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ABSTRACT

Controlling the dissemination of an entity (e.g., memeusijretc)
on a large graph is an interesting problem in many disciplif&x-
amples include epidemiology, computer security, markgttc.
So far, previous studies have mostly focused on removingam-i
ulatingnodesto achieve the desired outcome.

We shift the problem to the level of edges and ask: which edges
should we add or delete in order to speed-up or contain ardisse
ination? First, we propose effective and scalable algarstho
solve these dissemination problems. Second, we condu&oa th
retical study of the two problems and our methods, includire
hardnesof the problem, thaccuracyandcomplexityof our meth-
ods, and thequivalencdetween the different strategies and prob-
lems. Third and lastly, we conduct experiments on real tgieb
of varying sizes to demonstrate the effectiveness andksitiglaf
our approaches.

Categories and Subject Descriptors

H.2.8 [Database Managemerjt Database Applications — Data
Mining

General Terms
Algorithm, experimentation

Keywords
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1. INTRODUCTION

Managing the dissemination of an entity (e.g., meme, Vietr),
on a large graph is a challenging problem with applicationgii-
ous settings and disciplines. In its generality, the pragiag entity
can be many different things, such as a meme, a virus, anadea,
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new product, etc. The propagation is affected by the topotowl

the properties of the entity: its ‘virality’, its speed, igickiness’

or the duration of the infection of a node. Our focus here & th
topology since we assume that we cannot alter the properties of
the propagating entity.

The problem we address is how we can affect the propagation by
modifying theedgeof the graph. In fact, we address two different
problems. First, in thé&letMelt problem, we want to contain the
dissemination by removing a given number of edges. For el@mp
we can consider the distribution of malware over a socialogk.
Deleting user accounts may not be desirable, but deletiggsed
(‘unfriending’ people) may be more acceptable. More speslify,
we want to delete a set df edges from the graph to minimize
the infected population. Second, in tNetGel problem, we want
to enable the dissemination by adding a given number of edges
Specifically, we want to add a set bfnew edges into the graph to
maximize the population that adopt the information. Fomepke,
we could extend the social network scenario using the réaeath
spring’ which often used Facebook and Twitter for coordmmat
events: we may want to maximize the spread of a potentiakpiec
of information. Note that an additional, key requirement tioth
problems is computational efficiency: the solution showale to
large graphs.

Both problems are challenging for slightly different reas.oFor
the NetMeltproblem, most of the existing methods operate on the
node-level e.g., deleting a subset of the nodes from the graph to
minimize the infected population from a propagating virlrsthe
above social spam example, this means that we might haveito sh
down some legitimate user accounts. Can we avoid this by op-
erating on a finer granularity, that is, only deleting a fevgesl
between users to slow down the social spam spreading? For the
NetGelproblem, things are even more challenging because of its
high intrinsic time complexity. Let. be the number of the nodes
in the graph. There are almost non-existing edges since many
real graphs are very sparse. In other words, even if we onht wa
to add one single new edge into the graph, the solution sgace i
O(n?). This complexity ‘explodes’ if we aim to add multiple new
edges collectively, where the solution space becoaxgsnential
To date, there does not exisiy scalable solution for théletGel
problem.

The overarching contribution of this paper is the formwalatand
theoretical study of the dissemination management via edgep-



ulation: how to place a set of eddée achieve the desired outcome.
The main contributions of the paper can be summarized amfsil

e Algorithms. We propose effective and scalable algorithms
to optimize the leading eigenvalue, the key graph parame-
ter that controls the information dissemination proce$ses
both NetMeltandNetGe] respectively;

Proofs and Analysisie show theiccuracyand thecomplex-
ity of our methods; th@ardneswof the problem, anéquiva-
lencebetween the different strategies;

Experimental Evaluation®ur evaluations on real large graphs
show that our methods are both effective and scalable (see
Fig. 1 as an example).
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Figure 1: Comparison of maximizing the outcome of the in-
formation dissemination process. Larger is better. The pre
posed method (red) leads to the largest number of ‘infected’
nodes (e.g., having more people in the social networks to apio
apiece of good idea, etc). Notice that all the alternative ntleods
are mixed with the result on the original graph (yellow), which
means that they fail to affect the outcome of the disseminain
process. See Section 6 for detailed experimental setting.

The rest of the paper is organized as follows. We introdut¢a-no
tion and formally define th&letGeland NetMeltproblems in Sec-
tion 2. We present and analyze the proposed algorithms itnoBex
and Section 4, respectively. We provide experimental exalns
in Section 5. We review the related work in Section 6 and aatel
in Section 7.

