
Gelling, and Melting, Large Graphs by Edge Manipulation

Hanghang Tong
IBM T.J. Watson Research

Hawthorne, NY, USA
htong@us.ibm.com

B. Aditya Prakash
Virginia Tech.

Blacksburg, VA, USA
badityaprakash@gmail.com

Tina Eliassi-Rad
Rutgers University

Piscataway, NJ, USA
eliassi@cs.rutgers.edu

Michalis Faloutsos
Univ. of California Riverside

Riverside, CA, USA
michalis@cs.ucr.edu

Christos Faloutsos
Carnegie Mellon University

Pittsburgh, PA, USA
christos@cs.cmu.edu

ABSTRACT
Controlling the dissemination of an entity (e.g., meme, virus, etc)
on a large graph is an interesting problem in many disciplines. Ex-
amples include epidemiology, computer security, marketing, etc.
So far, previous studies have mostly focused on removing or inoc-
ulatingnodesto achieve the desired outcome.

We shift the problem to the level of edges and ask: which edges
should we add or delete in order to speed-up or contain a dissem-
ination? First, we propose effective and scalable algorithms to
solve these dissemination problems. Second, we conduct a theo-
retical study of the two problems and our methods, includingthe
hardnessof the problem, theaccuracyandcomplexityof our meth-
ods, and theequivalencebetween the different strategies and prob-
lems. Third and lastly, we conduct experiments on real topologies
of varying sizes to demonstrate the effectiveness and scalability of
our approaches.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications – Data
Mining

General Terms
Algorithm, experimentation

Keywords
edge manipulation, immunization, scalability, graph mining

1. INTRODUCTION
Managing the dissemination of an entity (e.g., meme, virus,etc)

on a large graph is a challenging problem with applications in vari-
ous settings and disciplines. In its generality, the propagating entity
can be many different things, such as a meme, a virus, an idea,a
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new product, etc. The propagation is affected by the topology and
the properties of the entity: its ‘virality’, its speed, its‘stickiness’
or the duration of the infection of a node. Our focus here is the
topology, since we assume that we cannot alter the properties of
the propagating entity.

The problem we address is how we can affect the propagation by
modifying theedgesof the graph. In fact, we address two different
problems. First, in theNetMelt problem, we want to contain the
dissemination by removing a given number of edges. For example,
we can consider the distribution of malware over a social network.
Deleting user accounts may not be desirable, but deleting edges
(‘unfriending’ people) may be more acceptable. More specifically,
we want to delete a set ofk edges from the graph to minimize
the infected population. Second, in theNetGel problem, we want
to enable the dissemination by adding a given number of edges.
Specifically, we want to add a set ofk new edges into the graph to
maximize the population that adopt the information. For example,
we could extend the social network scenario using the recent‘arab
spring’ which often used Facebook and Twitter for coordinating
events: we may want to maximize the spread of a potential piece
of information. Note that an additional, key requirement for both
problems is computational efficiency: the solution should scale to
large graphs.

Both problems are challenging for slightly different reasons. For
theNetMeltproblem, most of the existing methods operate on the
node-level, e.g., deleting a subset of the nodes from the graph to
minimize the infected population from a propagating virus.In the
above social spam example, this means that we might have to shut-
down some legitimate user accounts. Can we avoid this by op-
erating on a finer granularity, that is, only deleting a few edges
between users to slow down the social spam spreading? For the
NetGelproblem, things are even more challenging because of its
high intrinsic time complexity. Letn be the number of the nodes
in the graph. There are almostn2 non-existing edges since many
real graphs are very sparse. In other words, even if we only want
to add one single new edge into the graph, the solution space is
O(n2). This complexity ‘explodes’ if we aim to add multiple new
edges collectively, where the solution space becomesexponential.
To date, there does not existany scalable solution for theNetGel
problem.

The overarching contribution of this paper is the formulation and
theoretical study of the dissemination management via edgemanip-



ulation: how to place a set of edges1 to achieve the desired outcome.
The main contributions of the paper can be summarized as follows:

• Algorithms. We propose effective and scalable algorithms
to optimize the leading eigenvalue, the key graph parame-
ter that controls the information dissemination processesfor
bothNetMeltandNetGel, respectively;

• Proofs and Analysis.We show theaccuracyand thecomplex-
ity of our methods; thehardnessof the problem, andequiva-
lencebetween the different strategies;

• Experimental Evaluations.Our evaluations on real large graphs
show that our methods are both effective and scalable (see
Fig. 1 as an example).
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Figure 1: Comparison of maximizing the outcome of the in-
formation dissemination process. Larger is better. The pro-
posed method (red) leads to the largest number of ‘infected’
nodes (e.g., having more people in the social networks to adopt
a piece of good idea, etc). Notice that all the alternative methods
are mixed with the result on the original graph (yellow), which
means that they fail to affect the outcome of the dissemination
process. See Section 6 for detailed experimental setting.

The rest of the paper is organized as follows. We introduce nota-
tion and formally define theNetGelandNetMeltproblems in Sec-
tion 2. We present and analyze the proposed algorithms in Section 3
and Section 4, respectively. We provide experimental evaluations
in Section 5. We review the related work in Section 6 and conclude
in Section 7.

