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Abstract

In many applications, such as the Internet and in-
frastructure networks, nodes fail or get congested dy-
namically. We study the problem of inferring all the
failed nodes, when only a sample of the failures is
known, and there exist correlations between node fail-
ures/congestion in networks. We formalize this as
the GraphStateInf problem, using the Minimum De-
scription Length (MDL) principle. We propose the
GraphMap algorithm for minimizing the MDL cost,
and show that it gives an additive approximation, rela-
tive to the optimal. We evaluate our methods on syn-
thetic and real datasets, which includes one from WAZE
which gives traffic incident reports for the city of Boston.
We find that our method gives promising results in re-
covering the missing failures.

1 Introduction

Most network applications assume the network state is
static and is known ahead of time. This is not true
in practice, and networks are inferred by indirect mea-
surements, e.g., as in the case of the Internet router/AS
level graphs, which are constructed using trace-routes,
e.g., [5], or biological networks, which are inferred by
experimental correlations, e.g., [15]. Further, network
elements can fail dynamically, or their state may change
with time. For instance, links in the Internet router net-
work or the transportation network can get congested or
fail. Reconstructing the network topology dynamically
and inferring network states in such settings are fun-
damental problems. Such problems have been studied
as part of the area of “network tomography”, especially
in communication networks, e.g., [8, 19, 10]. Such net-
works are not publicly accessible, and indirect probes
are the only means of obtaining information; examples
of probes include queries of the activity states of selected
nodes and end-to-end measurements of delays between
selected pairs of nodes. These become very challenging
problems, and all prior work in this direction in network
tomography has been focused on simple models of inde-
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Figure 1: An example road network, where multiple
intersections have failed. Given a partial probe of failed
nodes (red), our method infers other nodes which have
failed (blue).

pendent link failures and delays, e.g., with exponentially
distributed probabilities [10].

In many settings, such as disaster events in infras-
tructure networks, however, failures might be spatially
correlated, as in [3, 1, 14]. For instance, in the model
considered in [1], where authors study vulnerability of
networks, the probability that a node j fails decays with
the distance from a source s. This motivates the prob-
lem of inferring the network states under such spatial
correlations, which is the focus of our paper. For ex-
ample in a toy road network shown in Figure 1, given
a partial probe of failed nodes (shown in red), can we
infer other nodes which have failed as well (shown in
blue)?

A closely related topic is the inference of the source
of an infection and other missing infections in the case of
epidemic spread on networks—these are typically mod-
eled as SI/SIR processes (see [7, 9] for an introduction to
epidemic models), where the infection spreads from one
node to its neighbors with some probability [11, 18, 17].
There has been some work in missing infection problems
in this direction e.g. [11, 18] develop algorithms for the
SI process. Intuitively, these link-based methods do not
seem to directly work for our problem, due to the dif-
ference in propagation process of failures/infections and
epidemiological processes. For example, if a node in a
fully-connected clique is infected in an epidemic process,
all the remaining nodes are highly likely to get infected;
which is not necessarily the case in infrastructure net-
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works, say road networks, where failures are more spa-
tially correlated.

Our main contributions are summarized below.

1. We develop a novel robust formulation for the
GraphStateInf problem using the Minimum De-
scription Length (MDL) principle [6, 12], which
takes correlated failures into account and aims to
find the missing failures which best explain the
given data. We present GraphMap, an algorithm
for inferring the missing failed nodes, given a sam-
ple probe of the failures. We prove that the MDL
cost of the solution computed by GraphMap is
within an additive approximation of the minimum
cost MDL solution. Typically, approaches using
MDL are based on heuristics and getting bounds
is non trivial as MDL cost functions are not con-
vex. To the best of our knowledge, our algorithm is
the first to obtain rigorous bounds on the objective
value among MDL based approaches for network
inference.

