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Abstract—Surveillance of epidemic outbreaks and spread from
social media is an important tool for governments and public
health authorities. Machine learning techniques for nowcasting
the flu have made significant inroads into correlating social media
trends to case counts and prevalence of epidemics in a population.
There is a disconnect between data-driven methods for forecasting
flu incidence and epidemiological models that adopt a state
based understanding of transitions, that can lead to sub-optimal
predictions. Furthermore, models for epidemiological activity and
social activity like on Twitter predict different shapes and have
important differences. We propose a temporal topic model to
capture hidden states of a user from his tweets and aggregate
states in a geographical region for better estimation of trends. We
show that our approach helps fill the gap between phenomenolog-
ical methods for disease surveillance and epidemiological models.
We validate this approach by modeling the flu using Twitter in
multiple countries of South America. We demonstrate that our
model can consistently outperform plain vocabulary assessment
in flu case-count predictions, and at the same time get better
flu-peak predictions than competitors. We also show that our
fine-grained modeling can reconcile some contrasting behaviors
between epidemiological and social models.

I. INTRODUCTION

Online web searches and social media such as Twitter
and Facebook have emerged as surrogate data sources for
monitoring and forecasting the rise of public health epidemics.
The celebrated example of such surrogate sources is arguably
Google Flu Trends where user query volume for a handcrafted
vocabulary of keywords is harnessed to yield estimates of flu
case counts. Such surrogates thus provide an easy-to-observe,
indirect, approach to understanding population-level events.

The recent research has brought intense scrutiny on Google
Flu Trends, often negative. Lazer et al. [17] provide many
reasons for Google Flu Trend’s lackluster performance. Some
of these reasons are institutional (e.g., a cloud of secrecy
about which keywords are used in the model, affecting repro-
ducibility and verification); some are operational (e.g., lack
of periodic re-training); others could be indicative of more
systemic problems, e.g., that the vocabulary for tracking might
evolve over time, or that greater care is needed to distinguish
which aspects of search query volume should be used in
modeling. These problems are not unique to Google Flu
Trends, and can resurface with other surveillance strategies.

Our work is motivated by such considerations and we
aim to better bridge the gap between syndromic surveillance
strategies and contagion-based epidemiological modeling such
as SI, SIR, and SEIS [12]. In particular, while models of social
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activity have been inspired by epidemiological research, recent
work [20], [26], [23] has shown that there are key aspects along
which they differ from biological contagions. Specifically,
evidence from [20], [9] shows that the activity profile (or the
number new people using a hashtag/keyword) shows a power-
law drop—in contrast standard epidemiological models exhibit
an exponential drop [12]. Also, there is some evidence that
hashtags of different topics show an exposure curve which is
not monotonic, resembling a complex contagion [23].

We show that we can reconcile the apparently contrasting
behaviors with a finer-grained modeling of biological phases
as inferred from tweets. For example, sample tweets “Down
with flu. Not going to school.” and “Recovered from flu after
5 day, now going to the beach” denote different states of the
users (also see Figure I(a)). We argue that correcting for which
epidemiological state a user belongs, the social and biological
activity time-series are actually similar. Hashtags and keywords
merge users belonging to different epidemiological phases.
We separate these states by using a temporal topic model. In
addition, thanks to the finer-grained modeling, our approach
gets better predictions of the incidence of flu-cases than direct
keyword counting and also sometimes gets better predictions of
flu-peaks than sophisticated methods like Google Flu Trends.

Our contributions are:

1) We propose a temporal topic model (HFSTM) for in-
ferring hidden biological states for users, and an EM-
based learning algorithm (HFSTM-FIT) for modeling
the hidden epidemiological state of a user.

2) We show via extensive experiments using tweets
from South America that our learner indeed learns
meaningful word distributions and state transitions.
Further, our method can better forecast the flu-trend
as well as flu-peaks.

3) Finally, we show how once corrected for the state in-
formation using our learnt model, the social contagion
activity profile fits better with standard epidemiolog-
ical models.

Our work can be seen as a stepping stone to better
understanding of contagions that occur in both biological and
social spheres.

