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ABSTRACT 

We report on the Second Workshop on Mining Networks and 
Graphs held at the 2015 SIAM International Conference on Data 
Mining. This half-day workshop consisted of a keynote talk, four 
technical paper presentations, one demonstration, and a panel on 
future challenges in mining large networks. We summarize the 
main highlights of the workshop, including expanded written 
summaries of the future challenges provided by the panelists. The 
current and future challenges discussed at the workshop and 
elaborated here provide valuable guidance for future research in 
the field. 
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1. INTRODUCTION 
Real-world applications give rise to networks that are unstructured 
and often comprised of several components. Furthermore, they 
can support multiple dynamical processes that shape the network 
over time. Network science refers to the broad discipline that 
seeks to understand the underlying principles that govern the 
synthesis, analysis and co-evolution of networks. In some cases, 
the data relevant for mining patterns and making decisions comes 
from multiple heterogeneous sources and streams in over time. 
Graphs are a popular representation for such data because of their 
ability to represent different entity and relationship types, 
including the temporal relationships necessary to represent the 
dynamics of a data stream. However, fusing such heterogeneous 
data into a single graph or multiple related graphs and mining 
them are challenging tasks. Emerging massive data has made such 
tasks even more challenging.  
The 2015 SDM Workshop on Mining Networks and Graphs [21] 
brought together researchers and practitioners in the field to deal 
with the emerging challenges in processing and mining large-scale 
networks. Such networks can be directed as well as undirected, 
they can be labeled or unlabeled, weighted or unweighted, and 
static or dynamic. Networks of networks are also of interest. 
Specific scientific topics of interest for this meeting include 
mining for patterns of interest in networks, efficient algorithms 
(sequential/parallel, exact/approximation) for analyzing network 
properties, methods for processing large networks (i.e., Map-

Reduce and Giraph based frameworks), use of linear algebra and 
numerical analysis for mining complex networks, database 
techniques for processing networks, and fusion of heterogeneous 
data sources into graphs. Another particular topic of interest is to 
couple structural properties of networks to the dynamics over 
networks, e.g., contagions.  
The workshop consisted of a keynote talk by Ravi Kumar from 
Google, four technical paper presentations, a demonstration of the 
CINET Cyberinfrastructure for Network Science by Maleq Khan 
from Virginia Tech, and a panel on Future Challenges in Mining 
Large Networks. The panelists included Rajmonda Caceres from 
MIT Lincoln Lab, Nitesh Chawla from Notre Dame, Tina Eliassi-
Rad from Rutgers, David Gleich from Purdue, Christine Klymko 
from Lawrence Livermore, Ravi Kumar from Google, Jason 
Riedy from Georgia Tech, Aditya Prakash from Virginia Tech, 
and Yinghui Wu1 from Washington State. The workshop was co-
chaired by Lawrence Holder from Washington State, Maleq Khan 
from Virginia Tech, and Christine Klymko. 

In the following sections we summarize the presentations and 
discussions at the workshop. Each panelist has also provided a 
written summary elaborating on their future challenge. 

2. CURRENT DIRECTIONS FOR MINING 
NETWORKS AND GRAPHS 
Ravi Kumar gave a keynote talk entitled “Estimating Network 
Parameters.” Estimating the parameters such as the size and 
average degree of a large network, which cannot be accessed in its 
entirety, is a basic data mining question. Recently, the problems 
of estimating the size of the web, the size of a web index, the size 
and other parameters of online social networks, etc. have been 
actively considered in the context of World Wide Web [12].  In 
this talk, Ravi Kumar addressed several questions with the main 
focus on estimating the network size and the average degree. The 
main motivation of estimating these parameters is to understand 
the network in general. In the case of social network, it can help in 
gaining business insight and competitive advantage [12]. These 

                                                                    
1 Yinghui Wu was unable to attend the workshop due to last 

minute visa issues, but we have included the written summary 
of his challenge in this report. 



 

problems become challenging and interesting with the following 
realistic assumptions: i) the network is not available to us in its 
entirety – we can only query a node and obtain all its neighbors, 
ii) these queries are expensive, and thus an algorithm has to make 
a small number of queries, and iii) it may not be possible to access 
a uniformly random node in the network. The speaker discussed 
some traditional methods and then showed some recently 
developed advanced techniques that reduce the number of queries 
significantly.  