2. We evaluate our results on different kinds of syn-
thetic and real datasets, namely, one week’s worth
of traffic status and incident reports from WAZE
for the city of Boston, and electric disturbance
events in the power grid. We study the precision,
recall and F1-score for GraphMap, compared with
a baseline. We observe that our algorithm is quite
effective in inferring unknown/missing failures in
the network, and has lower MDL cost than the
baseline.

The rest of the paper is organized in the following
way: we formulate our problem in Section 2 and propose
our methods in Section 3. In Section 4, we describe
our datasets in detail and show experimental results.
We then present the related work and conclusions in
Sections 5 and 6 respectively.

2 Our Problem Formulation

We are given an undirected graph G(V,E) representing
an infrastructure network. We assume there is an initial
failure at a node, referred to as the seed node, which
causes other nodes to fail. Further, a subset Q ⊆ I of
the actual failed nodes are assumed to be known. The
objective in the GraphStateInf problem is to infer all
the missing failures.

2.1 Failure Model Next, we will discuss the failure
model we use to describe the failures in the given net-
work G. This model is motivated by the geographi-
cally correlated failure model introduced by Agarwal et
al [1], to capture failures in infrastructure networks due

to large scale disasters. In such events, there is an initial
localized failure, which causes other nodes to fail with
some probability that decays with the distance from the
source.

Following [1], we assume there is an initial single
‘seed’ node s and all the failures I in G are caused due
to the influence of that seed node. We assume a discrete
probability distribution function ps : V → [0, 1] that
gives the probability of each node v ∈ V being a seed
and conditional failure probability distribution function
F : V × V → [0, 1] that gives the failure probability
of a node v ∈ V given a seed node s. Note that the
ps(v) is the probability of v being the only seed, i.e,∑
v∈V ps(v) = 1. These probability distributions are

precomputed from historically observed failures. We
assume that the conditional failure probabilities given
by F are independent i.e., for-all v1, v2 ∈ V and v1 6= v2,

(2.1) F (v1 ∩ v2 | s) = F (v1 | s)F (v2 | s)

2.2 Probes Based on our model given above, we
assume that some seed failed causing multiple correlated
failures across the network G. The final set of true
failures is represented by I ⊆ V . Further, we are also
given a set of failed nodes represented by Q ⊆ I, which
we will refer to as probes in rest of this paper. In reality,
the probesQ are failed nodes that are observed, and this
is typically a random process. For ease of modeling,
we assume that the probes are sampled uniformly at
random from the true failure set I with probability γ.

2.3 MDL We formulate our problem using the Min-
imum Description Length (MDL) principle [6]. We will
use two-part MDL, or the sender-receiver framework.
Our goal here is to transmit the given set of probes Q
from sender to receiver by assuming that both of them
know the layout of the network G. We do this by iden-
tifying the model that best describes the given data in
terms of a formal objective or cost function. This cost
function consists of two parts:

1. Model cost that signifies the complexity of the
selected model that explains the failures in the
network; and

2. Data cost that represents the cost of observing the
given probe data Q given the model.

More formally, given a set of modelsM, MDL identifies
the best model M∗ as the model that minimizes L(M)+
L(D |M), in which L(M) is the model-cost (length in
bits to describe model M), and L(D|M) is the data-cost
(the length in bits to describe the data using M). Note
that the data we need to describe in our situation is the
probes set Q (and not the true failures set I). Next we
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describe the model space and the model and data cost,
which we will optimize.

2.4 Model Space and Cost Model Space: The
most natural model for our problem would have been
M = (s, I) (the source s ∈ V and the full failure set
I ⊆ V ), as it directly mimics the generative process
of the failure model. However, this model has several
disadvantages. Firstly, note that this model space is
intuitively ‘fragile’: small changes in I or the source
s can have vastly different costs. Hence due to data
sparsity, we expect it would be very hard to learn the
true source which generated the failures—indeed, in our
experiments, we find that it was not robustly learning
the true source. As a result, we also found that the
solutions with minimum MDL cost were finding very
few missing failed nodes (i.e. I −Q), leading to a very
low recall. How to design a better model space for our
problem? We observe that this model intuitively tries
to explain ‘more’ than what is needed. Note that while
our original goal was to map the missing failures only,
this approach tries to explain the source as well as the
set of failures. Hence we adopt a different approach,
where we try to marginalize over the seeds, and focus
only on the failures. This makes our model space more
robust too. This motivates our proposed model, which
consists of three components, namely,M = (|Q|, |I|, I).
In other words, we send the size of probes Q, the size
of true failure set I, and then identify the set itself.
After sending the model, we will then identify the actual
probes set Q as the data.
Model cost: The MDL model cost, L(|Q|, |I|, I) has
three components