2. PROBLEM DEFINITIONS

Table 1 lists the main symbols used throughout the paper. We
consider directed, irreducible unipartite graphs. Foeezfspre-
sentation, we discuss the unweighted graph scenario alththe
algorithms we propose can be naturally generalized to thghiex
case. We represent a graph by its adjacency matrix. Folfpthia
standard notation, we use bold upper-case for matrices @)g
bold lower-case for vectors (e.g), and calligraphic fonts for sets
(e.g.,Z). We denote the transpose with a prime (i.&/, is the
transpose ofA). Also, we represent the elements in a matrix us-
ing a convention similar to Matlab, e.gA (4, j) is the element at

LIn this paper, we use the terms ‘link’ and ‘edge’ interchaaizjg

Table 1: Symbols
Symbol | Definition and Description |

A B, ... | matrices (bold upper case)

A(i,j) | the element at thé" row and thej*"
column of A

A(i,:) thei*" row of matrix A

A(:,9) the j*" column of matrixA

A’ transpose of matriA

a,b,... | vectors

Z,J,... | sets(calligraphic)

A the largest (in module) eigenvalue Af

u,v then x 1 left eigenvector and right
eigenvector associated with

n the number of the nodes in the graph

m the number of the edges in the graph

k the budget (i.e., the number of deleted|or
added edges)

-th

J

thest" row and;*"

column of A, etc.

When we discuss the relationship between the two diffetesies
gies (node deletion vs. edge deletion) for tetMeltproblem, it
is helpful to introduce the concept of line graph, where tbdes
represent the edges in the original graph. Formally, eage éd
the original graphA becomes a node in the line grapiiA); and
there is an edge from one node to the other in the line grapteif t
target of the former edge is the same as the source of thedalye
in the original graphA.. It is formally defined as follows:

column of the matrixA, andA(:, j) is the

DEfFINITION1 (LINE GRAPH). Given a directed grapm,
its directed line graphZ(A) is a graph such that each node of
L(A) represents an edge &, and there is an edge from a nodge
to ez in L(A) iff for the corresponding edges: , j1) and (iz2, j2)
in A, jl = 49.

With the notation of the line graphb(A ), we have two equivalent
ways to represent an edge. legt(e, = 1, ..., m) be the index of
the nodes (i.e., the edges i) in the line graph. We can also
represent the edge. by the pair of its source and target nodes in
the original graphA: (i, j), i.e., the edge, starts with the node
i, and ends at nodg..

In order to design an effective strategy to optimize the lgrap
structure to affect the outcome of an information dissetiongoro-
cess, we need to answer the following three questions.(K@y
graph parameters/metric&)/hat are key graph metrics/parameters
that determine/control the dissemination process?G2aph oper-
ations)What types of graph operations (e.g., deleting nodes/edges
adding edges, etc) are we allowed to change the graph se&Q@ctu
(3) (Affecting algorithms)ror a given graph operation, how can we
design effective, scalable algorithms to optimize theesponding
key graph parameters?

For information dissemination on real graphs, a major figdéti,
33]is that, for a large family of dissemination processis Jargest
(in module) eigenvalug of the adjacency matriA or an appropri-
ately defined system matrix is tloaly graph parameter that deter-
mines the tipping point of the dissemination process, whgther
or not the dissemination will become an epidemic (see Se@&io
for a review of related work). In principle, this gives a aleaiid-
ance on the algorithmic side, that & ideal, optimal strategy to
affect the outcome of the information dissemination presésuld



change the graph structure so that the leading eigenvaligemin-
imized or maximized

3.2 Proposedk-EpceDeLeTion Algorithm
The key to solving Prob. INetMel) is to quantify the impact of

Based on this observation, how we can transform the original deleting a set of edges in terms of the leading eigenvalu&he

problem of affecting the dissemination process to efgenvalue
optimization problem, that is,
(1) minimize the leading eigenvaluefor NetMelt

(2) maximize the leading eigenvaluefor NetGel

In this paper, we focus on operating on #mdge-leveto design
affecting algorithms. With the above notation, our proldezan be
formally defined as the following two sub-problems:

PrRoBLEM 1. NetMdt (Edge Deletion)
Given: Alargen x n graph A and an integer (budge®);

Output: A set ofk edges fromA whose deletion fronA creates
the largest decrease of the leading eigenvalud of

PROBLEM 2. NetGel (Edge Addition)
Given: Alargen x n graph A and an integer (budge®);

Find: A set ofk non-edges oA whose addition taA creates the
largest increase of the leading eigenvalueAof

As we will show soon, both problems are combinatorial.

3. PROPOSED ALGORITHM FOR  NetMelt

In this section, we address tietMeltproblem (Prob. 1), that
is, to deletek edges from the original grapA so that its leading

naive way is to recompute the leading eigenvaluafter deleting
the corresponding set of edges - the smaller the new eigen\hle
better the subset of the edges. But it is computationallgasible
for large graphs since it tak&3(m) time for each of the{’}j) pos-
sible sets, as in general, the impact for a given set of these(lg
terms of decreasing the leading eigenvaN)ds not equal to the
summation of the impact of deleting each individual edge.
Letu andv be the leading left eigenvector and right eigenvector
of the graphA, respectively. Intuitively, the left eigen-scotg)
and the right eigen-score(j) (¢, 7 = 1,...,n) provide some im-
portance measure for the corresponding nadasd j. The core
idea of the proposed KHEGEDELETION algorithm is to quantify
the impact of each edge by the corresponding left and rigferei
scoresindependentlystep 9) . Our upcoming analysis in the next
subsection shows that this strategy (1) leads to a good xipmae
tion of the actual impact wrt decreasing the leading eigleleyand
(2) naturally de-couples the dependence among the diffeckges.
As a result, we can avoid the combinatorial enumeration ab Pt
by picking the topk edges with the highest individual impact scores
(step 9).

