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Using spectral characterization 
to identify healthcare‑associated 
infection (HAI) patients for clinical 
contact precaution
Jiaming Cui 1,4*, Sungjun Cho 1,4, Methun Kamruzzaman 2, Matthew Bielskas 2,3, 
Anil Vullikanti 2,3 & B. Aditya Prakash 1*

Healthcare‑associated infections (HAIs) are a major problem in hospital infection control. Although 
HAIs can be suppressed using contact precautions, such precautions are expensive, and we can 
only apply them to a small fraction of patients (i.e., a limited budget). In this work, we focus on two 
clinical problems arising from the limited budget: (a) choosing the best patients to be placed under 
precaution given a limited budget to minimize the spread (the isolation problem), and (b) choosing 
the best patients to release when limited budget requires some of the patients to be cleared from 
precaution (the clearance problem). A critical challenge in addressing them is that HAIs have multiple 
transmission pathways such that locations can also accumulate ‘load’ and spread the disease. One of 
the most common practices when placing patients under contact precautions is the regular clearance 
of pathogen loads. However, standard propagation models like independent cascade (IC)/susceptible‑
infectious‑susceptible (SIS) cannot capture such mechanisms directly. Hence to account for this 
challenge, using non‑linear system theory, we develop a novel spectral characterization of a recently 
proposed pathogen load based model, 2‑Mode‑SIS model, on people/location networks to capture 
spread dynamics of HAIs. We formulate the two clinical problems using this spectral characterization 
and develop effective and efficient algorithms for them. Our experiments show that our methods 
outperform several natural structural and clinical approaches on real‑world hospital testbeds and pick 
meaningful solutions.

Healthcare-associated infections (HAIs) such as Methicillin-resistant Staphylococcus aureus (MRSA) and 
Clostridioides difficile (C. difficile) are infections acquired by patients during treatment at healthcare facilities 
such as hospitals and long-term care  homes1–3. While under treatment, patients can get exposed to pathogens 
from other sick patients or contaminated locations like rooms or medical devices. HAIs impose tremendous 
costs on hospitals, as they tend to extend patients’ stays longer than initially planned to reach full recovery and 
increase the risk of  mortality4–9. Due to its high health burden, epidemiologists and clinicians have proposed 
several approaches to control HAI spread in hospitals, such as contact precautions, antimicrobial stewardship, 
and contact  tracing10–15. Among these approaches, contact precautions have been shown to be more effective in 
preventing further nosocomial  infections16, 17, and easier to  implement18. Therefore, they are most commonly 
used in most hospitals to control HAI  spread12. However, real-world contact precautions are  expensive7, 19–23 and 
therefore they can only be applied to a small fraction of patients (a ‘budget’). Further, there are several downsides 
to contact precautions on patient health outcomes, e.g.,22, 23. Therefore, using contact precautions optimally is 
an important goal. We consider the following two important problems in HAI control with a limited budget, 
motivated by the above considerations.

Clinical Problem 1 (Isolation Problem, IP) Given a limited budget for precaution, how can we choose the “best” 
patients to put under precaution?
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Clinical Problem 2 (Clearance Problem, CP) Assume a hospital initially has a set of patients under precaution, 
but limited budget requires a subset of these patients to be cleared from precaution. How can we choose the 
“best” patients to release from precaution?

Intuitively, IP aims to find which patients to put under precautions. In contrast to IP, the setting for CP 
assumes that a set of patients are already under precautions, and the goal is to find a subset of patients from 
this set to clear from precautions. Although there are some guidelines on removing patients from contact 
 precautions18, 24 from clinical perspective, this is still a novel problem in the network science research field in 
terms of problem formulation and optimization: it is the opposite of the well-studied influence maximization 
problem on social  networks25 since the objective of CP is to minimize the spread while taking off precautions 
from nodes. This problem is also very different from the influence containment  problem26, 27 since these prob-
lems are edge-based, while IP and CP need to remove multiple edges when only isolating/releasing one node. 
No good formulations exist for the clinical problems above, as we cannot easily assess how each precaution on 
a specific patient affects the overall epidemic.