2. PROBLEM DEFINITIONS
Table 1 lists the main symbols used throughout the paper. We

consider directed, irreducible unipartite graphs. For ease of pre-
sentation, we discuss the unweighted graph scenario although the
algorithms we propose can be naturally generalized to the weighted
case. We represent a graph by its adjacency matrix. Following the
standard notation, we use bold upper-case for matrices (e.g., A),
bold lower-case for vectors (e.g.,a), and calligraphic fonts for sets
(e.g.,I). We denote the transpose with a prime (i.e.,A

′ is the
transpose ofA). Also, we represent the elements in a matrix us-
ing a convention similar to Matlab, e.g.,A(i, j) is the element at

1In this paper, we use the terms ‘link’ and ‘edge’ interchangeably.

Table 1: Symbols
Symbol Definition and Description

A,B, . . . matrices (bold upper case)
A(i, j) the element at theith row and thejth

column ofA
A(i, :) theith row of matrixA

A(:, j) thejth column of matrixA
A

′ transpose of matrixA
a, b, . . . vectors
I,J , . . . sets (calligraphic)
λ the largest (in module) eigenvalue ofA

u, v then× 1 left eigenvector and right
eigenvector associated withλ.

n the number of the nodes in the graph
m the number of the edges in the graph
k the budget (i.e., the number of deleted or

added edges)

theith row andjth column of the matrixA, andA(:, j) is thejth

column ofA, etc.
When we discuss the relationship between the two different strate-

gies (node deletion vs. edge deletion) for theNetMeltproblem, it
is helpful to introduce the concept of line graph, where the nodes
represent the edges in the original graph. Formally, each edge in
the original graphA becomes a node in the line graphL(A); and
there is an edge from one node to the other in the line graph if the
target of the former edge is the same as the source of the latter edge
in the original graphA. It is formally defined as follows:

DEFINITION 1 (L INE GRAPH ). Given a directed graphA,
its directed line graphL(A) is a graph such that each node of
L(A) represents an edge ofA, and there is an edge from a nodee1

to e2 in L(A) iff for the corresponding edges〈i1, j1〉 and 〈i2, j2〉
in A, j1 = i2.

With the notation of the line graphL(A), we have two equivalent
ways to represent an edge. Letex (ex = 1, ..., m) be the index of
the nodes (i.e., the edges inA) in the line graph. We can also
represent the edgeex by the pair of its source and target nodes in
the original graphA: 〈ix, jx〉, i.e., the edgeex starts with the node
ix and ends at nodejx.

In order to design an effective strategy to optimize the graph
structure to affect the outcome of an information dissemination pro-
cess, we need to answer the following three questions. (1)(Key
graph parameters/metrics)What are key graph metrics/parameters
that determine/control the dissemination process? (2)(Graph oper-
ations)What types of graph operations (e.g., deleting nodes/edges,
adding edges, etc) are we allowed to change the graph structure?
(3) (Affecting algorithms)For a given graph operation, how can we
design effective, scalable algorithms to optimize the corresponding
key graph parameters?

For information dissemination on real graphs, a major finding [41,
33] is that, for a large family of dissemination processes, the largest
(in module) eigenvalueλ of the adjacency matrixA or an appropri-
ately defined system matrix is theonly graph parameter that deter-
mines the tipping point of the dissemination process, i.e.,whether
or not the dissemination will become an epidemic (see Section 6
for a review of related work). In principle, this gives a clear guid-
ance on the algorithmic side, that is,an ideal, optimal strategy to
affect the outcome of the information dissemination process should



change the graph structure so that the leading eigenvalueλ is min-
imized or maximized.

Based on this observation, now we can transform the original
problem of affecting the dissemination process to theeigenvalue
optimization problem, that is,

(1) minimize the leading eigenvalueλ for NetMelt;

(2) maximize the leading eigenvalueλ for NetGel.

In this paper, we focus on operating on theedge-levelto design
affecting algorithms. With the above notation, our problems can be
formally defined as the following two sub-problems:

PROBLEM 1. NetMelt (Edge Deletion)
Given: A largen× n graphA and an integer (budget)k;

Output: A set ofk edges fromA whose deletion fromA creates
the largest decrease of the leading eigenvalue ofA.

PROBLEM 2. NetGel (Edge Addition)
Given: A largen× n graphA and an integer (budget)k;

Find: A set ofk non-edges ofA whose addition toA creates the
largest increase of the leading eigenvalue ofA.

As we will show soon, both problems are combinatorial.

3. PROPOSED ALGORITHM FOR NetMelt

In this section, we address theNetMeltproblem (Prob. 1), that
is, to deletek edges from the original graphA so that its leading
eigenvalueλ will decrease as much as possible. We first study
the relationship between two different strategies (edge deletion vs.
node deletion), and then present our algorithm, followed bythe
analysis of its effectiveness as well as efficiency.

3.1 Edge Deletion vs. Node Deletion
Roughly speaking, in theNetMeltProblem (Edge Deletion), we

want to find a set ofk ‘important’ edges from the graphA to delete.
With the notation of the line graphL(A), intuitively, such ‘impor-
tant’ edges inA might become ‘important’ nodes in the line graph
L(A). In this section, we briefly present the relationship between
these two strategies (node deletion vs. edge deletion).

Our main result is summarized in Lemma 1, which says that the
eigenvalues of the original graphA are also the eigenvalues of its
line graphL(A).

LEMMA 1. Line Graph Spectrum. Let λ be an eigenvalue of
the graphA. Thenλ is also the eigenvalue of the line graphL(A).