Note that steps 2-7 in Alg. 1 are to ensure that all the eigen-

scores (i.e.n(i),v(j)(i,j = 1,...,n)) are non-negative. Accord-
ing to the Perron-Frobenius theorem [10], such eigenveci@nd
v always exist.

eigenvalue) will decrease as much as possible. We first study Algorithm 1 K-EDGEDELETION

the relationship between two different strategies (eddetida vs.
node deletion), and then present our algorithm, followedHsy

Input: the adjacency matriA and the budget
Output: & edges

analysis of its effectiveness as well as efficiency. 1: compute the leading eigenvalueof A; let u andv be the
. . corresponding left and right eigenvectors, respectively;

3.1 Edge Deletion vs. Node Deletion o if minizl nS(i) < Othegn J P Y
Roughly speaking, in thBletMeltProblem (Edge Deletion), we 3: assignu + —u

want to find a set of ‘important’ edges from the graph to delete. 4: end if

With the notation of the line graph(A), intuitively, such ‘impor- 5: if min=1,...»v(¢) < 0then

tant’ edges inA might become ‘important’ nodes in the line graph ~ 6:  assignv « —v

L(A). In this section, we briefly present the relationship betwee  7: end if

these two strategies (node deletion vs. edge deletion). 8: for each edge, : (iz,jz) €z = 1, Mz, jo = 1,..,n

Our main result is summarized in Lemma 1, which says that the do
eigenvalues of the original graph are also the eigenvalues of its ~ 9:  scorde,) = u(i,)v(jz);
line graphL(A). 10: end for

LEMMA 1. Line Graph Spectrum. Let A be an eigenvalue of 11: return topk edges with the highest scére)

the graphA.. ThenA is also the eigenvalue of the line grapliA).

PROOF. Omitted for brevity. |

By Lemma 1, it seems that edge deletion (Prob. 1) can be trans-
formed to the node deletion problem on the line graph — that is
select a subset df nodes from the line graph(A) whose dele-
tion creates the largest decrease in terms of the leadiegbie
of L(A). However, by the following lemma, the node deletion
problem itself is still a challenging task.

3.3 Proofs and Analysis

Here, we analyze the accuracy and the efficiency of the pempos
K-EDGEDELETION algorithm.

The accuracy of the proposed KBEEDELETION is summa-
rized in Lemma 3. According to Lemma 3, the first-order matrix
perturbation theory, together with the fact that many reabbs
have large eigen-gap, provides a good approximation tapeadt
of a set of edges in terms of decreasing the leading eigesvalu
What is more important, with such an approximation, the ichpé
the different edges are now de-coupled from each other.eTorey,
we can avoid the combinatorial enumeration of Prob. 1 by Eimp

PrROOF. The proof can be done by the reduction from the inde- returning the togk edges with the highest individual impact scores
pendent node set problem, which is known to be NP-Compl&je [1  (step 9 in Alg. 1).

The detailed proof is omitted for brevity. a Notice that by Lemma 3, there is @i(k) gap between the ap-

That said, we seek an effective algorithm that directly sslthe proximate and the actual impact of a set of edges in terms-of de
NetMeltproblem next. creasing the leading eigenvalue. Our experimental evahsshow

LEMMA 2. Hardness of Node Deletionlt is NP-Complete to
find a set of nodes from a graptA\ , whose deletion will create the
largest decrease of the largest eigenvalue of the grAph



that the correlation between the approximate and the aictyeict
is very high (See Section 6 for details), indicating thatéeed pro-
vides a good approximation for the actual decrease of ttdiriga
eigenvalue.

LEMMA 3. Let) be the (exact) first eigenvalue Af, whereA
is the perturbed version A by removing all of its edges indexed
by the setS. Letd = A — A2 be the eigen-gap of the matrix
where )\, is the second eigenvalue &f, andc = 1/(u’v). If A
is the simple first eigenvalue @, andé > 2v/k, theni — A=

€2 e, esW(ic) V(i) + O(K).

PROOF. Let A\;(i = 1,...,n) be the ordered eigenvalues Af
(i.e, [N = [A1] > [A2|... > |An]). LetAi(i = 1,...,n) be the cor-
responding eigenvalues &f. Notice that we omltted the subscripts
for the leading eigenvalues (i.8.y = A, and\; = \).

LetA = A + E. We have||E||ro = V.

According to the first-order matrix perturbation theoryl@s [38]),
we have

/~\1 )\1+uEV

)\1—02

ez €S

+O(|1E]?)

v(jz) + O(k) (Y

Next, we will show thaf\; is indeed the leading eigenvalueAf
To this end, again by the matrix perturbation theory (p.288)]
we have

M
A

—|E|l2 > A1 — | E[lFro > M1 — VE
Ai +|Ell2 < Xi + |1E|lrro < Xi + \/E(z >2) (2

Sinced = A1 — X2 > 2Vk, we havel; > Xi(i = 2,...,n). In
other words, we have that, = ) is the leading elgenvalue .