It is important to note that healthcare workers (HCWs) and contaminated physical surfaces can also spread 
the  pathogens28–30 in addition to the direct patient-patient contacts. However, traditional contact networks with 
only patient-patient contacts cannot capture such pairwise relations among diverse entities. To account for this 
challenge, heterogeneous contact networks are needed in modeling. Heterogeneous graphs contain multiple 
types of entities and can represent the diversity among nodes/pairwise relations in real-life networks. They 
have gathered great interest in recent years with applications in personalized  recommendation31, publication 
 ranking32, and drug  design33. Here, we consider heterogeneous contact networks where each node can be one 
of three types: patients, HCWs, and locations. Besides, the contacts between each node are also changing with 
time. Hence, such heterogeneous contact networks should also be time-varying to capture the contact changes 
with time. We note that contact networks are not explicitly known, and need to be inferred. As shown in Fig. 1, 
we infer a contact network from Electronic Health Records (EHRs) data, which includes a variety of patients’ 
medical records and doctors’ notes. Specifically, we infer interactions between HCWs and patients through 
medicine administration, admission and discharge and flow sheets, and doctor notes from EHRs, and aggregate 
them into daily heterogeneous contact networks for each day t. See Supplementary Information for more details.

Modeling on heterogeneous contact networks is different from modeling on traditional contact networks. We 
need to identify the role of HCWs and location nodes in spreading the pathogens and involve this in modeling. 
We assume that HCWs and locations can also carry some pathogen loads and spread them to patients, but HCWs 
do not get infected. In this paper, we use a recently proposed model for HAI, the 2-Mode-SIS model proposed by 
Jang et al.34, which incorporates pathogens spread through both people and locations as shown in Fig. 2a. Such 

Figure 1.  In this work, we collect the time and location of interactions between patients and HCWs from 
different tables in the electronic health records (EHRs) dataset, such as medicine administration, admission and 
discharge and flow sheets, and doctors’ notes. We construct daily heterogeneous contact networks from this 
data (see more details in the Supplementary Information). For example, as shown in the figure on day T, the red 
healthcare worker and blue patient are in location L1 , the black patient is in location L2 , and the green patient is 
in location L3.
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pathogen load based models have been used in recent high-profile HAI modeling  studies13, 35–37. Importantly, 
they can also model the cleaning practice widely used in contact precautions (e.g., using disinfectants to clean 
the ward)  directly38–42 compared with traditional independent cascade (IC)43/susceptible-infectious-susceptible 
(SIS)44 models. However, modeling with 2-Mode-SIS model is non-trivial since there are multiple transmission 
pathways through multiple kinds of nodes, making its dynamics harder to model.

The main idea of this paper is to use spectral characterization to help formulate the two clinical problems 
we are interested in as network optimization problems: We give a novel spectral characterization ρ(S) of the 
2-Mode-SIS model on underlying time-varying people-location heterogeneous contact networks using stabil-
ity analysis of discrete-time non-linear dynamical  systems45. We first approximate the propagation dynamics of 
the 2-Mode-SIS model on heterogeneous networks, after which we can analyze the stability of its equilibrium 
point (specifically, all-zero point where the disease dies out) and check whether this point is stable or not. As 
shown in Fig. 2b, we show that this characterization is meaningful in capturing a ‘tipping point’ for HAI spread 
dynamics. At this “tipping point”, there will be a phase transition for the fraction of infected patients at the end: 
when ρ(S) > 1 , the fraction of infected patients will be close to 1. When ρ(S) < 1 , almost none of the patients 
will be infected (i.e., the epidemic dies out). This ρ(S) is similar to the basic reproductive number R046–49 for 
standard SIR-type models, and helps relate the structural and disease parameters to the dynamics. In the follow-
ing section, we will show how we formulate the clinical problems in detail, and propose our Greedy-Spectral 
algorithm to address it.

Methods
2‑Mode‑SIS model
As shown in Fig. 2a, we use the 2-Mode-SIS  model34 to simulate the spread of pathogens (see Procedure 1 for 
simulation steps). 2-Mode-SIS is pathogen ‘load-based’ where the patient can be either susceptible or infected, 
and the model keeps track of pathogen load on all people and locations using a load vector lt . Unlike classical 
SIS  models50, in 2-Mode-SIS model, the probability of a patient i to get infected from susceptible is formulated 
as a dose-response function proportional to the amount of pathogen on the patient i, or lt(i) , as shown in Pro-
cedure 1 step 8 with β as the disease infectivity). Once infected, the patient i sheds α additional pathogen per 
timestep to his own load, which can later be transferred to neighbors (both people and locations) via edges; this 
shedding continues until the patient recovers with recovery probability δ . Specifically, in this model, each node 
carries some amount of pathogens that changes over time, and the exchange of pathogens among the nodes is 
driven by edges that imply close contact among the nodes. 2-Mode-SIS model uses τijt to denote the ratio of 
pathogen being transferred (or remaining if i = j ) from node j to node i at time t, and φi to denote the natural 
pathogen reduction rate on node i. By constructing a transfer matrix Rt from the transfer ratios τijt , reduction 
rates φi , and adjacency matrix At , the pathogen load updates can be written as a linear operation as in Procedure 1 
step 5. Here, xt is the infection state vector for all patients at time t, where the ith element, xt(i) , corresponds 
to patient i. α is pathogen shedding rate for infected patients. Note that the column-sums of Rt are restricted to 

