can be

done by a case analysis). Then Q(S) is a submodular be-
cause the linear combination of submodular functions is still
a submodular function.

We now apply the SAA framework: sample l graphs G1, G2,
. . . , Gl from U and define Ql(S) = 1

l

∑l
i=1 δDomGi (Si). As

Ql(S) is a submodular function, we apply the greedy algo-
rithm [33] to obtain the (1−1/e)-approximation for Problem
2 (under the l samples). We call this algorithm Sample-Cas
(Algorithm 1). Note that we can speed up Algorithm 1 using
CELF optimization [27].

Algorithm 1 The Sample-Cas algorithm

Require: Input G, U ,I0, k and l
1: Sample G1, . . . , Gl from U and G
2: Merge infected nodes into I0

i for each Gi
3: Build dominator trees DomG1 , . . . , DomGl rooted at I0

i

for Gi
4: S = ∅
5: for i← 1 to k do
6: a∗ = arg maxa

1
l

∑
δ
DomGi
a

7: Remove a∗ from each of DomG1 , . . . , DomGl .
8: S = S ∪ {a∗}.
9: end for

10: return S

Lemma 3. (Running Time of Sample-Cas) The time
complexity for Algorithm 1 is O(l(k|V |+k|E|+ |V | log |V |)).

Proof. (Sketch) SampleGi needsO(l|V |) time, and build
l dominator trees and weight it need O(l|V | log |V |) time.
Selecting a node a needs l(|E|+ |V |) time. So in general the
time complexity is O(l(k|V |+ k|E|+ |V | log |V |)).

How many samples? The next lemma estimates the num-
ber of samples l needed so that Ql(S) is a good estimate of
Q(S).

Lemma 4. (Number of samples) For any ε > 0, to es-
timate Q(S) within absolute error ε with probability γ =

1 − 2 exp(− 2lε2

∆2 ), we need l ≥ ∆2

2ε2
ln 2

1−δ , where ∆ is the

upper bound for δDomGi (S) in the dominator tree.

Proof. (Sketch) It follows from using the well-known Ho-
effding’s Inequality [31].

As ∆ can be O(|V |), Lemma 4 shows that we need worst-
caseO(|V |2) samples to get accurate estimates. Hence Sample-
Cas does not scale to large networks.

4.2 Expect-Max: a faster algorithm
Since Sample-Cas is not scalable for large networks, we

next develop another faster algorithm Expect-Max. We
give the main idea, and then describe the details in the sub-
sequent subsections.
Main Idea. We first formulate an equivalent problem which
uses the concept of a so-called ‘expected graph’ GE. Based
on that, we propose two different methods Expect-Dom
and Expect-Eig, measuring expected benefits of vaccina-
tions. We show that these two methods are in fact comple-
mentary, and hence then propose Expect-Max, which is
sub-quadratic in running time (in nodes/edges).

4.2.1 Expected Graph: An Equivalent Formulation
Here, we formulate an equivalent formulation of Problem

1 based on the concept of an ‘expected graph’.
Definition 1 (Expected Graph): The expected graph

GE is constructed as follows: start with G; add a ‘super
node’ I0; connect I0 to any node i where pi > 0 with the
edge weight βI0,i = pi (pi ∈ U , the uncertainty model); and
then mark all nodes except I0 as healthy nodes.

As we show next, this construction transforms the uncer-
tainty model from nodes to edges without losing any infor-
mation. Hence, we can focus on a single graph GE instead
of sampling graphs (the main reason why Sample-Cas was
slow).

More specifically, we show in Lemma 5, an equivalent for-
mulation of Problem 1 based on expected graph GE, under
GENERAL and for budget k = 1. The main idea is that, cru-
cially, as GENERAL is factorizable (i.e. for a particular configu-
ration Gj , Pr(G ≡ Gj) =

∏
a∈I pa

∏
b∈H(1−pb), see Section

3 for details), after running the first step of the diffusion
model on the expected graph, we will get the same configu-
rations like sampling from the uncertainty model in Problem
1. A subtle point is that Lemma 5 also takes into account
the fact that nodes can not be vaccinated in all ‘possible-
worlds’ (wherever they are already infected), by correcting
the estimate got from GE by an appropriate factor.