Four contributed papers [2, 10, 16, 38] were presented in the 
workshop. These papers have also been published in the workshop 
proceedings. In [2], the authors addressed the problem of mining 
coevolving patterns in dynamic networks. They present an 
algorithm to analyze all relational changes between entities 
(nodes) and find all frequent coevolving induced relational motifs. 
Their results show that these motifs capture network 
characteristics that can be useful for modeling the underlying 
dynamic network. A recent trend and important problem in graph 
mining is to mine social, financial, or other relevant networks for 
detecting intrusion and suspicious activities. Another paper [16] 
presents a method of detecting intrusion using frequent subgraphs. 
Community detection in a network is another important problem 
and recently received significant attention of the researchers. 
Large-scale networks (networks with billions of nodes and edges) 
require very efficient algorithms. Some efficient methods for 
detecting communities in large-scale networks are presented in 
[38] and [10]. 
Maleq Khan gave a demonstration of an open–access web-based 
network analysis tool called CINET [1, 15], a Cyber Infrastructure 
for NETwork Science2. CINET has been developed at Virginia 
Tech and partially funded by NSF. It provides a large set of 
networks and modules (such as computing diameter, clustering 
coefficient and shortest path) to analyze them. Users can also add 
their own networks to be analyzed by the provided algorithms. 
The web-based interface has been designed to simplify analysis of 
complex networks for users who are not necessarily computer 
scientists.   

3. FUTURE CHALLENGES ON MINING 
LARGE NETWORKS 
While the panelists had only three minutes each to present their 
challenge at the workshop, they have also provided written 
descriptions after the workshop, which are included here. 

3.1 Graph Representation Learning3 
Rajmonda Caceres, MIT Lincoln Laboratory 
The process of going from raw data to the right graph 
representation is a critical building block for a successful data-to-
decisions analytical framework. When properly done, the graph 
representation captures the essential aspects of the data and 
abstracts away the noisy, irrelevant parts. Many inference 
algorithms make two fundamental assumptions: 1) the graph is 
already constructed 2) the constructed graph has the qualitative 

                                                                    
2 http://www.vbi.vt.edu/ndssl/cinet. 
3 This challenge is part of work sponsored by the Department of 

the Air Force under Air Force Contract FA8721-05-C-0002. 
Opinions, interpretations, conclusions, and recommendations 
are those of the author and are not necessarily endorsed by the 
United States Government. 

properties necessary for their analysis to work, i.e., the patterns 
that we are looking for are present and recoverable. In reality, 
what we have available is raw data that is often noisy and 
collected from different modalities. Furthermore, no clear 
methodology exists in place for converting these data into a useful 
graph representation. Current practices often aggregate different 
graph sources ad-hoc, making it difficult to compare algorithms 
across different domains or even within the same domain using 
different data sources. The immediacy for rigorous approaches on 
representation learning of graphs is even more apparent in the big 
data regime, where challenges connected to variety and veracity 
exacerbate the challenges of volume and velocity. 

Constructing quality graph representations from raw data is a 
challenging task. Often the data we collect represent indirect 
measurement of the true relationships we want to analyze, for 
example, we want to analyze social relationships, but we collect 
proximity information. Data collections systems often introduce a 
lot of noise in the form of missing or irrelevant connections. 
Finally, it is not clear how to integrate different, potentially 
complementary data sources into one unified representation.  

An orthogonal challenge has to do with our mathematical 
understanding (or lack of) of what makes a graph representation 
qualitative. If we did have a good understanding of this, we could 
then hope to design algorithms to drive the data-to-graph mapping 
in the right direction. In reality, we do not have ground truth, nor 
do we have notions of quality that we agree upon. More 
importantly, we often observe that the quality of graph 
representation depends on the objective of the learning task, and 
for the same learning task, multiple graph representations might 
be useful. 
A much-needed capability in this problem setting is one that takes 
multi-source, incomplete, noisy data and constructs quality 
networks together with estimations of uncertainty/confidence of 
the network components (edges, subgraphs, etc.). There are 
additional related open research questions and potential areas of 
impact, from developing methods for validating the quality of 
graph representation in the absence of ground truth, to identifying 
scenarios when fusion of different sources helps, to deriving 
performance guarantees for different graph construction or graph 
recovery techniques.  