L(|Q|, |I|, I) = L(|Q|) + L
(
|I|
∣∣ |Q|)+ L

(
I
∣∣ |Q|, |I|).

We derive these below. We have L(|Q|) =

− log
(
Pr(|Q|)

)
, by using the Shannon-Fano code to

encode |Q|. Similarly we have:

L
(
|I|
∣∣ |Q|) =− log

(
Pr(|I|

∣∣ |Q|))
=− log

(Pr(|Q| ∣∣ |I|)Pr(|I|)
Pr(|Q|)

)(2.2)

From the sampling assumption for Q, we can get:

(2.3) Pr
(
|Q|

∣∣ |I|) =

(
|I|
|Q|

)
γ|Q|(1− γ)|I\Q|

Also observe that:

L
(
I
∣∣ |Q|, |I|) =− log

(
Pr
(
I
∣∣ |Q|, |I|))

=− log
(
Pr
(
I
∣∣ |I|)) = − log

( Pr(I)

Pr(|I|)

)
(2.4)

Combining all of the above, the complete model cost
is:

L(|Q|, |I|, I)

=L(|Q|) + L
(
|I|
∣∣ |Q|)+ L

(
I
∣∣ |Q|, |I|)

=− log
(
Pr(|Q|)

)
− log

(Pr(|Q| ∣∣ |I|)Pr(|I|)
Pr(|Q|)

)
− log

( Pr(I)

Pr(|I|)

)
=− log

(
Pr
(
|Q|

∣∣ |I|))− log
(
Pr(|I|)

)
− log

( Pr(I)

Pr(|I|)

)
=− log

(( |I|
|Q|

)
γ|Q|(1− γ)|I\Q|

)
− log

(∑
s∈V

Pr(I | s)p(s)
)

=− log

(
|I|
|Q|

)
− |Q| log(γ)− (|I| − |Q|) log(1− γ)

− log
(∑
s∈V

ps(s)
∏
v∈I

F (v | s)
∏
v′ /∈I

(
1− F (v′ | s)

))(2.5)

2.5 Data Cost Now, we need to describe the given
input probes Q in terms of the model. Given model
M = (|Q|, |I|, I), describing Q is the same as specifying
the adjustments that needs to be applied to the failure
set I in the model to reach Q, which can be done by
describing the following sets:

1. Unobserved failures i.e., Q+ = I \ Q

2. Observation errors i.e., Q− = Q \ I

In this paper, we assume that there are no observa-
tion errors, i.e., Q− = ∅ (as Q ⊆ I). According to the
sampling assumption we have, Q is sampled uniformly
at random from I with probability γ. This implies that
Q+ = I \Q is sampled from I with uniform probability
(1−γ). Hence we can compute the probability of seeing
a set Q+ when sampled from I as follows

(2.6) Pr(Q+|I) = γ|Q|(1− γ)|Q
+|

Now, using this probability distribution of observ-
ing the set Q+ given the failure set I we can compute
the optimal number of bits required to transmit Q+ en-
coded in terms of model M as follows:

L(Q+|I) =− log
(
γ|Q|(1− γ)|Q

+|
)

=− |Q| log(γ)− (|I| − |Q|) log(1− γ)
(2.7)