Lemma 5. (Equivalent formulation of UDAV when k =
1) When the budget k = 1, for the UDAV problem, the best
node a∗ = arg mina E{a}(F ) can be equivalently wrriten as
a∗ = arg maxa(1− pa)δGE({a}).

Proof. (Sketch) We first prove δGE(a) =
∑
Gi

Pr(Gi)δGi(a)
using Definition 1 and the factorizability of GENERAL. Based
on this, we can prove that E{a}(F ) =

∑
Gi

Pr(Gi) σGi(∅)−
(1−pa)δGE({a}), hence minimizing E{a}(F ) is equivalent to
maximizing (1− pa)δGE({a}).

Lemma 5 shows that when the budget k = 1, we can
get an equivalent formulation of Problem 1 based on the ex-
pected graph. Furthermore, note that UDAV is a stochastic
problem, while Lemma 5 is based on calculating ‘benefits’
δGE({a}) on a deterministic graph GE. Next we propose two
heuristics to estimate δGE({a}) on GE which are complemen-
tary methods based on α, the support of the uncertainty
model (see Section 4.2.4 for more details).

4.2.2 The Expect-Dom Algorithm
One of the ways we can estimate the benefits is by using

our Lemma 1 on GE. The main idea is that we estimate
δGE({a}) by its lowerbound δDomGE

({a}) via the dominator
tree on the expected graph. Motivated by the equivalent



formulation of Problem 1 (Lemma 5), we propose that at
each step select a node with the maximum value of (1 −
pa)δDomGE

({a}) after building the dominator tree DomGE

of GE. We call this algorithm Expect-Dom (Algorithm 2).

Algorithm 2 The Expect-Dom algorithm

Require: Input G, U ,I0 and k
1: Construct GE
2: S = ∅
3: Build a dominator tree DomGE on GE
4: for i← 1 to k do
5: a∗ = arg maxa(1− pa)δDomGE

({a})
6: S = S ∪ {a∗}
7: Remove a∗ from GE
8: end for
9: return S

Lemma 6. (Running Time of Expect-Dom) The time
complexity for Algorithm 2 is O(k(|V |+ |E|) + |V | log |V |).

Proof. (Sketch) Creating an expected graph GE costs
O(|V |) time, building a dominator tree and weight it need
|V | log |V | time. Updating dominator tree costs O(|V | +
|E|) time. Hence, the time complexity of Expect-Dom is
O(k(|V |+ |E|) + |V | log |V |).

4.2.3 The Expect-Eig Algorithm
Another approach we propose is to estimate δGE({a}) is

via the change in the largest eigenvalue of GE, ∆λ1(a), after
removing node a. The largest eigenvalue of the adjacency
matrix of a graph is related to the so-called ‘epidemic thresh-
old’ of the graph under several epidemic models [37, 36]. If
the largest eigenvalue is very small, a virus will get extin-
guished quickly. Next we will explain why ∆λ1(a) is crucial
to the benefits. In addition to that, we will show how to es-
timate δGE({a}) using the greedy algorithm in [43] as well.
Justification of ∆λ1(a). Let λi/ui be the i-th largest
eigenvalue/ eigenvector of GE, and ft be the vector of proba-
bility of each node being infected at time t. The next lemma
will show that the expected number of newly infected nodes
is upper-bounded by a function of λ1. Hence, reducing λ1

(maximizing ∆λ1(a)) by removing node a, can effectively
minimize the expected number of newly infected nodes, and
eventually minimize E{a}(F ) (the expected number of in-
fected nodes at the end). According to Equation 2 (in Sec-
tion 4.1), minimizing E{a}(F ) is equivalent to maximizing
the benefit δGE({a}). Hence we can estimate δGE({a}) using
∆λ1(a).

Lemma 7. The expected number of newly infected nodes

at timestep t+1, is upper-bounded by h = e′(
∑|V |
j=1 λ

t
jujuj

′)f1.

Furthermore, h ≤ λt1e
′(
∑|V |
j=1 ujuj

′)f1 where e = (1, . . . , 1)′

and f1 = (p1, . . . , pn)′ (the initial infection probabilities of
the nodes, which essentially comes from the uncertainty model).

Proof. (Sketch) First, following steps of Lemma 1 in [36],
we can get that the expected number of newly infected nodes

at timestep t + 1 is upper-bounded by e′(
∑|V |
j=1 λ

t
jujuj

′)f1.