Figure 2.  (a) An example of the 2-Mode-SIS model on a heterogeneous contact network: on some day t, 
there are two patients ( P1 , P2 ), two HCWs ( H1 , H2 ), and two locations ( L1 , L2 ) in the network, and dash lines 
represent edges in the heterogeneous contact network (e.g., P1 was in L1 on day t as well as in contact with P2 
and H1 on day t). For every node i, their pathogen load is represented as lt(i) by 2-Mode-SIS model, and these 
loads can spread via contacts. For patients P1 , P2 , their infection states can transfer between S ( xt(i) = 0 ) and 
I ( xt(i) = 1 ). See more details in the paper and Supplementary Information. (b) Our spectral characterization 
ρ(S) captures a critical “tipping point”: When ρ(S) > 1 , the fraction of infected patients will be close to 1. When 
ρ(S) < 1 , almost none of the patients will be infected (i.e., the epidemic dies out).
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be less than or equal to 1, which implies that the total amount of pathogen cannot increase after transfer (i.e., 
�Rt lt�1 ≤ �lt�1 ). Susceptible patients may still be colonized with pathogen loads and can spread them to others. 
HCWs and locations are assumed to be non-infectable, but act as pathways of pathogen transfer. More details 
are provided in Supplementary Information.

Spectral characterization for the 2‑Mode‑SIS model
Approximation via NLDS
We develop a characterization to capture the overall dynamics of the system and derive a spectral characteriza-
tion for the 2-Mode-SIS model. Our proposed approach is to approximate the propagation dynamics of the 
2-Mode-SIS model using the stability analysis of discrete-time non-linear dynamical systems (NLDS) with two 
coupled states: the pathogen loads lt and the expectation of infection probabilities pt = E[xt ] . Let 

st =

[

pt
lt

]

∈ R
(P+N) be the vector describing the state of the system at timestep t, we can write down the state 

transition updates at t and use linearity of expectation to get the vector for next timestep as st+1 = gt(st) , where 
gt is a non-linear mapping.

Stability analysis of the NLDS
With the non-linear equations of our approximated discrete-time NLDS, we can then analyze its asymptotic 
behavior. The long-term behavior of a dynamical system is dictated by the stability of its equilibrium points, at 
which the states no longer change over time (i.e., seq = g(seq) ). The particular equilibrium point of interest is 
the all-zero point 0 where there is no infection as well as no pathogen remaining. Clearly, all gt map 0 onto itself 
and 0 is an equilibrium point. Specifically, we write the Jacobian matrix evaluated at 0 as St

Here, IP represents the identity matrix sized P × P . The following Theorem 1 on asymptotic stability in a 
discrete-time NLDS shows what condition this equilibrium point is ‘stable’45, i.e. a small perturbation does not 
cause large deviations (see Supplementary Information for the proof).

Theorem 1 (Spectral characterization) If the spectral radius (i.e., the largest eigenvalue) of the system matrix 
S =

∏T
t=1 ST−t+1 is less than 1 (i.e. ρ(S) < 1 ), then the all-zero equillibrium of the NLDS is asymptotically stable.

Theorem 1 demonstrates that ρ(S) = 1 is a critical tipping point that there will be a phase transition for the 
fraction of infected patients at the end: when ρ(S) > 1 , there is always a fraction of infected patients. When 
ρ(S) < 1 , almost no patients will be infected (i.e., the epidemic dies out). The tipping point behavior is similar 
to that associated with the basic reproductive number R0 . The characterization in Theorem 1 also helps explain 
the counter-intuitive ‘dilution effect’ (i.e., the number of infections decreases with increasing link probability 
between patients) observed in many such load-based  models34, 51, 52. More explanations and an intuitive example 
are provided in Supplementary Information.

st+1 = gt(st):=

[

(1− δ)pt + βlt(1− pt)
R1lt + αpt

]