>
<

Therefore,
=c¢ > u(iz)v(jz) + O(k) 3)
e €S
which completes the proof. O

The efficiency of the proposed KHE&EEDELETION is summa-
rized in the following lemma, which says that with a fixed betlg
k, K-EDGEDELETION s linear wrt the size of the graph for both
time and space cost.

LEMMA 4. Efficiency of K-EDGEDELETION . The time cost
of Alg. 1isO(mk + n). The space cost of Alg. 1L@3(n+ m + k).

PROOF. Using the power method, step 1 takeém) time. Steps
2-7 takeO(n) time. Steps 8-10 také&(m) time. Step 11 takes
O(mk) time. Therefore, the overall time complexity of Alg. 1 is
O(mk + n), which completes the proof of the time cost.

We needO(m) to store the original grapt\. It takesO(n)

and O(1) to store the eigenvectors and eigenvalue, respectively.

We need additionalD(m) to store the scores (Step 9) for all the
edges. Finally, it take® (k) for the selected: edges. Therefore,
the overall space complexity of Alg. 1 8(m + n + k), which
completes the proof of the space cost. a

4. PROPOSED ALGORITHM FOR NetGel

In this Section, we address thetGelproblem (Prob. 2), where
we want toadda set of new links into the graph so that its leading
eigenvalue\ will increase as much as possible. We first present
the proposed K-BGEADDITION algorithm, and then analyze its
accuracy as well as efficiency.

4.1 Proposedk-EpceAppition Algorithm

Let 7 be a set of non-existing edges M, that is, for each
ex : (iz,jz) € T, we haveA(i,,j.) = 0. Let \ be the lead-
ing eigenvalue of the new adjacency matAxby introducing the
new edges indexed by the $Et By the similar procedure as in the
proof of Lemma 3, we can show that the impact of the new set of
edges7 in terms of increasing the leading eigenvaﬁje A can be
approximated as

A=Am Y uia)vi)

ex €T

4)

Therefore, it seems that we could use a similar procedure as
K-EDGEDELETION to solve theNetGelproblem (referred to as
‘Naive-Add): for each non-existing edge, : (i., j.), calculate
its score as scofe,) = u(i,)v(j.); and pick topk non-existing
edges with the highest scores.

However, many real graphs are very sparse, he.<< n>.
Therefore, we havé®)(n? — m) ~ O(n?) possible non-existing
edges. In other word$\aive-Addrequiresquasi-quadratictime
wrt the number of the nodes) in the graph, which does not scale
to large graphs.

To address this issue, we propose an efficient algorithmgtwhi
is summarized in Alg 2. The core idea of KBEEADDITION is
to prune a large portion of the non-existing edge pairs based
their left and right eigen-scores. As in Alg. 1, we take thmea
procedure to make sure that the left and right eigenveciars)(
are non-negative. We omit these steps in Alg 2 for brevity.

Algorithm 2 K-EDGEADDITION

Input: the adjacency matriA and the budget
Output: & non-existing edges
1: compute the left) and right §) eigenvectors ofA that cor-
respond to the leading eigenvalue ¢ > 0);
2: calculate the maximum in-degreé;{) and out-degreed(.,.)
of A, respectively;
3: find the subset ok + d;, nodes with the highest left eigen-
scoresu;. Index them byZ;
4: find the subset of + d,.+ nodes with the highest right eigen-
scoresv;. Index them by7;
: for each edge.. : (iz, jz) iz € Z,jo € T, A(lz,i;) = 0do
scorée;) = u(iz)v(jz). Index them byP;
. end for
. return topk non-existing edges with the highest scores among
P.

0~ o Ul

4.2 Proofs and Analysis

Here, we analyze the accuracy and efficiency of the proposed
K-EDGEADDITION.

The accuracy of the proposed KBEEADDITION is summa-
rized in Lemma 5, which says that KBEEADDITION selects the
same set of edges Amive-Add

LEMMA 5. Effectiveness of K-EDGEADDITION . Alg. 2 out-
puts the same set of non-existing edgebBlaise-Add

PrROOF. Omitted for brevity. O
The efficiency of the proposed KH&EADDITION is summa-
rized in the following lemma.

LEMMA 6. Efficiency of K-EDGEADDITION . The time cost
of Alg. 2 isO(m + nt + kt*). The space cost of Alg. 2 @(n +
m + t2), wheret = maxk, din, dout).



PROOF Using the power method, step 1 takesm) time. Step 2
takesO(m-+n) time. Steps 3-4 tak® (n(d;,+k)) andO(n(dout+
k)) time respectively, both of which can be written@ént). Steps
5-7 takeO((k + din)(k + dout)) = O(t?) time. Step 8 takes
O((k + din) (k + dout)k) = O(kt?). Therefore, the overall time
cost isO(m + nt + kt*), which completes the proof of the time
complexity.