Second, since λ1 is real and positive (using Perron-Frobenius

theorem), we get h ≤ λt1e′(
∑|V |
j=1 ujuj

′)f1.

The Expect-Eig Algorithm. Motivated by Lemma 5
(the equivalent formation of Problem 1) and Lemma 7, we

can greedily select a node with the maximum value of (1−
pa)∆λ1(a) at each step, using ∆λ1(a) as an estimate of the
benefit of removing a node. We call this algorithm Expect-
Eig (Algorithm 3).
Comment. [43] gives a fast greedy algorithm for this task,
by approximating ∆λ1(a) ≈ 2λ1u

2
a (based on the first-order

matrix perturbation theory). Here we use it in Algorithm 3
(Line 5).

Lemma 8. (Running Time of Expect-Eig) The time com-
plexity for Algorithm 3 is O(k(|V |+ |E|)).

Proof. (Sketch) Calculating u1 costs O(|E|) time using
the power method. Hence, Algorithm 3 takes O(k(|V |+|E|))
time.

Algorithm 3 The Expect-Eig algorithm

Require: Input G, U ,I0 and k
1: Construct GE
2: Get λ1 and u1 = (u1, . . . , un)′ from GE.
3: S = ∅
4: for i← 1 to k do
5: ∆λ1(a) = 2λ1u

2
a

6: a∗ = arg maxa(1− pa)∆λ1(a)
7: S = S ∪ {a∗}
8: Remove a∗ from GE and update λ1 and u1.
9: end for

10: return S

4.2.4 The Hybrid Algorithm: Expect-Max
Although Expect-Dom and Expect-Eig are both fast al-

gorithms compared to Sample-Cas, they may not work well
all the time. Next we will discuss how uncertainty models
affect their performances, and present a hybrid algorithm
combining both of them.
Discussion about Expect-Dom. Denote α as the sup-
port of the uncertainty model (the percentage of nodes that
are possibly infected). When α = 0, the UDAV problem
becomes exactly the DAV problem [46] (the deterministic
case of UDAV ) and Expect-Dom reduces to the algorithm
in [46], which was shown to perform well. However con-
sider the opposite case α = 1. In this case, I0 connects
to the rest of nodes. Hence the dominator tree of GE be-
comes a star. For any node a, δDomGE

(a) will only depend

on the propagation probability from I0 to a (i.e., pa). We
cannot utilize any other information from the original graph,
hence we would choose nodes essentially randomly. This also
gives us the intuition that as α increases, the performance
of Expect-Dom will become worse (a fact we demonstrate
in experiments as well).
Discussion about Expect-Eig. As we discussed in Sec-
tion 4.2.3, the expected number of newly infected nodes at

timestep t+1 is upperbounded by h = e′(
∑|V |
j=1 λ

t
jujuj

′)f1 ≤
λt1e
′(
∑|V |
j=1 ujuj

′)f1 = h1 (f1 essentially comes from the un-

certainty model). We first demonstrate that this inequality
(h ≤ h1) saturates when f1 is parallel to u1. Then, we will
show how to maximize our chance to achieve this, which will
lead us to the discussion about the performance of Expect-
Eig in terms of α.

Lemma 9. (h-h1 Gap) As the inner product of u1 and
f1 increases, h1 − h decreases. When f1 is parallel to u1,
h1 = h.



Proof. (Sketch) As u′1f1 increases, f1 becomes more par-
allel to u′1, and uj

′f1 (j 6= 1) becomes smaller (because ui

and uj are orthogonal). Hence h2−h1 decreases. And when
uj
′f1 = 0 (j 6= 1), h1 = h.

This shows that closer the uncertainty model is to u1,
the better bound h1 is of h: as a result of which we expect
∆λ1(a) to become a better estimate, and hence Expect-Eig
to perform better. How is this related to α? The following
analysis shows a preliminary justification. Apriori we do not
know the graph, hence we do not know u1: so reasonably
we can assume it is randomly uniformly picked from a n-
dimensional space. Let us denote x as the random variable
of the first eigenvector. To make f1 more parallel to x, we
need to maximize the expectation of f ′1x (i.e., Ex[f ′1x]). It is
not hard to see that as we increase α, Ex[f ′1x] will increase.