St = ∇g

∣

∣

St=0
=

∂St+1

∂St

∣

∣

∣

∣

St=0

=

[

(1− δ)IP βIP 0

αIP R1

0

]
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Applications of ρ(S) for clinical problems
Using ρ(S) to formalize clinical problems
Next, we show how our spectral characterization ρ(S) can help formulate the two clinical problems IP and CP. 
The intuition is that our spectral characterization well captures the transition dynamics of the HAI breakout, and 
a lower ρ(S) value should correspond to fewer infections. We first formalize the IP problem as follows:

Formal Isolation Problem (FIP) Let S(�, P) denote the system matrix given input 2-Mode-SIS model param-
eters � (e.g., α , β , δ · · · ) and patients in set P under precaution. Given all patients X and a budget constraint k, 
find the subset of patients P∗ for precaution s.t.

This formulation uses ρ(S(�, P)) to capture how isolating patients in P will affect the epidemic. Here, we 
formally model bringing a patient i under precaution by zeroing out off-diagonal terms in the i-th row and 
column in each pathogen transfer matrix Rt (i.e., cut off its links with other nodes), and reducing the diagonal 
terms Rt(i, i) by a multiplicative factor φppe < 1 (i.e., reduce its remaining pathogen via cleaning). They are widely 
used together in hospitals for contact  precautions11, 18, 53. Note that the current setup can be readily modified to 
capture other contact precaution practices while maintaining a similar problem formulation. Similarly, we can 
also formalize the CP problem:

Formal Clearance Problem (FCP) Let S(·) be defined as in FIP. Given an initial set Q of d candidate patients 
already under precaution ( |Q| = d ) and a budget constraint k < d , find the subset of patients P∗ for clearance s.t.

Greedy‑spectral algorithm
Numerical issue in computing ρ(S)
A natural algorithm for FIP or FCP would try adding (or removing) each candidate patient P under (or from) 
precaution and then compute by how much ρ(S) changes to incrementally build a feasible solution set while 
minimizing ρ(S) . In practice, however, we find that computing the change in ρ(S) due to a single node removal 
runs into numerical issues: if there are much more patient-to-non-patient interactions than patient-to-patient 
interactions, the change in ρ(S) w.r.t. P can be too small to be computed within finite precision. The issue even 
gets worse when the total number of nodes N and the number of timesteps T increase (see Supplementary 
Information for a detailed explanation).

Alternative strategy and final algorithm
Hence we propose an alternate strategy to solve FIP and FCP by minimizing an upper bound on ρ(S) that can 
be computed more precisely. In particular, we define a system-adjacency matrix as A:=

∏T
t=1 AT−t+1 , where 

At is the adjacency matrix for time t, and minimize its the largest eigenvalue ρ(A) as a surrogate to minimize 
the upper bound of ρ(S) . The following theorem shows that ρ(S) is upper bounded by a monotonic function of 
ρ(A) , justifying our approach of minimizing ρ(A) instead. We provide a detailed proof for Theorem 2 in Sup-
plementary Information.

Theorem 2 Let S , A denote the system and system-adjacency matrices of 2-Mode-SIS model with T number of 
timesteps. Then ρ(S) is upper bounded by a monotone function f of ρ(A).

Fortunately, ρ(A) does not suffer from the same numerical issue as ρ(S) . Therefore, we propose a simple yet 
effective heuristic algorithm, Greedy-Spectral, for the two formulated problems: Starting from an empty set, 
we greedily and iteratively find and add a patient for isolation (or releasing) that leads to the smallest ρ(A) value 
until the size of the set reaches the given budget.

Ethical statement
This project is approved by the IRB “Controlling healthcare associated infections: an in-silico framework” and 
meets the criteria of exempt research under 45CFR46.104(d)(4)iii. All methods were performed in accordance 
with the relevant guidelines and regulations. Ours was a retrospective study and hence informed consent was 
waived by the approving ethical committee.