PROOF. Omitted for brevity. 2

By Lemma 1, it seems that edge deletion (Prob. 1) can be trans-
formed to the node deletion problem on the line graph – that is,
select a subset ofk nodes from the line graphL(A) whose dele-
tion creates the largest decrease in terms of the leading eigenvalue
of L(A). However, by the following lemma, the node deletion
problem itself is still a challenging task.

LEMMA 2. Hardness of Node Deletion.It is NP-Complete to
find a set ofk nodes from a graphA, whose deletion will create the
largest decrease of the largest eigenvalue of the graphA.

PROOF. The proof can be done by the reduction from the inde-
pendent node set problem, which is known to be NP-Complete [17].
The detailed proof is omitted for brevity. 2

That said, we seek an effective algorithm that directly solves the
NetMeltproblem next.

3.2 ProposedK-EDGEDELETION Algorithm
The key to solving Prob. 1 (NetMelt) is to quantify the impact of

deleting a set of edges in terms of the leading eigenvalueλ. The
naive way is to recompute the leading eigenvalueλ after deleting
the corresponding set of edges - the smaller the new eigenvalue, the
better the subset of the edges. But it is computationally infeasible
for large graphs since it takesO(m) time for each of the

`

m
k

´

pos-
sible sets, as in general, the impact for a given set of the edges (in
terms of decreasing the leading eigenvalueλ) is not equal to the
summation of the impact of deleting each individual edge.

Let u andv be the leading left eigenvector and right eigenvector
of the graphA, respectively. Intuitively, the left eigen-scoreu(i)
and the right eigen-scorev(j) (i, j = 1, ..., n) provide some im-
portance measure for the corresponding nodesi andj. The core
idea of the proposed K-EDGEDELETION algorithm is to quantify
the impact of each edge by the corresponding left and right eigen-
scoresindependently(step 9) . Our upcoming analysis in the next
subsection shows that this strategy (1) leads to a good approxima-
tion of the actual impact wrt decreasing the leading eigenvalue; and
(2) naturally de-couples the dependence among the different edges.
As a result, we can avoid the combinatorial enumeration in Prob. 1
by picking the top-k edges with the highest individual impact scores
(step 9).

Note that steps 2-7 in Alg. 1 are to ensure that all the eigen-
scores (i.e.,u(i),v(j)(i, j = 1, ..., n)) are non-negative. Accord-
ing to the Perron-Frobenius theorem [10], such eigenvectorsu and
v always exist.

Algorithm 1 K-EDGEDELETION

Input: the adjacency matrixA and the budgetk
Output: k edges
1: compute the leading eigenvalueλ of A; let u andv be the

corresponding left and right eigenvectors, respectively;
2: if mini=1,...,nu(i) < 0 then
3: assignu← −u

4: end if
5: if mini=1,...,nv(i) < 0 then
6: assignv ← −v

7: end if
8: for each edgeex : (ix, jx) ex = 1, ..., m; ix, jx = 1, ..., n

do
9: score(ex) = u(ix)v(jx);

10: end for
11: return top-k edges with the highest score(ex)

3.3 Proofs and Analysis
Here, we analyze the accuracy and the efficiency of the proposed

K-EDGEDELETION algorithm.
The accuracy of the proposed K-EDGEDELETION is summa-

rized in Lemma 3. According to Lemma 3, the first-order matrix
perturbation theory, together with the fact that many real graphs
have large eigen-gap, provides a good approximation to the impact
of a set of edges in terms of decreasing the leading eigenvalue.
What is more important, with such an approximation, the impact of
the different edges are now de-coupled from each other. Therefore,
we can avoid the combinatorial enumeration of Prob. 1 by simply
returning the top-k edges with the highest individual impact scores
(step 9 in Alg. 1).

Notice that by Lemma 3, there is anO(k) gap between the ap-
proximate and the actual impact of a set of edges in terms of de-
creasing the leading eigenvalue. Our experimental evaluations show



that the correlation between the approximate and the actualimpact
is very high (See Section 6 for details), indicating that it indeed pro-
vides a good approximation for the actual decrease of the leading
eigenvalue.

LEMMA 3. Let λ̂ be the (exact) first eigenvalue of̂A, whereÂ
is the perturbed version ofA by removing all of its edges indexed
by the setS . Let δ = λ − λ2 be the eigen-gap of the matrixA
whereλ2 is the second eigenvalue ofA, andc = 1/(u′

v). If λ

is the simple first eigenvalue ofA, andδ ≥ 2
√

k, thenλ − λ̂ =
c

P

ex∈S
u(ix)v(jx) + O(k).

PROOF. Let λi(i = 1, ..., n) be the ordered eigenvalues ofA

(i.e., |λ| = |λ1| ≥ |λ2|... ≥ |λn|). Let λ̃i(i = 1, ..., n) be the cor-
responding eigenvalues of̂A. Notice that we omitted the subscripts
for the leading eigenvalues (i.e.,λ1 = λ, andλ̃1 = λ̃).

Let Â = A + E. We have‖E‖F ro =
√

k.
According to the first-order matrix perturbation theory (p.183 [38]),

we have

λ̃1 = λ1 +
u
′
Ev

u′v
+ O(‖E‖2)

= λ1 − c
X

ex∈S

u(ix)v(jx) + O(k) (1)

Next, we will show that̃λ1 is indeed the leading eigenvalue ofÂ.
To this end, again by the matrix perturbation theory (p.203 [38]),
we have

λ̃1 ≥ λ1 − ‖E‖2 ≥ λ1 − ‖E‖F ro ≥ λ1 −
√

k

λ̃i ≤ λi + ‖E‖2 ≤ λi + ‖E‖F ro ≤ λi +
√

k(i ≥ 2) (2)

Sinceδ = λ1 − λ2 ≥ 2
√

k, we havẽλ1 ≥ λ̃i(i = 2, ..., n). In
other words, we have that̃λ1 = λ̂ is the leading eigenvalue of̂A.
Therefore,

λ− λ̂ = c
X

ex∈S

u(ix)v(jx) + O(k) (3)

which completes the proof. 2

The efficiency of the proposed K-EDGEDELETION is summa-
rized in the following lemma, which says that with a fixed budget
k, K-EDGEDELETION is linear wrt the size of the graph for both
time and space cost.