Lemma 10. (Expected gap) When α increases, Ex[x′f1]
increases as well.

Proof. (Sketch) Ex[x′f1] = f ′1Ex[x], and all elements in
Ex[x] are non-negative. As α increases, more elements in f1
become non-zero, hence Ex[x′f1] increases as well.

Lemma 10 suggests that when α increases, we expect f1
and u1 to become more parallel, and so the gap to decrease,
as a result of which ∆λ1(a) becomes a better estimate. Thus
even this preliminary analysis immediately suggests that
as α becomes larger, Expect-Eig should perform better.
Again we demonstrate this through experiments as well.

The Expect-Max Algorithm. The above discussion sug-
gests a complementary picture: when α is low, we expect
Expect-Dom to be better, and when α is high, we expect
Expect-Eig to be better. Unfortunately, we don’t know ex-
actly when which algorithm is better: this likely depends not
only on α but also the graph, and the distribution. However,
we can still leverage this insight to propose a hybrid algo-
rithm called Expect-Max, which maintains the scalability
and quality of Expect-Dom and Expect-Eig. Expect-
Max chooses either Expect-Dom or Expect-Eig based on
their performances, that is,

SExpect-Max = argmax
S={SExpect-Dom,SExpect-Eig}

ES(F )

Comment. S is the output either of Expect-Dom or Expect-
Eig, and ES(F ) can be obtained by via simulation of the
IC model (not sampling from the uncertainty model). Also
note that Expect-Max is not the greedy algorithm that
picks one node from either Expect-Dom or Expect-Eig
in each step. Instead, it chooses S just once after running
Expect-Dom and Expect-Eig. Hence the time complexity
for Expect-Max is O(k(|V |+|E|)+|V | log |V |+T ) where T
is the time to run IC model (which should be sub-quadratic
in edges).

4.3 Extending to SIR model
Note that in SIR, the footprint is the total number of

recovered nodes at the end (in contrast to the IC model).
Nevertheless, leveraging the method in [46], we can directly
extend our algorithms to SIR model by changing SIR model

to IC model with the propagation probability 1−(1−βi,j)
1
ρ .

This does not change any of our algorithms/results.

5. EXPERIMENTS
We present a detailed experimental evaluation in this sec-

tion.

5.1 Experimental Setup
We briefly describe our set-up next. We implemented the

algorithms in Python2, and conducted the experiments us-
ing a 4 Xeon E7-4850 CPU with 512GB of 1066Mhz main
memory.
Datasets. We ran our experiments on multiple datasets
using both IC and SIR. Table 3 summarizes the datasets,
which were chosen for their size as well as the applicability
to the UDAV problem (from social media to epidemiology).

1. KARATE is a social network of friendships with 34 mem-
bers in a karate club at a US university in the 1970s [45].

2. OREGON3 is the Oregon AS router graph collected from
the Oregon router views. The contagion here can be
thought of malware and computer-network viruses, which
we want to control by shutting-off or patching relevant
routers.

3. STANFORD4 is the Stanford CS hyperlink network, in
which a web page links to another page. Contagions
here can be false information spreading through the
webspace, and we want to prevent their spread by post-
ing true information at strategic web pages.

4. GNUTELLA5 is a peer-to-peer network showing the snap-
shot of the Gnutella P2P file sharing network from
August 2012. Similar to OREGON, we can control the
spread of malware and harmful files by patching some
important peers.

5. BRIGHTKITE5 is a friendship network from a location-
based social networking service provider Brightkite.
As friends regularly frequent the same places, such
location-based networks can be useful for the public-
health.

6. PORTLAND and MIAMI are social-contact graphs based
on detailed microscopic simulations of large US cities.
Edge weights here represent the expected contact time
between people. Versions of these have been used in
national smallpox and influenza modeling studies using
the SIR model [15].