Results
In this section, we demonstrate the performance of our Greedy-Spectral algorithm for clinical problems using 
MRSA (a kind of HAI) as an example. Here, we use two time-varying heterogeneous contact networks con-
structed from clinical metadata (e.g., inpatient Data, doctor’s Notes, and MedAdmin Data) from the Epic-based 
SQL database at the University of Virginia (UVA) hospital to showcase our Greedy-Spectral algorithm could 
achieve robust good performance. One represents 294 days before COVID-19 (May 2019–Feb 2020), referred as 
the UVA-Precovid network, and another represents 294 days since the pandemic (May 2020–Feb 2021), referred 
as the UVA-Covid network. In these two networks, MRSA rates significantly declined in the UVA-Covid period, 
while networks became slightly denser, though many local properties (e.g., degree distribution, local clustering) 

P
∗ = argmin

P

ρ(S(�, P)) subject to P ⊂ X and |P| = k

P∗ = argmin
P

ρ(S(�,Q \ P)) subject to P ⊂ Q and |P| = k
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were the  same54. We first demonstrate the performance of Greedy-Spectral algorithm and several competing 
baselines in suppressing the MRSA outbreak for both high and relaxed precaution and cleaning scenarios (we 
will explain the two scenarios in later sections). We then investigate the patients picked by Greedy-Spectral 
using their electronic health records (EHRs) to see if they are meaningful from a clinical perspective.

Performance for clinical problems
High precaution and cleaning scenario
We first use the parameterization by calibrating 2-Mode-SIS model to the weekly number of new tested posi-
tive MRSA cases collected from EHRs data for experiments (see Supplementary Information fore more details). 
This scenario corresponds to the normal level of precaution and cleaning practices in healthcare  settings55, as 
in UVA, to avoid the outbreak of HAI including MRSA. We discuss the performance of Greedy-Spectral and 
other baselines under this scenario for the isolation problem (we show the results for clearance problem in Sup-
plementary Information.)

Figure 3 shows how Greedy-Spectral performs in minimizing non-patient pathogen loads and the number 
of new MRSA cases compared with other baselines: (1) Random will randomly pick k patients, (2) PropDegree 
will pick k patients with the probability of picking patients i proportional to its degree, (3) Shorr will pick k 
patients with the highest so-called Shorr  scores56 (see Supplementary Information for more details). Note that 
Shorr was developed to assess the clinical risk of an admitted patient acquiring MRSA, better performance com-
pared with Shorr means Greedy-Spectral is a more effective contact precaution strategy. As shown in Fig. 3a, 
Greedy-Spectral is more effective in reducing the amount of non-patient pathogen loads than other baselines. 
Here, γLoads is defined as the ratio of non-patient (HCWs and location) pathogen loads against k = 0 situation. 
For example, when k = 5000 , γLoads for Greedy-Spectral is Loadsk=5000,Greedy-Spectral

Loadsk=0
 , where Loadsk=5000,Greedy-Spectral 

and Loadsk=0 are the sum of HCWs pathogen loads and location pathogen loads when selecting 5000 patients for 
contact precaution using Greedy-Spectral, and when no patients are selected ( k = 0 ) respectively. In Fig. 3a, 
when k = 5000 , γLoads for Greedy-Spectral is 9.2% (7.8%) lower than for Shorr on UVA-Precovid (UVA-
Covid), this indicates that Greedy-Spectral is more effective in reducing the non-patient pathogen loads than 
other baselines (similar conclusion can also be drawn for other budget k). However, in Fig. 3b, we observe that 
our algorithm still gives a similar ratio of new MRSA cases γCases , which is defined similarly as the ratio of the 
number of new MRSA cases against k = 0 situation. In Fig. 3c, it also gives similar probability that the number 
of new MRSA cases is larger than Target, Prob[Cases > Target] for varying Target (x-axis) as other baselines. 

Figure 3.  Greedy-Spectral achieves lower non-patient pathogen loads but similar number of new MRSA 
cases than other baselines under high precaution and cleaning scenario for isolation problem (IP). Top is 
for UVA-Precovid dataset, down is for UVA-Covid dataset. (a) Ratio of non-patient pathogen loads γLoads 
(y-axis) with varying budget k (x-axis). Lower is better. The black bars show the standard error. (b) Ratio of new 
MRSA cases γCases (y-axis) with varying budget k (x-axis). Lower is better. (c) Prob[Cases > Target] (y-axis) 
with varying Target (x-axis) for budget k = 4000 . Lower is better. See Supplementary Information for more 
experiment results.
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Here, lower loads achieved by Greedy-Spectral are not leading to fewer cases, which is likely because of the 
isolation practices currently in use.

Relaxed precaution and cleaning scenario
Next, we investigate how Greedy-Spectral and other baselines perform in settings where precautions and clean-
ing practices are relaxed. Hospitals all over the world have already faced shortages induced by the COVID-19 
pandemic, including personal protective equipment, nasal swabs for testing, laboratory diagnostic capacity, 
and medical personnel, e.g.,57, 58. Further, shortages in nursing staff have predated the COVID-19 pandemic, 
and is known to be associated with increased risk of  HAI59. In the event of such shortages, it is hard to maintain 
the same level of precautions and cleaning policies, and the number of cases is likely to increase. Optimizing 
interventions becomes even more important in this setting. In this paper, we use the pathogen shedding rate α 
in the 2-Mode-SIS model to capture the influence of relaxed cleaning practices, and we use α leading to different 
numbers of cases when k = 0 to capture different levels of relaxation of cleaning practices.