3.2 Representing Higher-Order Dependencies 
in Networks 
Nitesh V. Chawla, University of Notre Dame 
How to construct the network representation from data, such that 
the underlying phenomena in data are correctly captured and 
represented?  
The conventional way of constructing a network from raw data 
typically assumes the Markov property (first order dependency) 
by considering only the pairwise connections in data. That is, in 
such a network, a movement simulation (such as trajectories of 
vehicles, retweets, clickstream traffic, etc.) is only able to follow 
the probability distribution of the first order, and cannot reflect 
higher order dependencies that may exist in the data. This can lead 
to inaccuracies when applying a wide range of network analyses 
tools that are based on the simulations of movements in the 
network, such as clustering, PageRank, various link prediction 
methods based on random walking, and so on.  



 

Specifically, the challenge that we posit is as follows. Construct a 
network that accurately captures the variable and higher order of 
dependencies such that it is: 

a) representative of the underlying phenomena in the data 
to more accurately represent simulation of movement 

b) compact in size allowing for variable order of 
dependencies versus using a fixed high order 

c) compatible with existing network analysis tools such 
that the analysis toolkit does not have to change to 
respond to the network representation 

3.3 Provably Increasing Network Awareness 
Tina Eliassi-Rad, Rutgers University 
The underlying processes generating network data are often 
partially observed. Thus, regardless of how big the data is, it is 
incomplete and noisy. For example, current maps of the Internet 
are known to be incomplete and significantly biased [18]. The 
challenge is to provably increase network awareness. Specifically, 
given an incomplete, noisy, and possibly biased network, can we 
infer network properties (at micro, mezzo, and macro levels) with 
provable accuracy? Then, given these inferences can we design 
active graph probing/learning algorithms for graph mining tasks 
(such as community detection, role extraction, etc.)? Approaches 
from computer science theory such as property testing [14, 32] 
and sublinear algorithms [33] and from machine learning such as 
active learning [6, 30] are possible solutions to this solution. 

This challenge is joint work with Sucheta Soundarajan (Rutgers 
University), Brian Gallagher (Lawrence Livermore National 
Laboratory), Ali Pinar (Sandia National Laboratories), C. 
Seshadhri (University of California Santa Cruz), and Bradley 
Huffaker (CAIDA).  

3.4 A Turing Test for Synthetic Network 
Models 
David F. Gleich, Purdue University 
We propose establishing a Turing-like test to assess the current 
state of synthetic network models. Synthetic network models are 
important for two problems: (i) assessing the statistical 
significance of results in networks [28] and (ii) measuring the 
performance of new algorithms on extremely large graphs [7]. But 
there is widespread disagreement about the relevance of the 
current state of synthetic generators. New models are constantly 
being proposed to fit the latest observed feature of real-world 
networks (see, for instance [24]). The ones that see widespread 
use are often due to reasons that are distinct from their accuracy as 
far as modeling real networks [29, 36]. The basis for our proposal 
is to quantify the current state of synthetic network models and 
address the question: can we distinguish the distribution of graphs 
generated by synthetic methods from the distribution of graphs 
that are from the real-world?  

A hypothetical model for such a test is as follows. At the start of 
each month, there is a new collection of networks released. These 
networks are either generated by a synthetic generator or a piece 
of a real-world dataset. At the end of the month, challengers 
would submit their results on if they believe that the network was 
the result of a generator or a real-world network. If the current 
state of synthetic network generation is sufficient, then the two 
distributions should be indistinguishable. If there are 
distinguishing features, this suggests how we need to improve 
current synthetic generators.  

Justification. One of the irksome questions in graph mining is 
trying to determine if a finding is significant or if should have 
been expected given the known properties of social networks. An 
approach to answer this question for many subgraph and subset 
queries involves studying synthetic network models of networks 
and evaluating the likelihood of finding that subgraph or subset in 
the synthetic model (or one with similar properties). But this 
methodology is only useful if the synthetic model has the 
properties that are known be associated with the original class of 
networks and also has some variance over the distribution of 
graphs [27]. It is unclear if the current class of synthetic models 
meets these requirements and the Turing test proposed above 
would help us answer that question and would also suggest 
important properties to distinguish real-world networks from their 
synthetic approximations.  