We needO(m) to store the original grapi.. It takesO(n) to
store the eigenvectons andv. Step 2 takes addition&(n + 1)
space. Steps 3-4 take(di, + k) andO(d..: + k) space respec-
tively, both of which can be simplified a3(¢). Steps 5-7 take at
mostO((k + din)(k + dout)) = O(t*) space. Step 9 take3(k)
space. Therefore, the overall space cost (by omitting thedlem
terms) isO(m +nt + kt?), which completes the proof of the space
complexity. m|

5. EXPERIMENTAL EVALUATIONS

In this section, we provide empirical evaluations for thegused
K-EDGEDELETIONand K-EDGEADDITION algorithms. Our eval-
uations mainly focus on (1) the effectiveness and (2) theieffcy
of the proposed algorithms.

5.1 Experimental Setup

Data sets We used a popular set of real graphs for our ex-
periments - the Oregon AS (Autonomous System) router graphs
which are AS-level connectivity networks inferred from GQoe
route-viewé. These were collected once a week, for 9 consecu-

terms of decreasing the leading eigenvalua# the graph. Lemma 1
suggests that the ‘important’ edges on the original grApmight
become ‘important’ nodes on the line graphA). We follow this
intuition to design the following comparative strategi€s) ran-
domly selectk edges from the original grapA (referred to as
‘Rand’); (2) selectk edges with the highest degrees in the line
graphL(A) (referred to as ‘Line-Deg’); (3) selektedges with the
highest eigen-scores in the line graphA) (referred to as ‘Line-
Eig’); and (4) seleck edges with the highest PageRank scores in
the line graphL(A) (referred to as ‘Line-Page’). For ‘Rand’, we
run the experiments 100 times and report the average reSaoit.
‘Line-Deg’, we have two variants by using out-degree or @gcke.

In our evaluation, we found that these two variants give thelar
results. Therefore, we only report the results by out-degrer the
same reason, we only report the results by the right eigeresdor
‘Line-Eigs’. For ‘Line-Page’, there is an additional pareter of
the teleport probability. We run the experiments with thiéedént
teleport probabilities and report the best results.

For brevity, we only present the results Gmegon-A Oregon-B
and Oregon-Csince the results on the rest six graphs are similar.
From Fig. 2, it can be seen that our KBEEDELETION always
leads to the biggest decrease in terms of the leading eilyenveor
example, onOregon-Cgraph, the proposed K4EDELETION
decreases the leading eigenvalue3:§ with the budget: = 50,
which is almost double of the second best method (4. by
‘Line-Deg’). Therefore, we expect that KEEGEDELETION would
affect the outcome of the dissemination processes beter ttie
alternative choices, e.g., having less number of infectetka in

tive weeks. Table 2 summarizes the nine graphs we used in oUrhe graph, etc. We validate this next.

evaluations.

Evaluation criteria As mentioned before, the leading eigenvalue
) of the graph is the only graph parameter that determinespire e
demic threshold for a large family of information dissentioa
processes. Therefore, we report the change of the leadjjeg-ei
value for the effectiveness comparison - for bbtMeltandNet-
Gel problems. A larger change of the leading eigenvalue is hette
which suggests that we can affect the outcome of the dissdimim
process more. In addition, we also run virus propagatiornusim
tions to compare how different methods affect the actuat@mue
of the propagation. For the computational cost and scitiahite
report the wall-clock time.

Machine configurations All the experiments ran on the same
machine with four 2.4GHz AMD CPUs and 48GB memory, run-
ning Linux (2.6 kernel).

5.2 Effectiveness 0k-EpGeEDELETION

Approximation Quality For both K-EDGEDELETION and K-
EDGEADDITION, we want to approximate the actual change of
the leading eigenvalue by the first order matrix perturlvatice-
ory. This is theonly place we introduce the approximation. By
Lemma 3, it says that the quality of such an approximation de-
pends on both the budgétas well as the eigengap of the orig-
inal graph, with anO(k) gap. Here, let us experimentally eval-
uate how good this approximation is on real graphs. We com-
pute the linear correlation coefficient between the actudl @p-
proximate leading eigenvalue after we randomly rembvé& =
10, 50, 100, 500, 1000) edges. The results are shown in table 3. It
can be seen that the approximation is very good - in all theszas
the linear correlation coefficient is greater taf2, and often it is
very close tol.

The Impact of Decreasing the Leading Eigenvaludere, we
evaluate the effectiveness of the proposed BGEDELETION in

2http://topol ogy. eecs. uni ch. edu/ dat a. ht n

Affecting Virus PropagationNext, we evaluate the effectiveness
of the proposed K-BGEDELETION in terms of minimizing the
outcome of the information dissemination processes. ®ehd,
we simulate the virus propagation for the SIS model (susidlept
infective-susceptible) on the graph [41]. For each methedjelete
k = 200 edges from the original graph. Let= \b/d be the nor-
malized virus strength (biggemrmeans stronger virus), wheb@nd
d are the infection rate and death rate, respectively. Thétsesre
presented in Fig. 3, which is averaged over 1,000 runs. Itbean
seen that the proposed KBEEDELETION is always the best - its
curve is always the lowest which means that we always, asadksi
have the least number of infected nodes in the graph witlsthas-
egy. In Fig. 3, ‘Original’ (the yellow curve) means that wensilate
the virus propagation on theriginal graph without deleting any
edges. Notice that when the virus becomes stronger (Figj), 2(b
the curves except the proposed method mix with ‘Originahijch
means that they all fail to affect the virus propagation is ttase.