LEMMA 4. Efficiency of K-EDGEDELETION . The time cost
of Alg. 1 isO(mk +n). The space cost of Alg. 1 isO(n+m+ k).

PROOF. Using the power method, step 1 takesO(m) time. Steps
2-7 takeO(n) time. Steps 8-10 takeO(m) time. Step 11 takes
O(mk) time. Therefore, the overall time complexity of Alg. 1 is
O(mk + n), which completes the proof of the time cost.

We needO(m) to store the original graphA. It takesO(n)
and O(1) to store the eigenvectors and eigenvalue, respectively.
We need additionalO(m) to store the scores (Step 9) for all the
edges. Finally, it takesO(k) for the selectedk edges. Therefore,
the overall space complexity of Alg. 1 isO(m + n + k), which
completes the proof of the space cost. 2

4. PROPOSED ALGORITHM FOR NetGel

In this Section, we address theNetGelproblem (Prob. 2), where
we want toadda set of new links into the graphA so that its leading
eigenvalueλ will increase as much as possible. We first present
the proposed K-EDGEADDITION algorithm, and then analyze its
accuracy as well as efficiency.

4.1 ProposedK-EDGEADDITION Algorithm
Let T be a set of non-existing edges inA, that is, for each

ex : 〈ix, jx〉 ∈ T , we haveA(ix, jx) = 0. Let λ̂ be the lead-
ing eigenvalue of the new adjacency matrixÂ by introducing the
new edges indexed by the setT . By the similar procedure as in the
proof of Lemma 3, we can show that the impact of the new set of
edgesT in terms of increasing the leading eigenvalueλ̂−λ can be
approximated as

λ̂− λ ≈
X

ex∈T

u(ix)v(jx) (4)

Therefore, it seems that we could use a similar procedure as
K-EDGEDELETION to solve theNetGelproblem (referred to as
‘Naive-Add’): for each non-existing edgeex : 〈ix, jx〉, calculate
its score as score(ex) = u(ix)v(jx); and pick top-k non-existing
edges with the highest scores.

However, many real graphs are very sparse, i.e.,m << n2.
Therefore, we haveO(n2 − m) ≈ O(n2) possible non-existing
edges. In other words,Naive-Addrequiresquasi-quadratictime
wrt the number of the nodes (n) in the graph, which does not scale
to large graphs.

To address this issue, we propose an efficient algorithm, which
is summarized in Alg 2. The core idea of K-EDGEADDITION is
to prune a large portion of the non-existing edge pairs basedon
their left and right eigen-scores. As in Alg. 1, we take the same
procedure to make sure that the left and right eigenvectors (u,v)
are non-negative. We omit these steps in Alg 2 for brevity.

Algorithm 2 K-EDGEADDITION

Input: the adjacency matrixA and the budgetk
Output: k non-existing edges
1: compute the left (u) and right (v) eigenvectors ofA that cor-

respond to the leading eigenvalue (u,v ≥ 0);
2: calculate the maximum in-degree (din) and out-degree (dout)

of A, respectively;
3: find the subset ofk + din nodes with the highest left eigen-

scoresui. Index them byI;
4: find the subset ofk + dout nodes with the highest right eigen-

scoresvj . Index them byJ ;
5: for each edgeex : 〈ix, jx〉 ix ∈ I, jx ∈ J ,A(ix, ij) = 0 do
6: score(ex) = u(ix)v(jx). Index them byP ;
7: end for
8: return top-k non-existing edges with the highest scores among
P .

4.2 Proofs and Analysis
Here, we analyze the accuracy and efficiency of the proposed

K-EDGEADDITION.
The accuracy of the proposed K-EDGEADDITION is summa-

rized in Lemma 5, which says that K-EDGEADDITION selects the
same set of edges asNaive-Add.

LEMMA 5. Effectiveness of K-EDGEADDITION . Alg. 2 out-
puts the same set of non-existing edges asNaive-Add.

PROOF. Omitted for brevity. 2

The efficiency of the proposed K-EDGEADDITION is summa-
rized in the following lemma.

LEMMA 6. Efficiency of K-EDGEADDITION . The time cost
of Alg. 2 isO(m + nt + kt2). The space cost of Alg. 2 isO(n +
m + t2), wheret = max(k, din, dout).



PROOF: Using the power method, step 1 takesO(m) time. Step 2
takesO(m+n) time. Steps 3-4 takeO(n(din+k)) andO(n(dout+
k)) time respectively, both of which can be written asO(nt). Steps
5-7 takeO((k + din)(k + dout)) = O(t2) time. Step 8 takes
O((k + din)(k + dout)k) = O(kt2). Therefore, the overall time
cost isO(m + nt + kt2), which completes the proof of the time
complexity.