2.6 Our Formal Problem Putting it all together,
we can state our formal problem GraphStateInf as
following:
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GraphStateInf: Given an undirected graph G(V,E),
where node failures taken place in the network as per
the model described in Section-2.1, and a set of observed
failures Q ⊆ V , which are sampled independently from
the true failure set I∗ with a uniform probability γ, find
the complete set of failures I ⊆ V by minimizing the
MDL cost function L

(
|Q|, |I|, I,Q

)
given by

L
(
|Q|, |I|, I,Q

)
= L(|Q|) + L

(
|I|
∣∣ |Q|)+ L

(
I
∣∣ |Q|, |I|)+ L

(
Q
∣∣ |Q|, |I|, I)

= − log
(∑

s∈V

ps(s)
∏
v∈I

F (v | s)
∏
v′ /∈I

(
1− F (v′ | s)

))

− 2|Q| log(γ)− 2(|I| − |Q|) log(1− γ)− log

(
|I|
|Q|

)(2.8)

where ps(s) is the seed probability of s and F (v | s) is
the failure probability of node v given seed node s.

3 Proposed Methods

Clearly the search space for the problem is large, and
there exists no trivial structure for fast search. In-
deed, typically MDL-based optimization problems are
very challenging. We now describe two approaches for
finding solutions with low MDL cost. The first, Lo-
calSearch, incrementally adds a node that gives the
most reduction in MDL cost, till no further improve-
ments occur. The second, GraphMap, guesses the size
k of the optimal solution, and greedily picks the k nodes
that would minimize the cost. We show that the cost
of the solution produced by GraphMap is within an
additive factor of the optimum.

3.1 Algorithm LocalSearch Here we discuss an
algorithm based on a greedy local search approach
which is popularly used in many MDL optimizations.
Our algorithm LocalSearch works as follows: we
initialize Î to Q. Then for each node v in V \ Î, we
compute marginal change in the MDL cost caused by
adding v to Î. We add the node u which results in
maximum decrease in the MDL cost to Î. We repeat
the process until the MDL cost cannot be reduced
further. The complete pseudocode is given in Algorithm
1. Although intuitive and natural, it is hard to get
provable guarantees for this algorithm.

3.2 Algorithm GraphMap In this section we pro-
pose an efficient algorithm for finding a failure set I
which also provides an additive approximation guaran-
tee on the MDL cost of the solution, thereby ensuring
that our nodes-set is of high-quality.

First, let A = − log
( |I|
|Q|
)
− 2|Q| log(γ). We rewrite

Algorithm 1 Algorithm LocalSearch

Input: Instance (V,Q, p, F, γ)
Output: Solution Î that minimizes L(|Q|, |Î|, Î,Q)

1: Î ← Q
2: while ∃ v ∈ V \ Î : L(|Q|, |Î|, Î,Q) − L(|Q|, |Î| +

1, Î ∪ {v},Q) > 0 do
3: u ← arg max

v∈V \Î
L(|Q|, |Î|, Î,Q) − L(|Q|, |Î| + 1, I ∪

{v},Q)
4: Î ← Î ∪ {u}
5: end while
6: Return Î

the MDL cost function in the following manner:

L
(
|Q|, |I|, I,Q

)
=A− log

(∑
s∈V

ps(s)
∏
v∈I

F (v | s)
∏
v′ /∈I

(
1− F (v′ | s)

))
− 2(|I| − |Q|) log(1− γ)

=A− log
(∑

s∈V

ps(s)
∏
v∈V

(
1− F (v′ | s)

)
∏
v∈I

F (v | s)
(1− F (v | s))

)
− log (1− γ)2(|I|−|Q|)

=A− log
(∑

s∈V

ps(s)
∏
v∈V

(
1− F (v′ | s)

)
(1− γ)−2|Q|

∏
v∈I

F (v | s)(1− γ)2|I|

(1− F (v | s))

)
=A− log

(∑
s∈V

g(s)
∏
v∈I

f(s, v)
)
,(3.9)

where g(s) = (1−γ)−2|Q|ps(s)
∏
v∈V

(
1−F (v |s)

)
and

f(s, v) = F (v | s)(1−γ)2
1−F (v | s) . Therefore, the problem reduces

to finding a set Î such that

(3.10)

Î = arg min
I

{
− log

(
|I|
|Q|

)
+ 2|Q|λ1

− log
(∑

s∈V

g(s)
∏
v∈I

f(s, v)
)}
.