Isolation problem results We first focus on isolation problem (IP) under relaxed precaution and cleaning 
scenario. Here, we demonstrate our Greedy-Spectral algorithm and other baselines by varying k but fixing 
α such that the number of cases is 1000 when k = 0 . We provide more results in Supplementary Information.

Fig. 4 shows the results with varying k. As shown in Fig. 4, Greedy-Spectral achieves lower non-patient 
pathogen loads and number of new MRSA cases than other baselines. In Fig. 4a, it achieves lower γLoads . For 
example, when k = 2000 , it leads to 4.2% (6.1%) lower loads than Shorr, and 23.6% (24.5%) lower loads than 
PropDegree on UVA-Precovid (UVA-Covid). Furthermore, our algorithm also leads to lower γCases as shown 
in Fig. 4b. When k = 2000 , it achieves 6.3% (7.2%) lower cases than Shorr, and 16.3% (16.6%) lower cases 
than PropDegree on UVA-Precovid (UVA-Covid). This indicates that our algorithm leads to around 60–70 
fewer MRSA cases than Shorr and 160–170 fewer cases than PropDegree (since the number of cases is 1000 
when k = 0 ). In Fig. 4c, we show how Prob[Cases > Target] changes with varying Target . Here, Greedy-Spec-
tral always has lowest Prob[Cases > Target] . For example, for UVA-Precovid (top row) and Target = 600 , 
Prob[Cases > Target] for our algorithm is 0, indicating that it can always lead to less than 600 cases. However, 
Shorr has 56.1% probability of having more than 600 cases, and PropDegree and Random have 100% prob-
ability of having more than 600 cases. This demonstrates the effectiveness of Greedy-Spectral algorithm in 
leading to fewer cases.

Clearance problem results We repeat the experiments shown for isolation problem under relaxed precaution 
and cleaning scenario above to clearance problem. Similarly, we demonstrate our Greedy-Spectral algorithm 

Figure 4.  Greedy-Spectral achieves lower non-patient pathogen loads and number of new MRSA cases than 
other baselines under relaxed precaution and cleaning scenario for isolation problem (IP). Top is for UVA-
Precovid dataset, down is for UVA-Covid dataset. (a) Ratio of non-patient pathogen loads γLoads (y-axis) 
with varying budget k (x-axis). (b) Ratio of new MRSA cases γCases (y-axis) with varying budget k (x-axis). 
(c) Prob[Cases > Target] (y-axis) with varying Target (x-axis) for budget k = 2000 . See Supplementary 
Information for more experiment results.
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and other baselines by varying k but fixing α such that the number of cases is 1000 when k = 0 . We also provide 
more results in Supplementary Information.

Figure 5 shows the results with varying k. As shown in Fig. 5, Greedy-Spectral achieves lower non-patient 
pathogen loads and number of new MRSA cases than other baselines for the clearance problem. In Fig. 5a, it 
achieves lower non-patient pathogen loads. Furthermore, it also leads to a lower number of new MRSA cases 
as shown in Fig. 5b. For example, when k = 4000 (i.e. releasing 4000 patients) for UVA-Covid (bottom row), 
our algorithm leads to 8.5% lower loads and 6.9% lower γCases than other baselines. Besides, it also has lowest 
Prob[Cases > Target] in Fig. 5c. For example for UVA-Precovid (top row), when releasing k = 4000 patients 
and Target = 700 , Greedy-Spectral has only 12.3% probability of having more than 700 cases. Instead, other 
baselines have 100% probability of having more than 700 cases.