II. RELATED WORK

The most closely related work comes from three areas; we
discuss them next in this section.

Epidemiology: In the epidemiological domain, various
compartmental models (which explicitly model states of each
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(b) State transition learnt by our model HFSTM.

Fig. 1. Comparison between expected state transition and the state transitions learnt by our model. (a) A toy example showing possible user states and a tweet
associated with each state. (b) State transition probabilities learnt by HFSTM (see Sec. III).

user) are employed to study the characteristics of flu diffu-
sion [12]. Some of the best known examples of such models
are SI [14], SIR [3], and SEIS [19], which are regularly used
to model true flu case counts. Recent works [20], [26] show
that the social activity profiles do not exactly follow these
models, and propose several other variants. Note that different
epidemiological models are used for different diseases; in this
paper we focus on flu since it is a very common disease.

Social Media: The study of topic and word trends in social
media has become an important predictor for real world events.
These trends are much easier and faster to get from social
media than from traditional methods (e.g. reliable CDC case
counts typically have lags of more than a month). For disease
prediction and forecasting, especially for flu, various methods
have been proposed for large-scale [10] and small-scale pre-
dictions [8]. Furthermore, there are prediction methods that are
solely based on Twitter [18]. Sadelik et al. [24] studied the
impact of interactions to personal health. Lamb et al. [15]
discriminate tweets that express awareness of the flu from those
with actual infections, and train a classifier by which a user can
tell if the author of a tweet is really infected. While their work
is single-tweet-based, ours takes the tweet history into account.
Achrekar et al. [1], and Lampos et al. [16] fit a flu trend
by analysing tweets via various methods including keyword
analysis, and compare their flu trend fitting with CDC results.
These methods are very coarse-grained—they do not provide
understanding on how the health state of a user changes over
time, while we link the change of tweet pattern with standard
epidemiological models.

Topic Models: We use a variation of topic models for
our purposes. LDA (Latent Dirichlet Allocation) models are
very popular for topic-modeling and many variations have
been proposed. For modeling health related topics Paul et
al. proposed the Ailment Topic Aspect Model (ATAM+) [22]
to capture various ailments from a corpus of tweets. This
model does not consider the temporal information of the text
messages (as we do in this paper). A variant of LDA is
temporal topic models which can be categorized into two
groups: Markovian and non-Markov. Wang et al. [25] propose
a non-Markov continuous time model for topic trends which
can not be used to predict the user states. The Markovian
methods [11], [2] only capture transition of topics within a
document or a message, they do not capture state transition
of users across tweets. There are two other variants of LDA
[4], [13] studying the evolution of topic distributions over time,
while our model studies the transition between a set of topic
distributions which does not evolve over time. Moreover, their

TABLE I. SYMBOLS USED FOR HFSTM.

Sym. Meaning Sym. Meaning
S Flu state St Flu state for the t-th tweet
ψ State switching variable ε Hyper-parameter for ψ
π Initial state distribution η Transition prob. matrix
x Birnary switcher between

flu and non-flu words
l Binary background

switching variable
λ Hyper-parameter for l c Hyper-parameter for x
θ Topic distribution φ Topic-Word distribution
α Hyper-parameter for top-

ics
Nt Number of words in t-th

tweet
β Dirichlet parameter for

word distribution
Tu Number of tweets for u-th

user
w Word variable z Non-flu related topic
wtn n-th word in t-th tweet K Number of states

models do not capture the topic changes between consecutive
messages of a user. Another recent related work is by
Yang et al. [27] who combine keyword distributions with a
shortest path algorithm to find out a monotonically increasing
stage progression of an event sequence. In our problem, flu
states changing are not monotonic, and we learn the transition
probabilities, which their method does not.

III. MODEL FORMULATION

We formulate our model in this section. Our hypothesis
is that a tweet stream generated by a user can be used
to capture the underlying health condition of that particular
user. We assume that the health state (e.g., flu state) of a
user remains the same within a tweet. In this study we use
our model to capture the flu states of a user which are S
(healthy), E (exposed), or I (infected). We base it on the
classic flu-like Susceptible-Exposed-Infected-Susceptible SEIS
epidemiological model, which models the different states of a
person throughout the lifecycle of the infection. We propose
a Hidden Flu-State from Tweet Model HFSTM for modeling
states from user’s tweets.