In contrast, our proposed method (the red curve) can sgitlif
cantly reduce the number of infected nodes.

Node Deletion vs. Edge DeletioRinally, in some applications,
e.g., to stop malware propagation on the computer netwbiks,
node deletion (e.g., shutting down some machines) and eslge d
tion (e.g., blocking some links between machines) are ligasin
this case, we want to know which strategy (node deletion geed
deletion) is more effective in affecting the outcome of spobpa-
gation process. To this end, we use an effective node imrauniz
tion algorithm [39] to deleték = 1,10 nodes respectively (re-
ferred to as ‘Node-Del’). For each, we then use our proposed
K-EDGEDELETION to delete the same amount of edges from the
original graph (referred to as ‘Edge-Del’). We compare tlke d
crease of the leading eigenvalues of the two methods. Thuises
are summarized in Fig. 4. It can be seen that ‘Edge-Del’ adway
leads to a bigger decrease of the leading eigenvalue - whigh s
gests that by operating on the edge level, we can design a more



Dataset n m
Oregon-A 633 2,172
Oregon-B 1,503 5,620
Oregon-C 2,504 9,446
Oregon-D 2,854 9,864
Oregon-E 3,995 15,420
Oregon-F 5,296 20,194
Oregon-G 7,352 31,330
Oregon-H 10,860 46,818
Oregon-| 13,947 61,168

Table 2: Dataset summary.
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Delta Lambda
Delta Lambda

Dataset k=10 k=50 k=100 k=500 k= 1000
Oregon-A  0.999 0.997 0.995 0.973 0.924
Oregon-B 0.999 0.999 0.998 0.993 0.988
Oregon-C  1.000 0.999 0.999 0.996 0.991
Oregon-D  0.999 0.999 0.999 0.994 0.988
Oregon-E  1.000 0.999 0.999 0.998 0.995
Oregon-F  1.000 0.999 0.999 0.998 0.997
Oregon-G  1.000 0.999 0.999 0.999 0.998
Oregon-H  1.000 1.000 0.999 0.999 0.999
Oregon-I  1.000 1.000 0.999 0.999 0.999

Table 3: Evaluations on the approx. quality. Larger is bette.
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Figure 2: The decrease of the leading eigenvalue vs. the buelgc. Larger is better. The proposed K-EDGEDELETION always leads

to the biggest decrease of the leading eigenvalue.

effective algorithm with the same budget to affect the ontecf
the information dissemination process. The results arsistamt
with the intuition - not all the edges adjacent to the ‘impoit
nodes, which the node immunization algorithm aims to dekate
also ‘important’ (e.g., many edges adjacent to an ‘impditaode
might link to/from some degree-1 nodes). In other words,eedg
deletion enables us to optimize the underlying graph siraain a
finer granularity by picking each individual edge one by one.

5.3 Effectiveness ok-EpceAbbiTion

To our best knowledge, there are no existing methods tokadd
new links into an existing graph in order to increase its ilegd
eigenvalue. LefA be the complementary graph &f, which has
the same node set @, andA(4,5) = 1 iff A(i,j) = 0. With
the notation of the complementary graph, we use the follgwin
intuition to design the comparative methods: to seleGmpor-
tant’ edges from theomplementary grapiA and add them into
the original graphA.. More specifically, we compare the proposed
K-EDGEADDITION with the following strategies: (1) randomly se-
lect k edges (referred to as ‘Rand’); (2) seldcedges with the
highest out-degrees in the line graph of the complementaphy
A (referred to as ‘CompDeg’); (3) selektedges with the high-
est right eigen-scores in the line graph of the complemgmfizaph
A (referred to as ‘CompEigs’); (4) selektedges with the high-
est PageRank scores in the line graph of the complementaphgr
A (referred to as ‘CompPage’); and (5) seleatdges by running
K-EDGEDELETIONIN the complementary grapA (referred to as
‘CompDelete’). Again, for ‘Rand’, we run the experiments010
times and report the average result. We only report the tsestil
‘CompDeg’ by out-degree and those of ‘CompEig’ by right eige
scores, respectively, since the other variants give thigsgiperfor-

mance. For ‘CompPage’, we run the experiments with therdiffe
teleport probabilities and report the best results.

The Impact of Increasing the Leading Eigenval\ée first eval-
uate the effectiveness of the proposed BKEEADDITION in terms
of increasingthe leading eigenvalue of the graph. For brevity,
we only present the results @regon-A Oregon-BandOregon-C
since the results on the rest of the graphs are similar. FrigbF
it can be seen that the proposed KWE&:ADDITION always leads
to the biggest increase in terms of the leading eigenvalutheof
graph. Notice that for all the comparative methods, theyatseh
like ‘Rand’ (blue curve), especially when the budges small.