We needO(m) to store the original graphA. It takesO(n) to
store the eigenvectorsu andv. Step 2 takes additionalO(n + 1)
space. Steps 3-4 takeO(din + k) andO(dout + k) space respec-
tively, both of which can be simplified asO(t). Steps 5-7 take at
mostO((k + din)(k + dout)) = O(t2) space. Step 9 takesO(k)
space. Therefore, the overall space cost (by omitting the smaller
terms) isO(m+nt+kt2), which completes the proof of the space
complexity. 2

5. EXPERIMENTAL EVALUATIONS
In this section, we provide empirical evaluations for the proposed

K-EDGEDELETIONand K-EDGEADDITION algorithms. Our eval-
uations mainly focus on (1) the effectiveness and (2) the efficiency
of the proposed algorithms.

5.1 Experimental Setup
Data sets. We used a popular set of real graphs for our ex-

periments - the Oregon AS (Autonomous System) router graphs,
which are AS-level connectivity networks inferred from Oregon
route-views2. These were collected once a week, for 9 consecu-
tive weeks. Table 2 summarizes the nine graphs we used in our
evaluations.

Evaluation criteria. As mentioned before, the leading eigenvalue
λ of the graph is the only graph parameter that determines the epi-
demic threshold for a large family of information dissemination
processes. Therefore, we report the change of the leading eigen-
value for the effectiveness comparison - for bothNetMeltandNet-
Gel problems. A larger change of the leading eigenvalue is better,
which suggests that we can affect the outcome of the dissemination
process more. In addition, we also run virus propagation simula-
tions to compare how different methods affect the actual outcome
of the propagation. For the computational cost and scalability, we
report the wall-clock time.

Machine configurations. All the experiments ran on the same
machine with four 2.4GHz AMD CPUs and 48GB memory, run-
ning Linux (2.6 kernel).

5.2 Effectiveness ofK-EDGEDELETION

Approximation Quality. For both K-EDGEDELETION and K-
EDGEADDITION, we want to approximate the actual change of
the leading eigenvalue by the first order matrix perturbation the-
ory. This is theonly place we introduce the approximation. By
Lemma 3, it says that the quality of such an approximation de-
pends on both the budgetk as well as the eigengap of the orig-
inal graph, with anO(k) gap. Here, let us experimentally eval-
uate how good this approximation is on real graphs. We com-
pute the linear correlation coefficient between the actual and ap-
proximate leading eigenvalue after we randomly removek (k =
10, 50, 100, 500, 1000) edges. The results are shown in table 3. It
can be seen that the approximation is very good - in all the cases,
the linear correlation coefficient is greater than0.92, and often it is
very close to1.

The Impact of Decreasing the Leading Eigenvalue. Here, we
evaluate the effectiveness of the proposed K-EDGEDELETION in

2http://topology.eecs.umich.edu/data.html

terms of decreasing the leading eigenvalueλ of the graph. Lemma 1
suggests that the ‘important’ edges on the original graphA might
become ‘important’ nodes on the line graphL(A). We follow this
intuition to design the following comparative strategies:(1) ran-
domly selectk edges from the original graphA (referred to as
‘Rand’); (2) selectk edges with the highest degrees in the line
graphL(A) (referred to as ‘Line-Deg’); (3) selectk edges with the
highest eigen-scores in the line graphL(A) (referred to as ‘Line-
Eig’); and (4) selectk edges with the highest PageRank scores in
the line graphL(A) (referred to as ‘Line-Page’). For ‘Rand’, we
run the experiments 100 times and report the average result.For
‘Line-Deg’, we have two variants by using out-degree or in-degree.
In our evaluation, we found that these two variants give the similar
results. Therefore, we only report the results by out-degree. For the
same reason, we only report the results by the right eigen-scores for
‘Line-Eigs’. For ‘Line-Page’, there is an additional parameter of
the teleport probability. We run the experiments with the different
teleport probabilities and report the best results.

For brevity, we only present the results onOregon-A, Oregon-B
andOregon-Csince the results on the rest six graphs are similar.
From Fig. 2, it can be seen that our K-EDGEDELETION always
leads to the biggest decrease in terms of the leading eigenvalue. For
example, onOregon-Cgraph, the proposed K-EDGEDELETION

decreases the leading eigenvalue by3.8 with the budgetk = 50,
which is almost double of the second best method (e.g.,2.0 by
‘Line-Deg’). Therefore, we expect that K-EDGEDELETION would
affect the outcome of the dissemination processes better than the
alternative choices, e.g., having less number of infected nodes in
the graph, etc. We validate this next.

Affecting Virus Propagation. Next, we evaluate the effectiveness
of the proposed K-EDGEDELETION in terms of minimizing the
outcome of the information dissemination processes. To this end,
we simulate the virus propagation for the SIS model (susceptible-
infective-susceptible) on the graph [41]. For each method,we delete
k = 200 edges from the original graph. Lets = λb/d be the nor-
malized virus strength (biggers means stronger virus), whereb and
d are the infection rate and death rate, respectively. The results are
presented in Fig. 3, which is averaged over 1,000 runs. It canbe
seen that the proposed K-EDGEDELETION is always the best - its
curve is always the lowest which means that we always, as desired,
have the least number of infected nodes in the graph with thisstrat-
egy. In Fig. 3, ‘Original’ (the yellow curve) means that we simulate
the virus propagation on theoriginal graph without deleting any
edges. Notice that when the virus becomes stronger (Fig. 3(b)), all
the curves except the proposed method mix with ‘Original’, which
means that they all fail to affect the virus propagation in this case.
In contrast, our proposed method (the red curve) can still signifi-
cantly reduce the number of infected nodes.