Comparison with clinical heuristic precaution policies
Many clinical heuristic precaution policies are also used in  practice60, 61. Usually, these policies tend to pick 
patients with high MRSA risks. For example, patients with surgery history or invasive device use may be consid-
ered as having high risk and may be picked for precaution. We next leverage EHRs to implement these clinical 
heuristic policies and compare them with our Greedy-Spectral algorithm. The EHRs of patients in the UVA 
dataset include information like surgery history or underlying diseases (for brevity, we call them ‘features’) for 
each patient. Specifically, we compare with the following four heuristic policies: isolate all emergency patients, 
isolate all patients with surgery history within 90 days, isolate all patients with invasive device use history within 
90 days, and isolate all patients with dialysis history within 90 days. The four features used in these policies are all 
considered to be highly  risky56, 60, 61. As shown in Fig. 6 for UVA-Precovid, Greedy-Spectral can also suppress 
MRSA outbreak better than these clinical heuristic precaution policies. Here, horizontal dashed lines represent 
the simulated number of new cases for these four policies. Scattered dots correspond to the number of patients 
isolated by each policy. We can see the line for our algorithm is below all scattered dots. This indicates that when 
isolating the same number of patients, Greedy-Spectral leads to fewer MRSA cases than these policies.

Case study: analysis on isolated patients
We also investigate the patients picked by our Greedy-Spectral algorithm from a clinical perspective. In 
Table 1, we use PropDegree, Shorr, and Greedy-Spectral to pick 500 patients for precaution for UVA-
Precovid, and then show the fraction of patients with highly risky  features60, 61 (note that one patient may have 
multiple features and can be counted multiple times). We also list the fraction of patients with these features in 

Figure 5.  Greedy-Spectral achieves lower non-patient pathogen loads and number of new MRSA cases than 
other baselines under relaxed precaution and cleaning scenario for clearance problem (CP). Top is for UVA-
Precovid dataset, down is for UVA-Covid dataset. (a) Ratio of non-patient pathogen loads γLoads (y-axis) with 
varying releasing budget k (x-axis). (b) Ratio of new MRSA cases γCases (y-axis) with varying releasing budget 
k (x-axis). (c) Prob[Cases > Target] (y-axis) with varying Target (x-axis) for releasing budget k = 4000 . See 
Supplementary Information for more experiment results.
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population for comparison. As shown in Table 1, our algorithm Greedy-Spectral picks meaningful patients 
with these features for precaution. For example, compared with PropDegree and fraction in population, it 
picks many more patients with invasive device use history and dialysis history. Compared with Shorr, Greedy-
Spectral highlights patients having surgery within 90 days more while emphasizing dialysis patients less. Addi-
tionally, Greedy-Spectral also captures the structural information of the heterogeneous contact networks well 
since the average degree of the patients picked by it is larger than other baselines. This explains why it performs 
better than Shorr in suppressing MRSA outbreaks. Note that our algorithm uses only network information, and 
not patient level feature information, but it still identifies the correct patients at high risk and performs better in 
minimizing the MRSA spread as shown above.

In Table 2, we also investigate the differences in the type of patients picked in the UVA-Precovid and UVA-
Covid period. Here, we list the fraction of patients with highly risky features picked by Greedy-Spectral 
in both periods. As shown in Table 2, our algorithm is picking 13.2% more patients with invasive device use 
history within 90 days, 20.6% more patients with dialysis history within 90 days and 19.4% more patients in 

Figure 6.  Comparison against clinical heuristic precaution policies. The x-axis is budget k, the y-axis is the 
number of cases. The horizontal dashed lines represent the simulated number of MRSA cases with the these 
policies, and scattered dots correspond to the number of patients isolated by these policies.

Table 1.  Fraction of patients with different features.

Features Population PropDegree Shorr Greedy-Spectral

Surgery (within 90 days) 0.601 0.614 0.696 0.750

Surgery (90+ days) 0.377 0.434 0.572 0.572

Invasive Device (within 90 days) 0.233 0.264 0.472 0.470

Invasive Device (90+ days) 0.171 0.180 0.356 0.382

Dialysis (within 90 days) 0.041 0.050 0.184 0.136

Dialysis (90+ days) 0.031 0.042 0.160 0.096

ICU 0.281 0.326 0.508 0.402

Table 2.  Fraction of patients with different features for Greedy-Spectral on UVA-Precovid and UVA-Covid 
dataset.

Notations UVA-Precovid UVA-Covid

Surgery (within 90 days) 0.750 0.752

Surgery (90+ days) 0.572 0.6

Invasive device (within 90 days) 0.470 0.532

Invasive device (90+ days) 0.382 0.342

Dialysis (within 90 days) 0.136 0.164

Dialysis (90+ days) 0.096 0.086

ICU 0.402 0.48
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ICU in UVA-Covid than UVA-Precovid . For example, the increasing number of patients picked in ICU by our 
algorithm can be explained by the fact that ICU is getting more crowded. According to the EHRs data, there are 
more contacts in the UVA-Covid period than in the UVA-Precovid period (average degree of patients in ICU: 
115.33 (UVA-Precovid) va. 125.24 (UVA-Covid)). Additionally, the average degree of the patients picked by 
our algorithm for UVA-Covid period is also larger than UVA-Precovid.