Additionally, extremely large graphs are difficult to find outside 
of a small number of select institutions such as Google and the 
NSA. The largest publically available network is 126B edges and 
6B vertices (http://webdatacommons.org). There are many 
problems with this graph that can be solved on a modern laptop 
computer [26]. One of the approaches to overcome the lack of 
data is to evaluate synthetic networks that can be generated at 
arbitrary size-scales. But the relevance of these networks to 
algorithmic performance is questionable if the underlying 
networks are not a reasonable approximation. This is especially 
important for things like partitioning problems where many 
synthetic networks have relatively simple optimal partitioning 
strategies.  

3.5 Noisy Data and Fuzzy Subgraph Detection 
Christine Klymko, Lawrence Livermore National Laboratory 
One important issue in dealing with network data is how to 
account for noise. Noisy data can result from a variety of 
processes, including: collection error (missing edges, false edges, 
etc.), mutations (such as those occurring in certain biological 
networks), actual but unimportant/meaningless interactions (i.e., 
wrong number phone calls), and nodes attempting to hide their 
interactions in a network (such as might occur in various social or 
cybersecurity applications). The presence of noise complicates 
many data mining problems: see [17, 37], among others. 

An example of the difficulties of data mining tasks in the presence 
of noisy data is the question of subgraph/network motif detection, 
which becomes especially complicated when noise is taken into 
account. Subgraph detection is important in a number of areas [19, 
25]. However, given the presence of noise, it does not make sense 
to search for exact subgraphs. Instead, a search for “fuzzy” 
subgraphs (allowing the addition or deletion of a small number of 
nodes and edges to the original search query) will often produce 
more meaningful results. However, there are still few 
methodologies to effectively perform fuzzy subgraph detection.  
The development of noise robust methodologies (for subgraph 
detection and other data mining questions) is an important area of 
research. 

3.6 Scalable Graph Algorithms in Emerging 
Computational Models 
Ravi Kumar, Google 
The challenge is to develop and study computational models that 
are best suited for large data, especially, large graphs. Modern 
computing paradigms such as streaming and map-reduce have 
been very useful in developing algorithms that can scale to large 



 

data; these paradigms are reasonably well-established by now and 
their limitations are well understood. Emerging models such as 
the asynchronous computational model and the parameter-server 
model (popular in the machine learning community) seem 
promising for many new classes of problems; their power and 
limitations are yet to be understood both from theoretical and 
applied points of view. It becomes important to study these 
models and see their applicability to large-scale graph problems – 
the topic is nascent and rich. 

3.7 Error and Sensitivity Analysis for Graphs 
Jason Riedy, Georgia Institute of Technology 
Most current graph analysis methods assume correct data and 
knowledge. However, this rarely occurs. We have little 
knowledge about and fewer models of the sensitivity of analysis 
results to errors. Graphs imperfectly represent some real 
phenomenon. “Friendships” in online social networks do not 
always reflect personal relationships, or the data is obscured for 
privacy reasons as in health data. Computation imperfectly 
analyzes the graph. Many problems are only approximated to fit 
within time or energy limitations. Many codes have subtle bugs.  
If some problem occurs once in a billion edges, massive graphs 
will uncover it. Other scientific computing areas have established 
frameworks for analyzing and addressing sensitivity to 
perturbations. We need mental and formal methods for addressing 
error and sensitivity in graph analysis results, and we need to 
condense those into rules of thumb for practitioners. 

The wide range of graph analysis tasks will need a variety of 
approaches. Globally averaged properties like a graph’s clustering 
coefficient often are not very sensitive to perturbations.  Local 
properties, however, can be affected drastically. Experiments in 
Zakrzewska and Bader [40] imply that for a variety of graphs and 
edge dropping heuristics, nearly a quarter of the edges could be 
ignored while affecting the global clustering coefficient by at 
most 10%. The vector of local clustering coefficients changes in 
one-norm relative difference by 20% to 80% in the same range. 
Consider measuring or modeling error in connected components. 
The interpretation of error will change depending on the source of 
the graph data. If the graph is derived from thresholds, say from 
significance of protein-protein interaction measurements [4], the 
single threshold may provide leverage in defining a model for the 
overall graph. Discrete interaction networks as occur in criminal 
network analysis [8] will require other prediction methods, 
although meaningfully predicting interactions between 
disconnected components is (to this author’s knowledge) an open 
problem. 

Understanding graph analysis algorithms’ sensitivity to error and 
perturbation is a step towards making graph analysis a solid 
scientific computing approach. Other scientific computing 
disciplines have error analysis frameworks that are distilled into 
basic rules of thumb for practitioners. We need to provide analysts 
and scientists with the same level of support for confidence in the 
graph analysis results. 