Table 3: Datasets
Dataset Nodes(V) Edge(E) Model

KARATE 34 156 IC
OREGON 633 2172 IC
STANFORD 8929 53829 IC
GNUTELLA 10876 39994 IC
BRIGHTKITE 59228 0.2 million IC

PORTLAND 0.5 million 1.6 million SIR
MIAMI 0.6 million 2.1 million SIR

Uncertainty models. We used three types of uncertainty
models: (a) UNIFORM: p = 0.6; (b) SURVEILLANCE: pi uni-
formly randomly chosen from {0.1, 0.5} for each node i (fol-
lowing different levels of the surveillance pyramid, e.g: 10%
2Code can be downloaded from http://people.cs.vt.edu/
~yaozhang/code/udav
3http://topology.eecs.umich.edu/data.html.
4http://www.cise.ufl.edu/research/sparse/matrices/
Gleich/.
5GNUTELLA and BRIGHTKITE are from http://snap.
stanford.edu/data/index.html.
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(a) Sample-Cas vs. Optimal (b) STANFORD (c) BRIGHTKITE

Figure 1: (a). Quality of Sample-Cas. Comparison between Sample-Cas and Optimal on KARATE over different
distributions (r = #healthy nodes saved by Sample-Cas

#healthy nodes saved by Optimal
and α = 0.5). (b) and (c). Comparison between Expect-Dom

and Expect-Eig. Ratio of R (R = #healthy nodes saved by Expect-Dom
#healthy nodes saved by Expect-Eig

) vs. α. Expect-Dom performs better than
Expect-Eig when R > 1, otherwise Expect-Eig is better.

of the total population is infected and is in the hospital,
and only ∼ 33% of infected people go to a hospital, which
together imply 50% of the total population is infected and
does not go to a hospital); (c) PROP-DEG: pi = di/dmax for
each node i (dmax is the maximum degree of the graph G).
Parameters. For IC model, βu,v is uniformly randomly
chosen from {0.1, 0.5, 0.9} [9]. For SIR model, we use the
normalized contact time as the propagation probability βu,v,
and set a uniform curing probability ρ = 0.6. We uniformly
randomly pick 5% of nodes as infected nodes. For Sample-
Cas, we set the number of samples l = 200. For robustness,
each data point we show is the mean of 1000 runs of the
diffusion/epidemiological model.
Baselines. We compare our algorithms against various in-
tuitive and non-trivial competitors to better judge their per-
formance. Recall that I0 is the infected node set (I0 =
{u|u ∈ V, pu = 1}). Let us denote W = V − I0 (so W is the
set of nodes that are not certainly infected at the start).

1. Optimal: a brute-force algorithm that tries all com-
binations of possible solutions. As it is very slow, we
only run it on very small graph (KARATE).

2. Random: uniformly randomly select k nodes from W .
3. Degree: choose the top-k nodes from W according to

their weighted degree.
4. PageRank: pick the top-k healthy nodes from W with

the highest pagerank. We use the restart probability
of 0.15.

5. Per-PRank: we first merge all infected nodes into
one supernode as the preferred node, and then choose
the top-k nodes from W with the highest personalized
pagerank with respect to the supernode [18]. We use
the restart probability of 0.15.

6. Dava-fast: This is a fast immunization algorithm [46],
which aims to control the epidemic in presence of al-
ready infected nodes (without uncertainty in the data).
We apply Dava-fast as if any node from W on G is a
healthy node. We take the top-k nodes from W ac-
cording to the algorithm.

5.2 Results
In short, we demonstrate that Sample-Cas and Expect-

Max outperform other baselines on all datasets. Sample-
Cas provides very accurate results, but does not scale to

large networks, while Expect-Max is fast, scalable and ef-
fective. We also show the behaviors of Expect-Dom and
Expect-Eig as α varies.

5.2.1 Accuracy of Sample-Cas

First of all, we compare Sample-Cas with Optimal on
KARATE to demonstrate its accuracy (because Optimal is
too slow, we chose KARATE so that we can run Optimal
completely). As Figure 1(a) shows, for all uncertainty mod-
els, Sample-Cas saves at least 90% of nodes compared to
Optimal no matter how k changes. We also found as ex-
pected, Sample-Cas’s performance gets better as number
of samples increases (not shown here).

5.2.2 Justification of Expect-Max

We compared Expect-Dom with Expect-Eig as α changes
on multiple datasets under three uncertainty models (see
Figure 1(b) and (c)). For all networks, as expected from our
discussion in Section 4.2.4, clearly as α increases, Expect-
Eig becomes better while Expect-Dom becomes worse. In
addition to that, there does exist a ‘cross-over point’ for each
network where the algorithms switch in performance (R = 1
in Figure 1(b) and (c)). However, this cross-over point is dif-
ferent for different networks and for different distributions,
which is the reason why we propose the Expect-Max algo-
rithm (as we do not know exactly when we should use either
Expect-Dom or Expect-Eig as α changes).

