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Abstract— Modeling failure dynamics within a power system
is a complex and challenging process due to multiple inter-
dependencies and convoluted inter-domain relationships. Subject
matter experts (SMEs) are interested in understanding these
failure dynamics for reducing the impact from future disasters
(i.e., losses or failures of power system components, such as
transmission lines). Contingency analysis (CA) tools enable such
’what-if’ scenario analyses to evaluate the impacts on the power
system. Analyzing all possible contingencies among N system
components can be computationally expensive. An important step
for performing CA is identifying a set of k ‘trigger’ components,
which when failed initially can significantly impact the overall
system by causing multiple failures. Currently SMEs focus on
identifying these trigger components by running expensive simu-
lations on all possible subsets, which quickly becomes infeasible.
Hence finding a relevant set of trigger components (contingencies)
rapidly to enable efficient and useful CA is crucial.

In a collaboration between computer scientists and power
system experts, we propose an efficient method for performing
CA by exploiting network inter-dependencies in power system
components. First, we construct a network with multiple electric
grid infrastructure components and dependencies as connections
among them. We reformulate the problem of finding a set of
trigger components as a problem of identifying critical nodes in
the network, which can cascade power failures through connected
nodes and cause significant damage to the network. To guide
the practical CA tools, we develop a network-based model with
a probabilistic edge-weights setup using intricate domain rules.
Then we conduct an empirical study on real power system data
in the US for both regional and national levels. Firstly, we use
power system datasets for the US to create a national-scale
domain-driven model. Secondly, we demonstrate that network-
based model outperforms the outputs from a real CA tool and
show on average 25× improved selection of contingencies, thereby
showcasing practical benefits to the power experts.

I. INTRODUCTION

Power systems within the US are highly interconnected and
hence vulnerable to multiple failures triggered by extreme
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events (such as a hurricane or a man-made disaster). Modeling
these failure dynamics for domain experts is very challenging,
due to the complex relationships and the possibility of multiple
contingencies. Contingencies (or unplanned outages) refer to
a loss or failure of part of the power system, such as a
transmission line, a generator substation etc. Usually domain
experts approach contingency analysis (CA) for measuring
grid reliability via the so-called ‘N-k’ analysis. This entails
trying out all possible combinations of k failures and then
subsequently evaluating the resulting impact using multiple
metrics (load loss, line loss etc). Clearly, this standard analysis
is very expensive, due to the combinatorial nature of the
possibilities as well as due to the expensive power simulations
which need to be run to evaluate an impact. For instance, even
for a very modest size of a power system with N ≈ 1000
components and k ≤ 4 leads to over billions of contingency
scenarios [1]. Hence, even power experts have proposed
several approaches to form an efficient list of contingencies
using power-flow simulation tools [1] and scale them using
high performance computing approaches [2], the issue is still
challenging.

Hence, we aim to develop a complementary pre-analysis
tool for the CA by considering the power system from a het-
erogeneous network perspective. In this network, the system
components can be considered as nodes, the interconnections
among the components as edges and failure dynamics as
cascading failures on the network. Secondly, instead of trying
out all possible failures of k components in the network
(similar to the N − k analysis), we propose to look for the k
‘trigger’ or crucial components whose failures can cause the
highest impact (largest number of failures) on the network.
Once found, these k trigger components allow domain experts
to focus on the most critical components, and can then be
used as an initial list of contingencies for further analysis with
expensive simulation tools [3].

In this paper, we develop a network-based method of finding
trigger components to help power system contingency analysis
(CA), collaborating between computer scientists and power
experts. In contrast to most network approaches which are
only structure-based [4], we propose a new domain-inspired
method that extracts the trigger nodes by capturing the various



failure dynamics of a power system efficiently. Our main
contributions are:

1) We propose a Domain Inspired Method in Heterogeneous
Network (DIHeN) for efficient CA through a heteroge-
neous network-based model considering dynamics over
graphs instead of purely structural analysis.