Affecting Virus Propagation We also evaluated the effective-
ness of the proposed K&&EADDITION in terms ofmaximizing
the outcome of the information dissemination process. iEoehd,
again, we simulate the virus propagation for the SIS modehen
graph. For each method, we add= 200 new edges into the
graph. Again, let = A\b/d be the normalized virus strength, with
bigger s being stronger virus. Here, our goal is ittcreasethe
number of ‘infected’ nodes (e.g., having more people in the s
cial networks to adopt a piece of good idea, etc) by intrauyie
set of new links into the graph. The result is presented in &ig
which is averaged over 1,000 runs. It can be seen that the pro-
posed K-EDGEADDITION is always the best - its curve is always
the highest which means that we always have the largest mohbe
‘infected’ nodes in the graph with this strategy. Noticettwhen
the strength of the virus is weak (Fig. 6(a)), all the curvesept
the proposed method mix with or are very close to ‘Origingél{
low curve), which means that they have little impact to babst
outcome of the propagation in this case. In contrast, oupqeed
method (the red curve) can still significantly increase theber
of ‘infected’ nodes. Therefore, we conclude that our prepok-
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EDGEADDITION is much more effective to guild the outcome of
the dissemination process.

5.4 Scalability

We use the subsets of the largest dataGregon-1to evaluate
the scalability of the proposed algorithms. The results @ee
sented in Fig. 7. We can see that the proposeddGEDELETION
and K-EDGEADDITION scale almost near-linearly wrt,, which
means that they are suitable for large graphs. Notice thdidth
cases, we also observe a slight super-linear trend. Thigagal
the following two reasons: (1) for both K&&sEDELETIONand K-
EDGEADDITION, we use the power method to compute the leading
eigenvalue and the corresponding eigenvectors. Whercreases,
the actually iteration number in the power method also tends-
crease; (2) for K-BGEADDITION whenm increases, the max-
imum degree (malin, dout)) also increases even though we fix
the number of the nodes).

6. RELATED WORK

In this section, we review the related work, which can be-cate
gorized into three parts: information dissemination, etffeg algo-
rithms and node/edge importance measure.

Information Dissemination. Many research works in virus prop-
agation have been devoted to studying the so-called epidénaish-
old, that is, to determine the condition under which an epide
will break out. While earlier works [13] focus on some specifi
types of graph structure (e.g., random graphs, power-laplgy,
etc), Wang et al. [41] and its follow-up paper by Ganesh efgal.
found that, for the flu-like SIS model, the epidemic threshiar
anyarbitrary, real graph is determined by the leading eigenvalue of
the adjacency matrix of the graph. Prakash et. al. [33] &urtlis-
covered that the leading eigenvalue (and a model-dependent
stant) is the only parameter that determines the epidemrgstiold
for all virus propagation models (more than 25 models, including
H.L.V.) in the standard literature. In this work, we aim t&¢aone
step further, i.e., how to optimize (minimize or maximizeg tead-
ing eigenvalue of the graph by deleting or adding a set oflink

There are also many research interest in studying othes type
information dissemination processes on large graphsjdivod (a)
information cascades [1, 9], (b) blog propagations [24,211 35],
and (c) viral marketing and product penetration [18, 23].

Affecting Algorithms. Hayashi et al. [12] derived the extinc-
tion conditions under random and targeted immunizationttier
SHIR model (Susceptible, Hidden, Infectious, Recover&dig et
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al. [39] proposed an effective node immunization strategytfie
SIS model by approximately minimizing the leading eigeneal
Briesemeister et al. [3] studied the defending policy in povaw
graphs. Prakash et. al. [34, 40] proposed effective alyostto
perform node immunization on time-varying graphs. Othgoal
rithms to affect the outcome of the information dissemiatin-

clude the influence maximization [18, 6, 5], finding effestdn

social networks [22], etc. Notice that all these works foonop-
erating on the node level (i.e., delete or inoculate a sebest’

nodes) to affect the outcome of the dissemination. In cenhtime
study the equally important, but much less studied affgctilgo-
rithms by operating on the edge level.

There exist somempirical evaluation®n edge removal strate-
gies for slightly different purposes, such as, slowing ddhein-
fluenza spreading [26], minimizing the average infectiaobaibil-
ity [36], evaluating and comparing the attack vulnerapilit4],
etc. The closest related work to our KeEEDELETION algorithm
is [2], which proposed a convex optimization based apprdach
approximately minimize the leading eigenvalue of the grajbdw-
ever, the method is based on semi-definite programming aesl do
not scale to large graphs. Moreover, for all these methads; i
mains unclear if they can be generalized to address the egem m
challengingNetGelproblem, where we want tadd new edges to
promote the information dissemination.