In GraphMap, we first compute quantities f(s, v)
for each s, v ∈ V and g(s) for each s ∈ V . Then
for each s ∈ V , we sort nodes v ∈ V by f(s, v).
The main idea in our algorithm is to use the quantity

f(s, v) = F (v | s)(1−γ)2
1−F (v | s) defined above as the ‘weight’ for

each pair (s, v). We guess the size of the solution |Is|, if
the source were to be s. Then we compute, φ(s, Is). For
each possible size k of the failure set, we compute the
cost h(k). Based on pre-computed φ(s, Is) and h(k), we
compute α(s, k). Finally, we pick the set of |Is| nodes
which maximizes α(s, k). The complete pseudocode is
presented in Algorithm 2 and analyzed in Theorem 3.1.
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Algorithm 2 Algorithm GraphMap

Input: Instance (V,Q, p, F, γ)
Output: Solution Î that minimizes L(|Q|, |Î|, Î,Q)

1: For each s, v ∈ V , compute f(s, v)
2: For each s ∈ V , compute g(s)
3: for each s ∈ V do
4: Order the nodes vs1, . . . , v

s
n−|Q| such that

f(s, vs1) ≥ f(s, vs2) ≥ . . .
5: {The set Is(k) = {v1, . . . , vk} ∪ Q will be consid-

ered}
6: Compute φ(s, ∅) = g(s)

∏
v∈Q f(s, v)

7: for k = 1 to n− |Q| do
8: Compute φ(s, Is(k)) = φ(s, Is(k − 1))f(s, vk)
9: { φ(s, Is(k)) = g(s)

∏
v∈Is(k) f(s, v)}

10: end for
11: end for
12: h(0) = 1
13: for k = 1 to |V | − |Q| do
14: h(k) = h(k − 1)(k + |Q|)/k
15: end for
16: for s ∈ V do
17: for k = 1 to |V | − |Q| do
18: Compute α(s, k) = − log φ(s, Is(k))− log h(k)
19: end for
20: end for
21: Return Is(k) which maximizes α(s, k)

Theorem 3.1. Let I∗ be the set minimizing the MDL
cost, and let I denote the solution computed by
Algorithm GraphMap. Then, L(|Q|, |I|, I,Q) ≤
L(|Q|, |I∗|, I∗,Q) + log(n), where n is the number of
seed nodes.

Proof. Recall the definitions of g(s), f(s, v) and A
above. Then,

L(|Q|, k, I,Q) = − log
(∑
s∈V

φ(s, I)
)

+A ,

where φ(s, I) = g(s)
∏
v∈I f(s, v). Note that φ(s, I)

is maximized for the set Is(k) defined in Algorithm
GraphMap, since this consists of the set of top k−|Q|
nodes in V \ Q, with respect to the quantity f(s, v),
along with all nodes in Q. Therefore, we have

φ(s, Is(k)) ≥ φ(s, I∗)

Adding over all possible seed nodes, we have∑
s∈V

φ(s, Is(|I∗|)) ≥
∑
s∈V

φ(s, I∗)

which implies for some seed ŝ, we have

φ(ŝ, Iŝ(k)) ≥ 1

n

∑
s∈V

φ(s, I∗)

⇒ − log
(
φ(ŝ, Iŝ(k))

)
≤ − log

( 1

n

∑
s∈V

φ(s, I∗)
)

= − log
(∑
s∈V

φ(s, I∗)
)

+ log(n)

This, in turn, implies

L(|Q|, k, Iŝ(k),Q) = − log
(∑
s∈V

φ(s, Iŝ(k))
)

+A

≤ − log
(
φ(ŝ, Iŝ(k))

)
+A

≤ − log
(∑
s∈V

φ(s, I∗)
)

+ log(n) +A

≤ L(|Q|, k, I∗,Q) + log(n),

where the first inequality follows because φ(s, I) ≥
0 ∀ s, I, so that

∑
s∈V φ(s, Iŝ(k)) ≥ φ(ŝ, Iŝ(k)). Since

Algorithm 2 searches over all possible solution sizes k,
the theorem follows.