Discussion
We develop a spectral characterization for 2-Mode-SIS34 for modeling the spread of HAIs, such as MRSA 
pathogens, which captures the long-term dynamics of pathogen spread by taking into account both the contact 
network structure and disease parameters. This model has been proposed as an alternative to the standard SIS 
models, but has not been studied rigorously before. We also study two important clinical problems arising from 
control of HAIs, and show how these can be formalized using our spectral characterization. We design Greedy-
Spectral, an algorithm for solving these clinical problems, which greedily and iteratively finds and adds a patient 
to isolate (or relase) until reaching the budget.

Overall, our results demonstrate that our spectral characterization and Greedy-Spectral algorithm hold 
sufficient potential for minimizing the spread of MRSA. In experiments, we compare Greedy-Spectral with 
several baselines including Shorr, which picks patients for contact precautions using their features collected from 
Electronic Health Records. For the high precaution and cleaning scenario, which corresponds to the normal level 
of pathogens and cleaning practices in healthcare settings, our simulations suggest that the Greedy-Spectral 
algorithm outperforms the Shorr by achieving lower non-patient pathogen loads. For the relaxed precaution 
and cleaning scenario, which captures the shortage of resources (e.g., personal protective equipment, labora-
tory diagnostic capacity, and medical personnel in the COVID-19  pandemic57, 58), our simulations indicate that 
Greedy-Spectral algorithm not only reduces pathogen loads but also leads to fewer MRSA cases compared 
with Shorr. Additionally, our algorithm uses only the network information and not the patient-level feature 
information. However, it still identifies the correct patients at high risk and performs better in minimizing the 
MRSA spread as shown above.

Our Greedy-Spectral algorithm is likely to be helpful in controlling MRSA and other healthcare-associated 
infections. As demonstrated in our simulations, our algorithm uses only the network information rather than 
patient-level features, yet it successfully identifies high-risk patients and outperforms Shorr and other baselines 
in minimizing MRSA spread. In practice, the Greedy-Spectral algorithm can be implemented by construct-
ing contact networks using EHR data such as inpatient data, doctors’ notes, and MedAdmin data, which are as 
similarly available as patient-level features. Some research also suggests that wearable RFID sensors can be used 
to construct  networks62, 63. With the contact networks, people can then run our Greedy-Spectral algorithm 
to decide the most suitable patients to put under or released from precaution (corresponding to the isolation 
problem and clearance probelm respectively). We expect our approach will assist epidemiologists and clinicians 
in identifying appropriate patients for contact precautions, ultimately aiding in the control of MRSA transmis-
sion. Our spectral characterization and Greedy-Spectral algorithm can also be extended to other diseases 
and epidemiological models.

One of the limitations of this work is that the 2-Mode-SIS model we use involves only two states: susceptible 
and infected. Real-world MRSA infections, however, manifest in various forms (e.g., bloodstream infections 
and pneumonia)64, while the 2-Mode-SIS model simplifies them into a single infected state. In addition, the 
2-Mode-SIS model assumes that any susceptible patient can be colonized instead of explicitly incorporating a 
colonization state in it itself. One potential extension of this work could extend our spectral characterization 
analysis to more complex models that could distinguish different kinds of MRSA infections and colonization. 
Our approach can also be adapted for other healthcare-associated infections, such as C. difficile, by substitut-
ing the 2-Mode-SIS model with other models. Another limitation is that we assume that patients selected for 
contact precautions remain isolated throughout the entire period. However, in actual clinical practice, patients 
may be released from contact precautions when they recover or are discharged from the hospital. Future work 
could consider the possibility of isolating or releasing patients at any time step to gain more flexibility. Although 
contact networks and other parts of EHR data are very sensitive datasets, the privacy concerns can be mitigated 
by running our Greedy-Spectral algorithm on anonymous contact networks to estimate the impact of the 
optimal solution, and use characteristics of the solution in defining actual strategies.

Data availability
The simulation outputs of our model are available in https:// doi. org/ 10. 5281/ zenodo. 78113 97. The electronic 
health record (EHR) data used in developing the models is not available since it is highly sensitive, and we do 
not have permission to release it.

Code availability
Code have been deposited in https:// doi. org/ 10. 5281/ zenodo. 78113 97.
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