Measuring the Importance of Nodes and Edgesin the liter-
ature, there are a lot of node importance measurementsgdingl
betweenness centrality, both the one based on the shoatibsf7
and the one based on random walks [29, 16] PageRank [30], HB[S
and coreness score [28]. Our work is also related to the ledca
k-vital edges problem, which aims to delete a set of linkgtfithe
graphs to increase the shortest path length [25] or the weifyh
the minimum spanning tree of the remaining graph [37]. Kalvit
edge problem itself is known to be NP-Hard. Other remotely re
lated work includes graph augmentation [31, 4], graph s$ieas
tion [20], network inhibition [32] and network-interdicin [42, 15].
Both network inhibition and network interdiction are NP+da

7. CONCLUSION

In this paper, we study the problem of how to optimize the link
structure to affect the outcome of information dissemonaipro-
cesses. The main contributions of the paper are:

e Algorithms.We observe that for a large family of information
dissimilation processes, the problem boils down to thereige
value optimization problem. We propose an effective, scal-
able algorithm to optimize such a key graph parameter (i.e.,
the leading eigenvalue) that controls the informationeliss
ination process, for botNetMeltandNetGe] respectively;

e Proofs and AnalysisWe show theaccuracy(Lemma 3 and
Lemma 5) and theomplexityof our methods (Lemma 4 and
Lemma 6); thehardnessof the problem (Lemma 2), and
the equivalencébetween the different strategies (Lemma 1,
Lemma 7 and Lemma 8);

e Experimental Evaluation®ur evaluations on real large graphs
show that (a) compared with alternative choices to optimize
the link structure, our methods are much more effective-to af
fect the outcome of the dissemination process; (b) compared
with the node deletion strategy, our KBEEDELETION of-
fers a more effective way by operating on the edge level; and
(c) both K-EDGEDELETION and K-EDGEADDITION scale
to large graphs.
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APPENDIX

Higher-Order NetMelt. From Lemma 3, it can be seen that the
only place we introduce the approximation in Alg. 1 is to apr
mate the actual decrease of the leading eigenvalue by thefitsr
matrix perturbation theory. The readers might wonder if eve ftr-
ther improve the quality by using higher-order matrix pesation
theory, while maintaining the linear scalability of the alighm.

We explored second-order matrix perturbation theory to@pp
imate the actual decrease of the leading eigenvalue, amdi finat
(1) itgenerates very similar results as the proposeddGEDELETION
algorithm and (2) it requires 5-10x more wall-clock time.€eTiea-
son might be that for thEletMeltproblem, the first-order perturba-
tion already gives a very good approximation. Thereforgyrac-
tice, we recommend K-BEGEDELETION for simplicity.

Nonetheless, the new algorithm based on the second-order pe
turbation exhibits some interesting theoretic propertiesso helps
understand the relationship between edge deletion and delde

tion on the algorithmic level. We present it here for the ctetes
ness.

Letc = u}v,
approximat@ the impact of deleting a set of edgssn terms of the
leading eigenvalue as:

A=A~ Impac(S) = c( Y u(iz)v(j.)
e €S
1
o

u(iz)v(Jjy))
ex €S,ey €S, jr=1y

®)

Compared with the first-order perturbation (eq. (3)), weehan
additional penalized term in eq. (Sx(i»)v(jy) for any two adja-
cent edges, ande,. The intuition is to encourage the edges in the
setS to be far away (not adjacent) from each other.

By eq. (5), the impact of different edges in the §a6 no longer
independent with each other. At the first glance, this migintli-
cate the algorithm since now we need to optimize at the set,lev
that is, to find a set of edges thadllectively maximize eq. (5).
However, by the following lemma, the impact defined in eq. (5)
exhibits some nice diminishing return properties.

LEMMA 7. Second-Order Approximation Properties The
ImpactS) defined in eq(5) has the following properties:

(1) Impact®) = 0, where® is an empty set;
(2) ImpactS) is monotonically non-decreasing wrt the skt
(3) ImpactsS) is sub-modular wrt the sef.

PROOF. Omitted for brevity. |
Thanks to such diminishing return properties, it naturédlds

to the following greedy algorithm (K-BEGEDELETION++)to find

a near-optimalsubset of edges to delete from the original graph

A. And it can be shown that the overall time complexity of K-

EDGEDELETION++ remains linear wrt the size of the graph.

Algorithm 3 K-EDGEDELETION++
Input: the adjacency matriA and the budget
Output: k edges indexed by sé&t
1: compute the first eigen-valueof A ; compute the correspond-
ing left and right eigenvectora andv (u,v > 0), respec-
tively;

2: initialize the setS to be empty;

3: scorées) = u(iz)v(je) (€z : (iz, jz), €2 = 1,...,m);
4: for ko =1,...,k do

5. findey = argmax sScordez);

6. addthe new edgﬁ) ém]o into S;

7. for each edgey, : (iy,jy) S.t.jy = 0 dO

8: scoréey) < scoréey) — 1/(2A\)u(iy)v(jo);
9:  endfor

10: for each edge, : (iy,jy) S-t.iy, = jo dO

11: scorée, ) < scordey,) — 1/(2\)u(io)v(jy);
12:  end for

13: end for

An interesting property of Alg. 3 is that it builds the equefmce
between edge deletion and node deletion on the algorithené:|

LEMMA 8. Equivalence of Alg. 3 to Node Immunization Let
S be the set of edges by running Alg. 3 on grakh7 be the set
of edges by running the node immunization algorithm [39] loa t
line graphL(A); and |S| = |7 |. We haveS = 7.

PROOF. Omitted for brevity. m|

3This formulas is similar as the one in [27]