5.2.3 Effectiveness of Sample-Cas and Expect-Max

Figure 2(a), (b), (d) and (e) show experimental results
under IC model for UNIFORM. In all networks, Sample-Cas
and Expect-Max consistently outperform other competi-
tors. OREGON contains only 600 nodes, hence we varied k till
50. Due to a jelly-fish-type structure of OREGON, for lower
k, most algorithms perform well by targeting the nodes in
the core. However, for larger k, Sample-Cas provides the
best solution, while Expect-Max outperforms other com-
petitors as well, getting solutions almost as good as Sample-
Cas. For GNUTELLA, STANFORD and BRIGHTKITE (much larger
than OREGON), the difference of Sample-Cas and Expect-
Max from the other algorithms is clearer: they save upto
2.5 times the nodes than other algorithms, yet Expect-Max
took a fraction of the running time of Sample-Cas (see Ta-
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Figure 2: Effectiveness (α = 0.5, UNIFORM). Expected number of healthy nodes after distributing vaccines vs.
budget k. Higher is better. (a), (b), (d), (e): IC model; (c), (f): SIR model. Sample-Cas and Expect-Max
outperform other baseline algorithms.

ble 4). Note that although Dava-fast contains information of
infected nodes, it doesn’t perform well (especially on STAN-

FORD) because it fails to take into account the uncertainty
model.

We got similar result under SIR model on PORTLAND and
MIAMI for UNIFORM (see Figure 2(c) and (f)). Since PORT-

LAND and MIAMI have more than 0.5million nodes, Sample-
Cas did not finish even in a day, and we do not show it on
the plots. We notice that the larger k becomes, the bet-
ter Expect-Max performs than other competitors. When
k = 2000, the difference of Expect-Max from other algo-
rithms is clearer: it saves more than 10, 000 nodes than the
second best algorithm Dava-fast.

For SURVEILLANCE and PROP-DEG, the results are the same:
Sample-Cas and Expect-Max always outperform other al-
gorithms (see Figure 3). We do not show the plots of other
datasets and other values of α due to lack of space, but the
results are similar: Sample-Cas and Expect-Max provide
the best solution.

5.2.4 Scalability
Although both Sample-Cas and Expect-Max are poly-

nomial time (in particular Expect-Max is subquadratic
in nodes and edges), we show some running time results
to evaluate scalability. Table 4 shows the running times
of our algorithms under UNIFORM: Expect-Max is much
faster than Sample-Cas. Expect-Max takes only 45 sec-
onds on STANFORD while Sample-Cas takes about an hour.
The larger networks are, the faster Expect-Max is than
Sample-Cas. On BRIGHTKITE with 60K nodes, Expect-
Max is more than 50 times faster than Sample-Cas. Fur-
thermore, on the largest network MIAMI, Expect-Max takes

Table 4: Running times (sec.) when k = 100 and
l = 200 (α = 0.5). Runs terminated when running
time t > 24 hours. (shown by ’-’)

Sample-Cas Expect-Max

OREGON 241.6 3.1
STANFORD 3401.7 45.2
GNUTELLA 4221.1 59.8
BRIGHTKITE 19072.0 371.5
PORTLAND - 6930.2
MIAMI - 9231.4

about 2.5 hours to select 100 nodes while Sample-Cas did
not finish even in one day. Hence, Expect-Max is scalable
for large networks.

6. RELATED WORK
We now review the most closely related work here.

Stochastic Optimization. Extensive surveys and text-
books [40, 20] exist on this topic. Dyer et al. [14] showed that
two-stage stochastic programming problems are #P -hard.
Sample Average Approximation (SAA) is a well-known frame-
work to approach these problems, which yields strong ap-
proximation results [22, 41]. We leveraged the SAA frame-
work for Sample-Cas in this paper. However, it is not scal-
able to large networks because of its computational com-
plexity.
Handling Uncertainty. Many studies in epidemiology try
to estimate the total infections using the surveillance pyra-
mid [39, 16, 34, 30, 12, 5]. More generally, missing data in