2) We develop a network failure model with a probabilistic
edge-weight setup inspired from complex domain-based
mechanisms.

3) We conduct a detailed empirical analysis over nation-
scale rich real electric grid infrastructure datasets. We find
that our approach can beat the state-of-the-art and also has
practical benefits to power experts. Further leveraging an
existing power simulation analysis, we also show that our
model can find trigger nodes and is beneficial for power-
flow simulation tools.

II. DIHEN METHODOLOGY

To analyze and prevent unplanned outages, the standard
approach of N − k analysis identifies trigger components that
cause a maximum impact on the system through multiple
failures quantified by metrics, such as line loss, load loss,
etc. This procedure of identifying such trigger components
becomes exponentially expensive with the high value of k
due to the combinatorial nature. Hence, we aim to find a set
of trigger components for the SMEs without the help of a
simulation tool. We can define our problem for finding trigger
components in a power system as:

Problem II.1 (Trigger Components in CA). Given a power
system of N components and a value k. Find a set S of
k contingencies or trigger components that can cause a
maximum impact on the system through failures.

To address this problem, considering the power system
as a heterogeneous network can be advantageous to capture
the interconnections among the components, model various
dynamics induced by the failures, and quantify the failure
impact on the component. Hence, we propose a complemen-
tary network-based method DIHeN instead of purely using
CA simulation tools, which are accurate but computationally
expensive. For DIHeN, we first construct a heterogeneous
network modeling the power system inter-dependency, develop
a network-based failure cascade model capturing different
failure dynamics inspired from the power domain, and finally
find trigger components in the heterogeneous network using
the failure model.

A. Network Construction

Constructing heterogeneous network from a power system
is a crucial task, as every type of system component is
available in geospatial format (shapefile). Each component is
represented as a geographic object, e.g., point, polygon, line,
etc. Since no inter-dependencies or relationships among the
components (geographic objects) are addressed explicitly in
the data, the researchers need to understand the geographic
object and hence define relationships among them. Electric

grid infrastructure consists of four types of components (Elec-
tric power plants, Transmission Substations, Transmission
lines, and Distribution substations) as they have the ability to
generate/distribute power [5] and hence are very important for
CA. We specifically select these four types of power system
components and collect from the publicly available critical
infrastructure (CI) data, HIFLD1 for the US [6]. We consider
each component as a node in the network. To capture the
inter-dependency (connection) across different types of com-
ponents, we use the nearest-neighbor based on geographical
distance between the components using a distance threshold
(25 kilometers) to limit creating dependencies between distant
components. To build the network from the geospatial format
we use an existing DOE tool by Lee et al. [7]. Table I shows
the four components (node) types in the network and their
functionalities. For the rest of the paper, we use the terms
component and node as interchangeable.

The connections among the different components are de-
scribed in the following, and a pictorial representation of
the structure of the network is shown in Fig. 1. We call a
node as parent if it supplies power to its connected node,
and child if it consumes power from its connected node.
The solid line represents corresponding one-one connection
among the nodes and a dashed line represents possible one
to many connections from parent to its neighboring children.

Component type Functionality
Electric Generates power which transmits to transmission

Power-plant (EP) substations for power distribution.
Transmission Connects two or more transmission lines.

Substations (TS)
Distribution Transform voltage and distributes power to consumers.

Substations (DS)
Transmission Transmits power from TS to TS or TS to DS.
Lines (TL)

TABLE I: Description of components of power systems

Fig. 1: Structure of a power
system network.

Electric Power-plants (EP):
An EP generates and dis-
tributes generated power to
multiple Transmission Sub-
stations (TS). We model an
EP node to have one or mul-
tiple children (TS nodes).
Transmission Substations
(TS): TS receives power
from one or multiple EPs,
and the received power is
transmitted to another TS
or a distribution substation
(DS). Thus, we model a TS
to have one or multiple EP
nodes as parents and one
or multiple TL nodes as
children.