3.8 Propagation over Networks 
Aditya Prakash, Virginia Tech 
How do contagions like Ebola and Influenza spread in population 
networks? How do malware propagate? How can blackouts spread 
on a nationwide scale? How do rumors spread on 
Twitter/Facebook? Which group should we market to for 
maximizing product penetration? Answering all these big-data 

questions involves the study of aggregated dynamics over 
complex connectivity patterns [5, 20, 23, 31]. Dynamic processes 
over networks can give rise to fascinating macroscopic behavior, 
leading to fundamental research problems which recur in multiple 
domains. Understanding such propagation processes will 
eventually enable us to manipulate them for our benefit, e.g., 
understanding dynamics of epidemic spreading over graphs helps 
design more robust policies for immunization. 
These problems are typically very challenging, as they involve 
high-impact real-world applications as well as deep technical 
issues like the need for scalability and handling of heterogeneous 
noisy data in a principled manner. Data for these problems will 
typically come from domains like epidemiology and public health 
(both simulation and real data), social media (tweets, blog posts, 
movie ratings), cyber security (malware databases), historical 
(newspapers) and so on. Moreover, promising approaches seem to 
be very inter-disciplinary – drawing concepts and techniques 
ranging from theory and algorithms (combinatorial and stochastic 
optimization), systems (asynchronous computation) to machine 
learning/statistics (minimum description length, graphical models) 
and non-linear dynamics. Clearly, progress in this sphere holds 
great scientific as well as commercial value. 

3.9 Resource-bounded Graph Mining 
Yinghui Wu, Washington State University 
An emerging challenge is to develop scalable mining techniques 
over massive network data with limited resource. Graph mining 
tasks such as subgraph pattern discovery are inherently expensive, 
and it is often hard to theoretically reduce the complexity. On the 
other hand, emerging applications require mining with limited 
computing resource, such as response time, space cost, energy 
constraints, etc. For example, applications in cyber network 
monitoring typically require the anomaly communication patterns 
be discovered in real-time [11]. The need for big graph mining 
with bounded resource and (guaranteed) high accuracy is evident 
in resource-intensive applications.  

Recent study on resource bounded and budgeted graph search 
suggests to explore bounded fraction of graph data to generate 
approximate answers [13]. Data sketch, summary and 
compression techniques are applied to generate and query small 
synopsis from original graphs [3]. The effectiveness and possible 
performance guarantees of these approaches may rely on specific 
query classes, domain knowledge and data properties. A possible 
future direction is to leverage learning techniques and design 
resource-accuracy trade-off mining algorithms upon specific 
application need. This may also lead to adaptive mining tools that 
support large-scale graph analytics in cloud services.  

3.10 Panel Discussion 
In summary, the presented challenges focused on how best to 
represent data as a graph, especially noisy data with higher-order 
dependencies, and how to evaluate the quality of the resulting 
graph. Since any constructed graph necessarily represents a 
sample of the real world, how can we assess the quality of the 
sample and the certainty of the conclusions drawn from the data 
(e.g., error, sensitivity, and p-value for graphs)? Addressing these 
issues will help with other challenges related to the design and 
testing of scalable graph mining algorithms that take maximum 
advantage of limited resources. After the panelists presented their 
challenges, a lively discussion ensued among the panelists as they 
responded to questions from the audience and amongst 
themselves. Here, we summarize this discussion. 



 

An interesting comment by one of the panelists related the 
experience of how seemingly deterministic graph algorithms may 
yield different results simply by relabeling the nodes in the graph. 
A question from the audience asked for an elaboration of the 
reasons behind such behavior, and the main reasons were the 
arbitrary ranking among nodes with equivalent values and the 
precision errors when computing these values, which may be 
extremely small or large. One panelist asked if this was really a 
problem, given that we do not always need exact answers to graph 
problems, e.g., when merely ranking nodes. Others pointed out 
that if these error-tolerant tasks are repeated or are part of a larger 
workflow, then errors may propagate, which brings us back to one 
of the focuses of the challenges: how to assess error in the 
networks and in the results of graph algorithms. In general, graph 
analysis is often interested in the solution and not necessarily in 
optimizing a specific metric. Approaching such a highly non-
linear and bumpy problem from different directions/permutations 
will likely result in different locally-optimal solutions. This is a 
challenge as it expands the space of viable solutions and 
complicates the evaluation of algorithms for mining large 
networks. 