HFSTM: A tweet is a collection of words and a tweet stream
is a collection of tweets. The number of tweets varies across
users and the number of words in a tweet varies within and
across users. We denote the t-th tweet of a user by Ot =
〈wt1, wt2, . . . , wtNt〉 where wtn denotes the n-th word in the
tweet and Nt denotes the total number of words in the tweet.
Let Ou = 〈O1, O2, . . . , OTu

〉 be the tweet stream generated by
a user u and Su = 〈S1, S2, . . . , STu

〉 be the underlying state
of the stream Ou. Here Tu denotes the length of the stream
of a user u and St ∈ {S,E, I}. Let O = 〈O1,O2, . . . ,OU 〉
be the collection of tweets for U users, from which we aim
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Fig. 2. (a) Plate notation for HFSTM: The variable S captures the hidden
state of the user in which the user generated this tweet. The LDA-like topic
variable z capture non-flu related words. (b) HFSTM state variables expanded:
Each message Ot is associated with a state St, which remains same for flu-
related words in Ot. Switching from one state to another is controlled by a
binary switching variable ψ and the next state St+1 from the current state St

is drawn using transition probabilities η.

Algorithm 1 Generator(λ, c, η, π, α, β, ε)
Input: A set of parameters.
Output: Topics and flu state of each user.

1. Set the background switching binomial λ
2. Choose φ ∼ Dir(β) for the non-flu topics, flu states, and background

distribution
3. Choose initial state s1 ∼ Mult(π)
4. Draw each row of η using Dir(α) B Trans. matrix
5. Draw θ ∼ Dir(α)
6. for each tweet 1 ≤ t ≤ Tu do
7. if not the 1st tweet in the corpus then
8. Draw ψt ∼ Ber(ε)
9. if ψt = 0 then

10. St ← St−1

11. else
12. St ← Mult(ηSt−1

)
13. for Each word wi, 1 ≤ i ≤ Nt do
14. Draw li ∈ {0, 1} ∼ Ber(λ) B Background switcher.
15. if li = 0 then
16. Draw wi ∼ Mult(φB) B Background distribution.
17. else
18. Draw xi ∈ {0, 1} ∼ Ber(c)
19. if xi = 0 then
20. Draw zi ∼ Mult(θ)
21. Draw wi ∼ Mult(φzi ) B Non-flu related distribution.
22. else
23. Draw wi ∼ Mult(φst ) B Flu related distribution.

to learn the parameters of our model. We use K to denote the
number of states that St can take (see Table I for notations).

Our model—Hidden Flu-State from Tweet model HFSTM—
is a probabilistic graphical model which captures the tweet
structure of a flu-related tweet. It is a temporal topic model
for predicting the state sequence of a user given Ou and is
illustrated in Fig. 2(a). An expansion of the plate notation for
the same is illustrated in Fig. 2(b). In this model each word w
for Ot ∈ Ou is generated when the user is in a particular flu
state (St) or the user talks about a non-flu related topic (zi).
For example, in the message “I have caught the flu. Feeling
feverish. Not going to school” the words ‘flu’, ‘feverish’,
‘caught’ are generated because the user is in the “infected”
state and the words ‘going’ and ‘school’ are generated by non-
flu related topics. Sometimes a word can be generated due to
noise which is also accounted for in our model.

A generative process for the model is shown in Alg. 1.
A binary variable l determines whether or not a word is

generated from a background distribution. The binary variable
x determines whether the current word is generated from non-
flu related topics or flu-state distributions. The value of l and
x are generated from Bernoulli distributions parameterized by
λ and c. The non-flu related topics follow the LDA like
mechanism [5]. The state for the first tweet is drawn from
the initial distribution denoted by π. We assume that the states
of the subsequent tweets are generated due to a state transition
or by copying from the previous state which is determined by
a binary switching variable ψ with prior parameter ε. The state
St (for 2 ≤ t ≤ Tu) of the subsequent tweets are drawn from
transition matrix η and previous state St−1 with probability ε
or copied from the previous state St−1 with probability 1− ε.
Once the state of a tweet is determined, a word is generated
from a word distribution defined by that state.