1Homeland Infrastructure Foundation Level Data



Transmission Lines (TL): TL connects TS and TS or TS and
DS. Thus, A TL node may have TS nodes as its parents and
have DS or TS nodes as children.
Distribution Substations (DS): DS is the terminal com-
ponent, where it receives power from a TL and distributes
received power to multiple consumers within its service area.
Note that, we did not include consumer components in our
model. Each DS node has one or multiple parent TL nodes.

B. Failure Cascade Model

Modeling failure dynamics through trigger components is
difficult due to its complex mechanisms, and no single model
can capture all the dynamics [8]. E.g., failure in one com-
ponent may induce stress to its neighbors due to multiple
conditions, such as miscoordination of relays, line tripping,
overloading, etc. All these might result in cascading failures
to other components [9].

To model such failure, we leverage a network-based inde-
pendent cascade model that serves as complementary products
to the traditional power flow simulation tools to evaluate the
impacts of extreme events on power systems.

Independent Cascade (IC) Model: Given a directed
weighted network G, consisting of set of N nodes and E
edges. F represents set of edge-weights for corresponding
edges in E. IC model is a popular information diffusion
model [10] where once a node fails, in the next time step it
gets one chance to fail its connected child with the probability
equal to the connecting edge-weight. The cascade starts with
a given set of seed nodes that ’initially’ fails and ends when
there is no new failed node.

The main challenge in the IC model is to model the edge-
weights in the network for the cascade. Each edge-weight
represents an impact weight which denotes the probability that
a node may fail if its parent node fails. Our goal is to model
such probabilities in a realistic way, inspired from real power
systems.

C. Impact Weights

Impact Weights F is a set of edge-weights for the edges,
where each fij for the edge eij denotes the probability
of failure of a node nj if its parent node ni (node that
supplies power to nj) fails. In the power system, the failure
of a parent cannot guarantee failure of its child due to the
following properties: P1. A node will not fail if it can have a
consistent power supply through its other parents due to power
redistribution [9]. P2. The components in the power system
is associated with a protection system (e.g., circuit breakers)
which tries to isolate the failed component from the entire
network to prevent further damage due to a cascade. These
protection systems may break due to an increase of stress
induced by some conditions and only then retain the ability to
cascade [11], [12]. Considering these properties, we propose
two probability models for F .

1) Failure Propagation Probability.: To satisfy P1, we
make the following assumption: when a node of type t fails, its
children (nodes that consume power from it) can gain power

Fig. 2: Example of (a) Failure Propagation Probability (kij)
(b) Cascade-blocking probability (uj).

from other similar type parents. E.g., if a TS node fails, and
its child transmission line (TL) component has another parent
which is TS, it still may get power through redistribution and
hence this decreases the chance of failure of the TL. Thus,
for failure propagation probability we simply assume, a node
has less chance to fail if it has high number of parents. In
other words, a node with higher number of parents are less
vulnerable (see example Fig. 2(a) for computing edge-weights
using kij). Using this assumption, for each node we first
identify the type and the number of parents. For each edge
eij , the probability that a node ni can propagate its failure to
node nj is:

kij =
1∑

z∈par(vj) I(ti, tz)
(1)

where, par(vj) are the parents of vj , tz is the type of node z
and I(., .) denotes if two nodes are of same type, i.e.,

I(ti, tj) =

{
1 both nodes are same type, i.e., ti == tj

0 otherwise
(2)

2) Cascade-blocking Probability.: For satisfying P2, we
model each node to have a probability to prevent cascading
failure to its child. In other words, the node cannot cause any
further damage and cascade stops. To capture such blocking
probability, we come up with two approaches, one where
domain knowledge is involved and provided by the SMEs,
the other is based on a realistic assumption but inspired from
the scenarios of power simulations. The latter is applicable to
the cases where we cannot apply the SME rule.