Node Deletion vs. Edge Deletion. Finally, in some applications,
e.g., to stop malware propagation on the computer networks,both
node deletion (e.g., shutting down some machines) and edge dele-
tion (e.g., blocking some links between machines) are feasible. In
this case, we want to know which strategy (node deletion or edge
deletion) is more effective in affecting the outcome of suchpropa-
gation process. To this end, we use an effective node immuniza-
tion algorithm [39] to deletẽk = 1, 10 nodes respectively (re-
ferred to as ‘Node-Del’). For each̃k, we then use our proposed
K-EDGEDELETION to delete the same amount of edges from the
original graph (referred to as ‘Edge-Del’). We compare the de-
crease of the leading eigenvalues of the two methods. The results
are summarized in Fig. 4. It can be seen that ‘Edge-Del’ always
leads to a bigger decrease of the leading eigenvalue - which sug-
gests that by operating on the edge level, we can design a more



Dataset n m

Oregon-A 633 2,172
Oregon-B 1,503 5,620
Oregon-C 2,504 9,446
Oregon-D 2,854 9,864
Oregon-E 3,995 15,420
Oregon-F 5,296 20,194
Oregon-G 7,352 31,330
Oregon-H 10,860 46,818
Oregon-I 13,947 61,168

Table 2: Dataset summary.

Dataset k = 10 k = 50 k = 100 k = 500 k = 1000

Oregon-A 0.999 0.997 0.995 0.973 0.924
Oregon-B 0.999 0.999 0.998 0.993 0.988
Oregon-C 1.000 0.999 0.999 0.996 0.991
Oregon-D 0.999 0.999 0.999 0.994 0.988
Oregon-E 1.000 0.999 0.999 0.998 0.995
Oregon-F 1.000 0.999 0.999 0.998 0.997
Oregon-G 1.000 0.999 0.999 0.999 0.998
Oregon-H 1.000 1.000 0.999 0.999 0.999
Oregon-I 1.000 1.000 0.999 0.999 0.999

Table 3: Evaluations on the approx. quality. Larger is better.
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Figure 2: The decrease of the leading eigenvalue vs. the budget k. Larger is better. The proposed K-EDGEDELETION always leads
to the biggest decrease of the leading eigenvalue.

effective algorithm with the same budget to affect the outcome of
the information dissemination process. The results are consistent
with the intuition - not all the edges adjacent to the ‘important’
nodes, which the node immunization algorithm aims to delete, are
also ‘important’ (e.g., many edges adjacent to an ‘important’ node
might link to/from some degree-1 nodes). In other words, edge
deletion enables us to optimize the underlying graph structure on a
finer granularity by picking each individual edge one by one.

5.3 Effectiveness ofK-EDGEADDITION

To our best knowledge, there are no existing methods to addk
new links into an existing graph in order to increase its leading
eigenvalue. Let̄A be the complementary graph ofA, which has
the same node set asA, andĀ(i, j) = 1 iff A(i, j) = 0. With
the notation of the complementary graph, we use the following
intuition to design the comparative methods: to selectk ‘impor-
tant’ edges from thecomplementary graph̄A and add them into
the original graphA. More specifically, we compare the proposed
K-EDGEADDITION with the following strategies: (1) randomly se-
lect k edges (referred to as ‘Rand’); (2) selectk edges with the
highest out-degrees in the line graph of the complementary graph
Ā (referred to as ‘CompDeg’); (3) selectk edges with the high-
est right eigen-scores in the line graph of the complementary graph
Ā (referred to as ‘CompEigs’); (4) selectk edges with the high-
est PageRank scores in the line graph of the complementary graph
Ā (referred to as ‘CompPage’); and (5) selectk edges by running
K-EDGEDELETION in the complementary graph̄A (referred to as
‘CompDelete’). Again, for ‘Rand’, we run the experiments 100
times and report the average result. We only report the results of
‘CompDeg’ by out-degree and those of ‘CompEig’ by right eigen-
scores, respectively, since the other variants give the similar perfor-

mance. For ‘CompPage’, we run the experiments with the different
teleport probabilities and report the best results.

The Impact of Increasing the Leading Eigenvalue. We first eval-
uate the effectiveness of the proposed K-EDGEADDITION in terms
of increasing the leading eigenvalue of the graph. For brevity,
we only present the results onOregon-A, Oregon-BandOregon-C
since the results on the rest of the graphs are similar. From Fig. 5,
it can be seen that the proposed K-EDGEADDITION always leads
to the biggest increase in terms of the leading eigenvalue ofthe
graph. Notice that for all the comparative methods, they behave
like ‘Rand’ (blue curve), especially when the budgetk is small.