Let Ot = (w1, . . . , wN ) be the words that are generated
when a user is in a particular state. The likelihood of the words
generated by a user in that state is given below.

p(Ou) =
∑
St

p(Ou, St) =
∑
St

p(O1 . . . , OT , St)

=
∑
St

∑
St−1

p(Ot|St)p(St|St−1)p(Ot−1, St−1)

Andrews et al. [2] show that this likelihood function is
intractable. In our model the unknown parameters that we want
to learn are H = {ε, π, η, φ, λ, c}. The posterior distributions
over these unknown variables are also intractable since the
posterior distributuions depend on the likelihood function. We
hence develop an EM-based algorithm HFSTM-FIT to estimate
the parameters H of our model. We omit the equations here
due to lack of space.

IV. EXPERIMENTS

A. Experimental Set-up

First we describe our set-up in more detail. Our algorithms
were implemented in Python1.

1) Choosing Vocabulary: To ensure that the most important
words (directly flu-related words like ‘flu’, ‘cold’, ‘conges-
tion’, etc.) are included in our vocabulary, we first build a
flu-related keyword list. Chakraborty et al. [7] construct a flu-
keyword list, by first manually setting a seed set, then using
two methods (pseudo-query and correlation analysis, see their
paper for more details) to expand this seed set, and then finally
pruning it to a 114 words keyword list. Note that this keyword
list can be updated automatically if the flu vocabulary evolves.
For our experiments, we include the same 114 keywords from
Chakraborty et al. [7] first. We then include 116 words selected
by our in-house experts, which are not directly related to flu,
but may implicitly imply the state of a user, such as ‘hopeless’,
‘bed’, ‘die’, ‘sad’, etc. We use this mixture of automatically
and manually generated (a total of 230) words1, including a
generic block-word which we map all other words to, as the
vocabulary for HFSTM.

1Code and vocabulary can be found here: http://people.cs.vt.edu/liangzhe/
code/hfstm.html

http://people.cs.vt.edu/liangzhe/code/hfstm.html
http://people.cs.vt.edu/liangzhe/code/hfstm.html


2) Datasets: We collected tweets generated from 15 coun-
tries in South America for the period Dec, 2012—Jan, 2014 us-
ing Datasift’s Twitter collection service2, which pre-processes
the data and detects the geo-location for tweets.

We create a training dataset TrainData, using the tweets
from Jun 20, 2013 to Aug 06, 2013, which contains a peak of
infections. We created two evaluation sets: TestPeriod-1, using
tweets from Dec 01, 2012 to Jul 08, 2013, which contains
the rising part of a flu infection peak; TestPeriod-2, from
Nov 10, 2013 to Jan 26, 2014, which is from a different flu
season. For creating training data we perform keyword and
phrase checking (from our vocabulary) to identify a set of
users who have potentially tweeted a flu-related tweet. We then
fetch their tweet streams from Twitter API for the training
period. We then use the Datasift service to preprocessing
these tweets (stemming, lemmatization, etc.), and get our final
training dataset of roughly 34,000 tweets.

We collected data from The Pan American Health Organi-
zation (PAHO [21]) for the ground-truth reference dataset for
flu case counts (trends). PAHO plays the same role in South
America as CDC does in the USA. Note that PAHO gives
only per-week counts.

B. Word distritution for each flu-state

In short, our model learns meaningful topic word distribu-
tion for the flu states. See Figure 3–it shows a word cloud for
each flu-state (we renormalized each word distribution after
removing the generic block-word) learned by HFSTM. The
most frequent words in each state matches well with the S,
E and I states in epidemiology. As shown in the figure, the S
state has normal words, the E state starts to gather words which
indicate an exposure or approaching to the disease (’pain’,
’throat’), while the I state gets many typical flu-related words
(’flu’, ’fever’).