0 50 100 150 200
1500

1600

1700

1800

1900

2000

Budget of vaccines (k)

E
x
p
e
c
t
e
d
 
n
u
m
b
e
r
 
o
f
 
h
e
a
l
t
h
y
 
n
o
d
e
s

 

 

SAMPLE−CAS

EXPECT−MAX

DAVA−FAST

DEGREE

RANDOM

PAGERANK

PER−PRANK

0 50 100 150 200
1700

1800

1900

2000

2100

2200

2300

Budget of vaccines (k)

E
x
p
e
c
t
e
d
 
n
u
m
b
e
r
 
o
f
 
h
e
a
l
t
h
y
 
n
o
d
e
s

 

 

SAMPLE−CAS

EXPECT−MAX

DAVA−FAST

DEGREE

RANDOM

PAGERANK

PER−PRANK

0 500 1000 1500 2000
9.5

9.6

9.7

9.8

9.9

10

10.1

10.2
x 10

5

Budget of vaccines (k)

E
x
p
e
c
t
e
d
 
n
u
m
b
e
r
 
o
f
 
h
e
a
l
t
h
y
 
n
o
d
e
s

 

 

EXPECT−MAX

DAVA−FAST

DEGREE

RANDOM

PAGERANK

PER−PRANK

(a) SURVEILLANCE (GNUTELLA) (b) PROP-DEG (GNUTELLA) (c) SURVEILLANCE (PORTLAND)

Figure 3: Effectiveness (α = 0.5). Expected number of healthy nodes after distributing vaccines vs. budget
k. Higher is better. (a), (b): IC model; (c): SIR model. Sample-Cas and Expect-Max outperform other
baseline algorithms.

networks is an important yet relatively poorly understood
problem. A line of work in databases studies several query-
ing problems on uncertain graphs, including the k-nearest
neighbors query [35], discovering reliable subgraphs [19] and
efficient subgraph search [44]. Another related line of work
studies the effect of sampling on measured structural prop-
erties [11, 23, 4] or network construction [25, 29]. Correcting
for the effects of missing data in cascades in general has not
seen much attention—the exceptions are Sadikov et al. [38]
(who try to correct metrics like cascade size for sampling),
and Adiga et al. [1] (who study the effect of more general
noise in the network structure on metrics like expected foot-
print in the IC and LT models). Here we study a specific
algorithmic task (immunization) under uncertainty in ob-
served infections.
Immunization Algorithms. Most existing studies focus
on finding optimal strategies for vaccine allocation under
perfect information [10, 6, 28, 8]. Using game theory, Asp-
nes et al. [3] developed inoculation strategies for victims of
viruses under random starting points. Kuhlman et al. [24]
studied two formulations of the problem of blocking a conta-
gion through edge removals under the model of discrete dy-
namical systems. Tong et al. [43, 42] and Prakash et al. [36]
proposed various node-based and edge-based immunization
algorithms based on minimizing the largest eigenvalue of
the graph. Zhang and Prakash [46] studied the problem of
immunizing healthy nodes in presence of already infected
nodes.

To summarize, none of the above works studies the prob-
lem of distributing vaccines given uncertain surveillance data.

7. CONCLUSIONS
This paper addresses the problem of distributing vaccines

given uncertain data over large networks with applications
to cascade-like processes on networks in several areas. The
main contributions are:

(a) Problem Formulation: Motivated by multiple natural
uncertainty models from social media and epidemi-
ology, we first formulated the Uncertain Data-Aware
Vaccination (UDAV ) problem.

(b) Efficient Algorithms: Due to its computational com-
plexity, we presented two main novel algorithms: Sample-
Cas and Expect-Max. Sample-Cas is an accurate

stochastic algorithm under the SAA framework, while
Expect-Max is a fast hybrid algorithm with sub-quadratic
time complexity, which utilizes the expected graph and
two complementary methods to estimate benefits.

(c) Extensive Experiments: Experimental results demon-
strate that our algorithms outperform several other
baseline algorithms on multiple diverse real datasets
(from social, cyber, and epidemiological domains) over
multiple different uncertainty models.

Future work can include extending our results to other mod-
els in epidemiology such as SIS (where nodes can get infected
multiple times), and generalizing Expect-Max to any un-
certainty distribution (not just factorizable distributions).
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