Lemma 3.1. Algorithm GraphMap runs in
O(|V |2 log |V |) time.

Proof. The quantities g(s) and f(s, v) defined earlier in
(3.9) can be computed for all s, v in O(|V |2) time, which
is done in lines 1 and 2. The sort step in line 4 takes
O(|V | log |V |) time. The inner for loop in lines 7-10
computes φ(s, Is(k)) defined above, and takes O(|V |)
time. Therefore, the for loop in the lines 3–11 takes
O(|V |2 log |V |) time. The remainder of the steps take
O(|V |2) time.

4 Experiments

4.1 Setup We briefly describe our setup next. All
the experiments were conducted on a hybrid cluster
with over 2500 nodes and 28 TB of RAM. GraphMap
takes roughly 30 minutes to complete for any setting
in a single node for our JAM dataset (See Section 4.2),
which is very practical. Our code is publicly available
for academic purposes1.

4.2 Datasets We evaluate performance of our algo-
rithms on various synthetic and real networks. We dis-
cuss our datasets in detail next.
Synthetic Dataset. We created a simple 60 × 60
grid where each cell is considered as a node in a road
network, leading to 3600 nodes. We assumed an uniform

1Code and data at: http://tiny.cc/GraphMap
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seed probability distribution across all nodes. We
computed conditional failure probabilities (PlainCF)
between pair of nodes (s, v) based on Geographically
Correlated Failure (GCF) Model [1] i.e., if s is the seed
node then

(4.11) F (v | s) = 1− d(s, v)

where d(s, v) is a distance function d : V × V → [0, 1].
In our case, d(·, ·) is the Manhattan distance between
the nodes normalized by the maximum distance. We
will refer to this set of conditional failure probabilities
as GCF.
Real Datasets. We created three datasets from real
world node failure logs in transportation and power-
grid networks. We use failure logs in road networks
from WAZE alerts data, which is publicly available
on the City of Boston’s website2. These alerts have
been reported by users of WAZE3 between Monday 23rd

February, 2015 and Sunday 1st March, 2015. WAZE
is a popular crowd sourced application commonly used
for navigation. The alerts in the dataset are spatially
distributed across Boston, Cambridge, and Brook-line
regions of Massachusetts. The alerts include different
types failures such as traffic jam, extreme weather,
accidents, and road closures. Additionally, the latitude
and longitude of the affected locations, and start and
end time of the alert is also given. From these alerts,
we created two datasets based on traffic jam (JAM) and
extreme weather (WEATHER).

Similarly, we use a list of Electric disturbance
events from Energy.gov4—this list includes reported
events of electric emergencies and disturbance in power
supply from 2002 to 2015. Each event log contains
information regarding date and time of the beginning
and restoration of the event, geographical areas affected
by the event, number of customer affected, and so on.
We created POWER-GRID dataset from the log of
electric emergencies and disturbances.
Network Creation. As discussed in Section 2.1, we need
to define the seed probability and pair-wise conditional
failure probability distributions over all nodes in the
network. This is done in the following manner. For
WAZE alert data, we have partitioned the complete
geographical region occupied by these failures by using
a 119×78 grid as shown in Figure 2a, where each cell is
0.00166◦ square and acts as a node in our virtual road
network. For the POWER-GRID data, each location
referred in the dataset acts as a node.
Seed Probability. Let nv = 1 denote if node v is failed, 0
otherwise as discussed above, and let N =