C. State transition

We show the state transition diagram learned by our
model in Figure I(b). The initial state probability learned
is [0.98, 0.02, 0.00], with high probability that a tweet starts
at state S, 0.02 probability it starts at state E, and almost
zero probability it starts at state I. When there’s a transition
occurring, a tweet in S state tends to stay in S state, a tweet in E
state is very likely to enter I state, while a tweet in I state either
stays infected or recovers and goes back to state S. All these
observations match closely with the standard epidemiological
SEIS model and intuition.

We also investigate the most-likely state sequence for each
user learned by our model. Using the probabilities learned by
our model, we take a sequence of tweets from one user, and use
MLE to estimate the state each tweet is in. Table II shows one
example of these transitions (we show the translated English
version here using Google Translate). As we can see, our
model is powerful enough to learn the Exposed state, before
the user is infectious. This also shows the accuracy of our
transition probabilities between the flu states.

2http://datasift.com/

Date Tweet Message State
29 Jul I hate pork chops - . - S
29 Jul I just want to leave my house to eat what I like

my
S

29 Jul I’m dying of sleep , headache and sore throat
but I will because I have mathematical

E

29 Jul That itv program brainwashed my mom , now
I want to take juice or eat cereal

S

29 Jul Everything would be perfect if I hurt your
throat

E

30 Jul I’m sure I have a fever because I hear weird
sounds

I

30 Jul I will survive because I am macabre empire I
30 Jul I want to go to the doctor - . - I
30 Jul Natural orange juice for the sick I
30 Jul spicy ham tkm I

TABLE II. EXAMPLE STATE SEQUENCE FOR A USER AS LEARNT FROM
OUR MODEL FROM REAL-WORLD TWEETS (TRANSLATED TO ENGLISH

USING GOOGLE TRANSLATE).
We used HFSTM to classify tweets to different states. As we can
see, our model can capture the difference between different states
and also the state transitions.

D. Fitting flu trend

Additionally, to test the predictive capability of our model,
we design a flu-case count prediction task on our test datasets,
after training on TrainData. We compare three models: (A)
the baseline model, which uses classical linear regression
techniques and word counts to predict case count numbers;
(B) our model HFSTM; and (C) GFT (Google Flu Trend). In
all three cases we use the same LASSO based linear regression
model to predict the number of cases of influenza like illnesses
recorded by PAHO (the ground-truth). We predict per-weekly
values as both PAHO and GFT give counts only on a weekly
basis.

The baseline model uses a set of features created from
the counts of 114 flu related words. We count the number
of occurrance of these words in the testing data, these word
counts were then collated into a single feature vector defined
as the number of tweets containing a single word per week.
We then regressed this set of counts to the PAHO case counts
for each week.

Our model improve upon the baseline model by incorpo-
rating the state of the user when a word was tweeted. In this
way we capture the context of a word/tweet as implied by
our HFSTM model. For our model, the feature vector is
created from a count of the top 20 words from each state,
appended to the word of each state, such that (cold, S) is
counted differently from (cold, I).

For GFT, we directly collect data from the Google Flu
Trends website3, and then apply the same regression as used
in other methods to predict the number of infection cases. Note
that as GFT is a state-of-the-art production system with highly
optimized proprietary vocabulary lists, we do not expect to
beat it consistently, yet as we describe later, we note some
interesting results.

Fig. 4(a) shows the aggregated cases for TestPeriod-1, and
Fig. 4(b) shows the smae cases for TestPeriod-2. We make

3http://www.google.org/flutrends

http://datasift.com/
http://www.google.org/flutrends


(a) S state (b) E state (c) I state

Fig. 3. The translated word cloud for the most probable words in the S, E and I state-topic distributions as learnt by HFSTM on TrainData. Words are originally
learned and inferred in Spanish, we then translate the result using google translate for the ease of understanding. The size of the word is proportional to its
probability in the corresponding topic distribution. Our model is able to tease out the differences in the word distributions between them.