Affecting Virus Propagation. We also evaluated the effective-
ness of the proposed K-EDGEADDITION in terms ofmaximizing
the outcome of the information dissemination process. To this end,
again, we simulate the virus propagation for the SIS model onthe
graph. For each method, we addk = 200 new edges into the
graph. Again, lets = λb/d be the normalized virus strength, with
bigger s being stronger virus. Here, our goal is toincreasethe
number of ‘infected’ nodes (e.g., having more people in the so-
cial networks to adopt a piece of good idea, etc) by introducing a
set of new links into the graph. The result is presented in Fig. 6,
which is averaged over 1,000 runs. It can be seen that the pro-
posed K-EDGEADDITION is always the best - its curve is always
the highest which means that we always have the largest number of
‘infected’ nodes in the graph with this strategy. Notice that when
the strength of the virus is weak (Fig. 6(a)), all the curves except
the proposed method mix with or are very close to ‘Original’ (yel-
low curve), which means that they have little impact to boostthe
outcome of the propagation in this case. In contrast, our proposed
method (the red curve) can still significantly increase the number
of ‘infected’ nodes. Therefore, we conclude that our proposed K-
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Figure 3: Comparison of minimizing the outcome of the virus propagation. Fraction of infected nodes vs. time stamp. Lower is
better. The proposed K-EDGEDELETION always leads to the least number of infected nodes. Notice that y-axis is in the logarithmic
scale.
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Figure 5: The increase of the leading eigenvalue vs. the budget k. Larger is better. The proposed K-EDGEADDITION always leads to
the largest increase of the leading eigenvalue. Notice thaty-axis is in the logarithmic scale.

EDGEADDITION is much more effective to guild the outcome of
the dissemination process.

5.4 Scalability
We use the subsets of the largest data setOregon-I to evaluate

the scalability of the proposed algorithms. The results arepre-
sented in Fig. 7. We can see that the proposed K-EDGEDELETION

and K-EDGEADDITION scale almost near-linearly wrtm, which
means that they are suitable for large graphs. Notice that for both
cases, we also observe a slight super-linear trend. This is due to
the following two reasons: (1) for both K-EDGEDELETIONand K-
EDGEADDITION, we use the power method to compute the leading
eigenvalue and the corresponding eigenvectors. Whenm increases,
the actually iteration number in the power method also tendsto in-
crease; (2) for K-EDGEADDITION when m increases, the max-
imum degree (max(din, dout)) also increases even though we fix
the number of the nodes (n).

6. RELATED WORK
In this section, we review the related work, which can be cate-

gorized into three parts: information dissemination, affecting algo-
rithms and node/edge importance measure.

Information Dissemination. Many research works in virus prop-
agation have been devoted to studying the so-called epidemic thresh-
old, that is, to determine the condition under which an epidemic
will break out. While earlier works [13] focus on some specific
types of graph structure (e.g., random graphs, power-law graphs,
etc), Wang et al. [41] and its follow-up paper by Ganesh et al.[8]
found that, for the flu-like SIS model, the epidemic threshold for
anyarbitrary, real graph is determined by the leading eigenvalue of
the adjacency matrix of the graph. Prakash et. al. [33] further dis-
covered that the leading eigenvalue (and a model-dependentcon-
stant) is the only parameter that determines the epidemic threshold
for all virus propagation models (more than 25 models, including
H.I.V.) in the standard literature. In this work, we aim to take one
step further, i.e., how to optimize (minimize or maximize) the lead-
ing eigenvalue of the graph by deleting or adding a set of links.

There are also many research interest in studying other types of
information dissemination processes on large graphs, including (a)
information cascades [1, 9], (b) blog propagations [24, 11,21, 35],
and (c) viral marketing and product penetration [18, 23].

Affecting Algorithms . Hayashi et al. [12] derived the extinc-
tion conditions under random and targeted immunization forthe
SHIR model (Susceptible, Hidden, Infectious, Recovered).Tong et
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Figure 6: Comparison of maximizing the outcome of virus propagation. Fraction of ‘infected’ nodes vs. time stamp. Larger is better.
The proposed K-EDGEADDITION always leads to the largest number of ‘infected’ nodes. Notice that y-axis is in the logarithmic
scale.

al. [39] proposed an effective node immunization strategy for the
SIS model by approximately minimizing the leading eigenvalue.
Briesemeister et al. [3] studied the defending policy in power-law
graphs. Prakash et. al. [34, 40] proposed effective algorithms to
perform node immunization on time-varying graphs. Other algo-
rithms to affect the outcome of the information dissemination in-
clude the influence maximization [18, 6, 5], finding effectors in
social networks [22], etc. Notice that all these works focuson op-
erating on the node level (i.e., delete or inoculate a set of ‘best’
nodes) to affect the outcome of the dissemination. In contrast, we
study the equally important, but much less studied affecting algo-
rithms by operating on the edge level.

There exist someempirical evaluationson edge removal strate-
gies for slightly different purposes, such as, slowing downthe in-
fluenza spreading [26], minimizing the average infection probabil-
ity [36], evaluating and comparing the attack vulnerability [14],
etc. The closest related work to our K-EDGEDELETION algorithm
is [2], which proposed a convex optimization based approachto
approximately minimize the leading eigenvalue of the graph. How-
ever, the method is based on semi-definite programming and does
not scale to large graphs. Moreover, for all these methods, it re-
mains unclear if they can be generalized to address the even more
challengingNetGelproblem, where we want toadd new edges to
promote the information dissemination.

Measuring the Importance of Nodes and Edges.In the liter-
ature, there are a lot of node importance measurements, including
betweenness centrality, both the one based on the shortest path [7]
and the one based on random walks [29, 16] PageRank [30], HITS[19],
and coreness score [28]. Our work is also related to the so-called
k-vital edges problem, which aims to delete a set of links from the
graphs to increase the shortest path length [25] or the weight of
the minimum spanning tree of the remaining graph [37]. K-vital
edge problem itself is known to be NP-Hard. Other remotely re-
lated work includes graph augmentation [31, 4], graph sparsifica-
tion [20], network inhibition [32] and network-interdiction [42, 15].
Both network inhibition and network interdiction are NP-Hard.