∑
v nv denote

2https://data.cityofboston.gov/
3https://www.waze.com/
4https://www.oe.netl.doe.gov/

the total number of failures across all nodes. We define
the seed probabilities as:

(4.12) ps(v) =
nv
N

Conditional Failure Probabilities. We construct a Bi-
nary Failure State Time Series (BinTS) for a span of 7
days, by using the temporal information that is available
from WAZE alerts data. This time series gives a binary
(0 or 1) value for each time step which represents the
failure state of the respective node i.e., BinTSv(t) = 1
implies that there is at-least one failure in v at time
t. Using BinTS we were able to compute the pair-wise
conditional failure probabilities for our datasets in the
following manner. For two nodes v1 and v2, we define
the Plain Conditional Failure Probability (PlainCF) of
v1 given v2 as the ratio between number of time steps
in which both v1 and v2 are failed (i.e. with value 1 in
BinTS) to the number of time steps in which only v2 is
failed.

PlainCF (v1 | v2) =
|{t|∀t, BinTSv1 (t) = 1&BinTSv2 (t) = 1}|

|{t|∀t, BinTSv2 (t) = 1}|

We study two more synthetic conditional failure
probabilities, named URandCF and NRandCF, for each
dataset; these are defined in the following manner:
URandCF is an arbitrary sample from a uniform dis-
tribution and NRandCF is an arbitrary sample from a
normal distribution (0.1×N (5, 1)) over the values [0, 1].
We follow the same procedure to generate conditional
probability failures for the POWER-GRID dataset.
Descriptions. Following the above steps, we finally get
the three different datasets below1.
JAM: This is a dataset that we created from WAZE
alerts data using data of failure type JAM. The resultant
dataset consists of a road network with 2650 nodes
along with seed probability distribution and conditional
failure probabilities as discussed above. Figure 2b
shows the spatial distribution of the seed probabilities
and Figure 2c shows distribution of conditional failure
probabilities for a randomly chosen seed.
WEATHER: Similar to the JAM dataset this dataset
is created by using WEATHERHAZARD failure data
from WAZE alerts data. The resultant dataset consists
of a road network with 1520 nodes along with seed prob-
ability distribution and conditional failure probabilities
computed as discussed above.
POWER-GRID: As mentioned earlier, we created
this dataset from the log of electrical emergencies and
disturbances. We filtered out the events in the log
which were not related to loss of electric service. For
this dataset, which consists of 24 nodes, we computed
failure likelihood and conditional failure probabilities
are before.
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(a): Partitions of Boston region occu-
pied by WAZE alerts.

(b): Spatial distribution of seed
probabilities.

(c): Distribution of PlainCF for a
random seed node.

Figure 2: JAM dataset created from WAZE alerts data of Boston, Cambridge, Brook-line regions. The darker
regions indicate higher probability of failure. Note that the seed probability is higher closer to the city.

4.3 Performance evaluation In this section we dis-
cuss the performance of our algorithms against various
datasets that are described earlier across various val-
ues of γ ∈ [0.1, 1.0]. We examine the precision, re-
call and F1-score for GraphMap, compared with Lo-
calSearch. We observe that our MDL based approach
does indeed allow us to infer unknown/missing failures
in the network using the probes. The specific MDL for-
mulation we consider in Section 2.6, which includes |I|
in the model seems to perform much better than other
natural MDL formulations.
Comparison of GraphMap with LocalSearch.
Figure 3 presents a comparison of the trends in per-
formance of both algorithms on the JAM dataset with
PlainCF probabilities across γ ∈ [0.1, 1.0] and MDL
cost of their respective solutions. For both algorithms,
the performance varies with the sampling rate, γ. We
find that the solution computed by GraphMap has
lower MDL cost, compared to the baseline. One in-
teresting observation from Figure 3b is that the recall
for GraphMap decays with γ till 0.4 and then in-
creases. GraphMap has higher F1-score compared to
LocalSearch, for most values of γ. In the rest of our
evaluation, we only consider GraphMap.
Performance of GraphMap for different
datasets. Figures 4, 5, 6 and 7 present the per-
formance of Algorithm GraphMap for all the datasets,
and for the three different ways of defining conditional
probabilities. Across all these results, on average
we are able to find 80% of the failed nodes with
an average precision of 79% across various values of
γ ∈ [0.1, 1.0]. In other words, we are successful in
inferring a reasonable fraction of unknown/missing
failures in the network from partial set of observations
with a reasonable precision.