Next, one of the panelists proposed a straw man argument of 
whether truly big real-world graphs exist, or at least graphs 
whose size requires more memory and computational power than 
a modern laptop. More realistically, are there large graphs that 
exceed readily available computational resources that cost less 
than $10,000? Specifically, while Facebook purports to have a 
real-world graph on the order of one trillion edges [34], and the 
National Security Agency purports to have a real-world graph 
with 70 trillion edges requiring one petabyte of storage [7], the 
largest publicly-available graph has around 128 billion edges [39]. 
The panelist argued that for most graph mining tasks, a laptop is 
sufficient for processing a graph on the order of 100 billion edges. 
Other panelists pointed out that even larger graphs can be 
constructed by combining multi-typed data from different sources 
(e.g., all of the web), or incorporating time as in clickstream and 
network traffic flow data. While such graphs are typically 
sampled from, filtered, or abstracted in order to fit within memory 
requirements, simply loading these graphs into memory can take 
hours. And computationally complex algorithms, such as finding 
high-order motifs, or simply rerunning algorithms under different 
experimental conditions, require considerable computational 
resources. Such graphs and graph algorithms can easily exceed the 
power of a laptop and/or the patience of the experimenter, but do 
such graphs exist? 

And if we had such large real-world graphs, what would we do 
with them? What questions would we ask about them? One 
panelist pragmatically pointed out that the right questions are the 
ones that have a clear broader impact as defined by the National 
Science Foundation, the source of much of the funding for graph 
mining research. Obviously, large graphs allow us to test the 
scalability of our algorithms, but do we really need trillion-edge 
graphs to test scalability? Benchmark datasets exist, such as the 
Graph 500 [29], but the overhead of handling such large graphs 
becomes an obstacle to the very testing that the benchmarks are 
designed to support. Also, at some point we must consider the 
amount of energy necessary to answer the questions we wish to 
pose. As the area of sustainable computing has been 
contemplating energy consumption for computation, we as graph 
miners must also consider the limitations of what is practically 
computable. Finally, recent efforts in the area of graph stream 

mining may offer some hope for answering questions once 
thought intractable on one large graph by streaming the graph in 
over time. 

In the absence of real-world, publicly–available graphs on the 
order of one trillion in size, one solution is to develop more 
advanced graph generators that better mimic real-world graph 
properties. In fact, one of the audience members asked the 
panelists to comment on the challenges of generating such 
synthetic graphs while constraining multiple interdependent 
graph properties. Even before we can address this challenge, we 
need a good model of the distribution of such graphs in the real 
world, and these models are difficult to obtain [22]. Clearly, no 
model can represent everything, but which properties are the 
critical ones to model? It seems that the only way to model real-
world networks is to allow them to be built in a realistic way. For 
example, if you want a model of Wikipedia, then start your on 
online encyclopedia and monitor its growth. If you want to model 
email communication, then find a group of people willing to let 
you monitor their email communication (good luck with that). 
Currently there are very few robust graph generators, with the 
exceptions being RMAT [9] and BTER [35]. But RMAT is 
focused on realistically modeling only the degree distribution. 
BTER is focused on modeling both degree distribution and 
triangle distribution, but does a poor job of maintaining a realistic 
ratio between the two. And neither generator supports the 
recovery of ground truth, e.g., the true communities for validating 
community detection algorithms. Furthermore, some panelists 
pointed out that many algorithms that perform well on these 
synthetic graphs do not perform well on real-world graphs. The 
subject of anomalies also came up, and how they can be 
realistically generated. Manually-constructed anomalies can be 
inserted into synthetic graphs, but many real anomalies are as yet 
unimagined. All of this suggests that the proper modeling of real-
world graphs, i.e., identifying the salient properties that control 
the behavior of real-world graphs, and efficiently generating these 
graphs, remains an important challenge for the field. 

4. CONCLUSIONS 
The 2015 SDM Workshop on Mining Networks and Graphs 
provides a valuable snapshot and look ahead for the field. Clearly, 
the challenge of dealing with large and dynamic graphs is of 
particular focus, especially choosing proper representations, 
handing noise, dealing with limited resources, summarization and 
statistical significance of network mining results. We hope that 
the workshop proceedings, as well as the summaries of the 
technical presentations and panel included in this report, will 
motivate future directions in the field. 
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