7. CONCLUSION
In this paper, we study the problem of how to optimize the link

structure to affect the outcome of information dissemination pro-
cesses. The main contributions of the paper are:

• Algorithms.We observe that for a large family of information
dissimilation processes, the problem boils down to the eigen-
value optimization problem. We propose an effective, scal-
able algorithm to optimize such a key graph parameter (i.e.,
the leading eigenvalue) that controls the information dissem-
ination process, for bothNetMeltandNetGel, respectively;

• Proofs and Analysis.We show theaccuracy(Lemma 3 and
Lemma 5) and thecomplexityof our methods (Lemma 4 and
Lemma 6); thehardnessof the problem (Lemma 2), and
the equivalencebetween the different strategies (Lemma 1,
Lemma 7 and Lemma 8);

• Experimental Evaluations.Our evaluations on real large graphs
show that (a) compared with alternative choices to optimize
the link structure, our methods are much more effective to af-
fect the outcome of the dissemination process; (b) compared
with the node deletion strategy, our K-EDGEDELETION of-
fers a more effective way by operating on the edge level; and
(c) both K-EDGEDELETION and K-EDGEADDITION scale
to large graphs.
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(a) k̃ = 1

(b) k̃ = 10

Figure 4: Comparison between node deletion vs. edge deletion.
Larger is better. With the same amount of edges deleted, our
proposed K-EDGEDELETION (red) leads to a bigger decrease
in terms of the leading eigenvalue.
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APPENDIX
Higher-Order NetMelt. From Lemma 3, it can be seen that the
only place we introduce the approximation in Alg. 1 is to approxi-
mate the actual decrease of the leading eigenvalue by the first-order
matrix perturbation theory. The readers might wonder if we can fur-
ther improve the quality by using higher-order matrix perturbation
theory, while maintaining the linear scalability of the algorithm.

We explored second-order matrix perturbation theory to approx-
imate the actual decrease of the leading eigenvalue, and found that
(1) it generates very similar results as the proposed K-EDGEDELETION

algorithm and (2) it requires 5-10x more wall-clock time. The rea-
son might be that for theNetMeltproblem, the first-order perturba-
tion already gives a very good approximation. Therefore, inprac-
tice, we recommend K-EDGEDELETION for simplicity.

Nonetheless, the new algorithm based on the second-order per-
turbation exhibits some interesting theoretic properties. It also helps
understand the relationship between edge deletion and nodedele-

tion on the algorithmic level. We present it here for the complete-
ness.

Let c = 1

u
′
v

, with second-order matrix perturbation, we can
approximate3 the impact of deleting a set of edgesS in terms of the
leading eigenvalue as:

λ− λ̂ ≃ Impact(S) = c(
X

ex∈S

u(ix)v(jx)

− 1

2λ

X

ex∈S,ey∈S,jx=iy

u(ix)v(jy)) (5)

Compared with the first-order perturbation (eq. (3)), we have an
additional penalized term in eq. (5):u(ix)v(jy) for any two adja-
cent edgesex andey. The intuition is to encourage the edges in the
setS to be far away (not adjacent) from each other.

By eq. (5), the impact of different edges in the setS is no longer
independent with each other. At the first glance, this might compli-
cate the algorithm since now we need to optimize at the set level,
that is, to find a set of edges thatcollectivelymaximize eq. (5).
However, by the following lemma, the impact defined in eq. (5)
exhibits some nice diminishing return properties.

LEMMA 7. Second-Order Approximation Properties. The
Impact(S) defined in eq.(5) has the following properties:

(1) Impact(Φ) = 0, whereΦ is an empty set;

(2) Impact(S) is monotonically non-decreasing wrt the setS ;

(3) Impact(S) is sub-modular wrt the setS .

PROOF. Omitted for brevity. 2

Thanks to such diminishing return properties, it naturallyleads
to the following greedy algorithm (K-EDGEDELETION++) to find
a near-optimalsubset of edges to delete from the original graph
A. And it can be shown that the overall time complexity of K-
EDGEDELETION++ remains linear wrt the size of the graph.

Algorithm 3 K-EDGEDELETION++

Input: the adjacency matrixA and the budgetk
Output: k edges indexed by setS
1: compute the first eigen-valueλ of A; compute the correspond-

ing left and right eigenvectorsu andv (u,v ≥ 0), respec-
tively;

2: initialize the setS to be empty;
3: score(ex) = u(ix)v(jx) (ex : 〈ix, jx〉, ex = 1, ..., m);
4: for k0 = 1, ..., k do
5: finde0 = argmaxex,ex /∈Sscore(ex);
6: add the new edgee0 : (i0, j0) into S ;
7: for each edgeey : 〈iy, jy〉 s.t. jy = i0 do
8: score(ey)← score(ey)− 1/(2λ)u(iy)v(j0);
9: end for

10: for each edgeey : 〈iy , jy〉 s.t. iy = j0 do
11: score(ey)← score(ey)− 1/(2λ)u(i0)v(jy);
12: end for
13: end for

An interesting property of Alg. 3 is that it builds the equivalence
between edge deletion and node deletion on the algorithmic level:

LEMMA 8. Equivalence of Alg. 3 to Node Immunization. Let
S be the set of edges by running Alg. 3 on graphA; T be the set
of edges by running the node immunization algorithm [39] on the
line graphL(A); and |S| = |T |. We haveS = T .

PROOF. Omitted for brevity. 2

3This formulas is similar as the one in [27]