5 Related Work

Some of the different areas related to our work include
network and state inference in communication networks,
reconstructing networks from cascades and inferring
missing infections in the case of epidemics. We briefly
discuss these below.

The area of network tomography involves inferring
link states, such as delays and failures, in the Internet
and other communication networks; see, e.g., [8, 19, 10,
2, 4]. Probes such as end-to-end delays are the only
measurements that are available in such networks. At
an abstract level, the problem here involves solving for
the link delay vector x, given the measured delays across
the probes. This becomes a very challenging problem
and it is typically assumed that link characteristics such
as delays are modeled as independent random variables
with known distributions, but potentially unknown
parameters. Xia et al. [19] solve this assuming link
delays are exponentially distributed. Ni et al. [10] study
different kinds of probing models, including multicast
probes which can give estimates on a tree, and develop
methods for inferring the topology in dynamic networks.
There has also been work on designing probes to infer
part of the network structure, as in [2].

Another related topic is the inference of the source
of an infection and other missing infections, in the
case of epidemic spread on networks. Epidemics are
modeled as stochastic processes, e.g., SI/SIR, in which
the infection spreads from an infected node to its
susceptible neighbors. Usually, only partial information
about the infections is known, and some of the problems
that have been studied include identifying the source of
an infection and finding other missing nodes [11, 13,
18, 17, 16]. The Minimum Description Length (MDL)
principle [6, 12] has been successfully used in [11, 18] for
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Figure 3: Performance of the (a) LocalSearch and (b) GraphMap on the JAM dataset with PlainCF
probabilities. The MDL costs of the solutions is shown in (c).
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Figure 4: Performance of GraphMap on the Synthetic Grid Dataset with (a) GCF, (b) URandCF, and (c)
NRandCF conditional probabilities.
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Figure 5: Performance of GraphMap on the JAM Dataset with (a) PlainCF, (b) URandCF, and (c) NRandCF
conditional probabilities.
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Figure 6: Performance of GraphMap on the WEATHER Dataset with (a) PlainCF, (b) URandCF, and (c)
NRandCF conditional probabilities.
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Figure 7: Performance of GraphMap on the Power Grid Dataset with (a) PlainCF, (b) URandCF, and (c)
NRandCF conditional probabilities.
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these problems, whereas [17] develop an MLE method.
As discussed before, these methods do not give rigorous
approximation algorithms or give it only for special
graphs (like k-regular trees). In contrast, we give an
additive approximation for our MDL formulation for
any graph.

A class of failure models, different from the SI/SIR
type of epidemics, has been studied extensively, moti-
vated by settings such as disaster events, e.g., [3, 1, 14].
These studies assume an initial failure, and subsequent
failures whose probability is correlated with the source.
For instance, in [1], the probability p(j|i) that node j
fails, given that i is the source is a function of the dis-
tance from i to j, with the probabilities decaying with
the distance. Our work is motivated by these models.

6 Conclusions

Our results show that an MDL based approach is quite
useful in the problem of inferring missing failures in set-
tings with correlated failures. This motivates its use in
other inference problems with partial information. We
have considered the simplest notion of a probe here—
information about specific nodes which have failed. Ex-
tending our work to other kinds of probes (like connec-
tivity queries) is an interesting and natural problem.
Inferring the state of the network using such probes,
and supporting additional queries are interesting prob-
lems. Further we have assumed there are no observa-
tional errors—designing robust and provable algorithms
in face of errors is also interesting future work.
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