several observations. Firstly, it is clear from the figures that
HFSTM outperforms the baseline method (of keyword count-
ing) in both cases—demonstrating that the state knowledge is
important and our model is carefully learning that information
correctly (the RMSE value difference between HFSTM and
the baseline for the 2 plots are about [250, 70] respectively).
Secondly, we also see that the predictions from our model
are comparable qualitatively to the state-of-the-art GFT pre-
dictions, even though our method was just implemented as a
research prototype without sophisticated optimizations. In fact,
for Figures 4(b), our model HFSTM even outperforms GFT
(with an RMSE difference of about 37). Significantly, in both
cases, GFT clearly overestimates the peak which our method
does not (this is an important issue with GFT which was also
documented and observed in context of another US flu season
as well [6]). These results show that including the epidemio-
logical state information of users via our model can potentially
benefit the prediction of infection cases dramatically.

E. Bridging the Social and the Epidemiological

(a) Total Keyword activity (log-log) (b) Key. Act. in learnt I state (lin-lin)

Fig. 5. Finer grained models help bridge the gap between social and
epidemiological activity models. (a) Power law describes keyword activity
better (in log-log axes to show the difference). (b) Exponential function
explains well the falling part of the curves for keyword activity (note the
linear axes).

Finally, as mentioned before, another key contribution of
our model is to try to bridge the gap between epidemiological
models and social activity models. An important recent obser-
vation [20], [26] was that the fall-part of any social activity
profile is power-law—in contrast to standard epidemiological
models like SEIR/SIR which give an exponential drop-off.
How can they be reconciled? Next we show that accounting
for the differences in the epidemiological state as learnt by
our model, these activity profiles look the same i.e. they drop-

off exponentially as expected from standard epidemiological
models.

To test our hypothesis, we chose commonly occurring flu-
keywords—enfermo (sick), fiebre (fever), dolor (pain)—for
the analysis. Firstly, we count the total occurrences of these
keywords in TestPeriod-1. For each keyword we identify the
falling part of its activity-curve. We then fit each curve with
power law and exponential function. As expected from [20],
Fig. 5(a) shows that the power-law function provides a much
better fit of the falling part of the curve compare to the expo-
nential function (RMSE scores for power law and exponential
functions are ∼ 320.31 and ∼ 469.35 respectively).

Secondly, to study the effect of our model on the activity
profiles of these keywords: we count total occurrences of
these keywords in the tweets which are tweeted only by
infected users (i.e. by those users we learn as being in I). In
contrast to the previous figure, we see that now exponential
fit (RMSE score ∼ 147.48) is much better than a power
law fit (RMSE score ∼ 275.50) (see Fig. 5(b))—matching
what we would expect from an epidemiological model like
SEIS. Thus this demonstrates that finer-grained modeling can
explain differences between the biological activity and the
social activity which is used as its proxy.

V. DISCUSSION AND CONCLUSION

Predicting the hidden state of a user from a sequence of
tweets is highly challenging. Through extensive experiments,
we showed how our method HFSTM can effectively model
hidden states of a user and the associated transitions, and use
it to improve flu-trend prediction, including avoiding recent
errors discovered in methods like Google Flu Trends. We
also showed how our model can reconcile seemingly different
behaviors from social and epidemiological models, lending a
state aware nature to data-driven models and simultaneously,
letting simulation oriented models estimate their state transi-
tion matrices by maximizing data likelihood.

HFSTM uses unsupervised topic modeling, which means
that the model itself does not discriminate between words.
This would be a problem when the vocabulary contains many
background words; where HFSTM may learn the unpredictable
states behind background words because of the sparsity of the
flu-related words. This is also the reason why we use a rather
‘clean’ vocabulary for HFSTM. One of the extensions we are
currently working on is how to robustly learn meaningful flu-
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Fig. 4. Evaluation for the two test scenarios: (a) TestPeriod-1 and (b) TestPeriod-2. Comparison of the week-to-week predictions against PAHO case counts
using the three models: baseline model, HFSTM, and GFT (Google Flu Trend). Our model outperforms the baseline, and is comparable to GFT, beating it in
case of (b). GFT overestimates the peak in both test periods.

related states and topics even with an enlarged and noisier
vocabulary.
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