Trans-Volt: Recommended by the SMEs, for modeling uij
we use the following domain knowledge : Transmission Lines
> 330KV are typically deemed critical since they supply
more power2. Failure of these nodes can highly impact its
connected nodes3. Based on this knowledge, we come up with
the following assumption: The high voltage TL nodes if failed
induce more stress on its child to cascade which cause less
chance of preventing (blocking) the cascade [13]. Following
this assumption, we first collect the associated voltage of

2https://www.nerc.com/pa/Stand/Reliability%20Standards/CIP-002-
5.1a.pdf

3https://www.nerc.com/pa/Stand/Reliability%20Standards/CIP-014-1.pdf



every TL node. We set a threshold value V as maximum
voltage of all the TL nodes in a network. For edge eij , with
the connecting nodes ni and nj , if ni is a TL node then
uij = |vi−V |

V , where vi is the associated voltage of node ni
and V is the threshold voltage value in the network. High
voltage TL (vi) leads to lower |vi − V |, hence decrease the
chance of blocking a cascade (uij).

Sibling-Dist: For the edges where above domain knowledge
is not applicable, i.e., no TL nodes in the connecting edge,
we make the following assumption: the cascade blocking
probability of a node nj is higher if the node has fewer number
of siblings (nodes other than nj which consumes power from
the same parent as ni) [11]. If ni fails, it impacts on all its
children. This induces stress on the protection system on all
the siblings of nj . As a result, few siblings cause less stress
on the protection system to deal with, hence more chance to
block the cascade. On the other hand, more siblings cause
more stress on the protection system to deal with, hence less
chance to block the cascade. Based on this assumption, we
design uij of node nj in edge eij as the following,

uij = U(0, b) (3)

b =
1∑

z∈Ch(par(nj)) nj
I(tz, tj)

(4)

where tj is the type of node nj , U(.) is the randomly sample
from uniform distribution, par(nj) gives all the parents of nj ,
and Ch(par(.)) represents the union of all the child node of
all the parents in par(.), i.e., the siblings of the node in (.).
Since, there is no specific domain knowledge involved about
impact of protection system for a particular number of siblings,
we randomly select uij from a uniform distribution based on
the number of siblings the node has. The fewer sibling yields
higher values of b, hence the higher expectation of uij (see
example in Fig. 2) (b).

3) Finalizing F .: kij and uij are based on two independent
properties P1 and P2 and fij is based on the probability of
both the events occur simultaneously. Suppose, ni and nj are
the connecting nodes of eij . If ni fails, then probability that
it will fail nj is fij = kij(1 − uij), where 1 − uij is the
probability that nj can cascade.

D. Problem Formulation

We formulate Problem II.1 as identifying a set of critical
nodes which can cause maximum downstream damage to the
network due to cascading failures.

Problem II.2 (Critical Nodes in Network). Given, a hetero-
geneous power system network G of N components, a set of
edge-weights F on G, the IC model M which uses F , and a
budget k.

Find the best set S∗ of k nodes that can cause maximum
downstream damage on G using M , i.e.,

argmax
S

E[S] =
∑

ni∈N−S
P (ni|S). (5)

P (ni|S) is the probability that a node ni can fail in the IC,
given the initially failed nodes S. N represents all the nodes
in G. E[S] represents the expected number of nodes that may
fail given S.

E. Finding Critical Nodes S

To find the set of critical nodes as mentioned in the Prob-
lem II-D is a well-known Influence Maximization (IM) prob-
lem using IC, where E[S] is submodular [10]. To iteratively
select k nodes from the network and to solve IM faster on a
large network we use the Degree-Discount-IC heuristic [14]
over greedy [10], [15]. Our framework for DIHeN is shown
in Algorithm 1.

Input: D: Geographic shapefiles of the components of
power system,
k: a budget
Result: S: a set of k critical components in D .
1. S = {}
2. Construct heterogeneous network G from D as

mentioned in Sec. II-A
3. Compute Impact weight F in G
foreach eijk ∈ E do

Calculate Failure Propagation probability kij
mentioned in Sec. II-C1

Calculate Cascading-blocking probability uij
mentioned in Sec. II-C2

Compute fij = kij(1− uij)
end
4. Construct the IC model M using F .
5. Select k nodes of S using M solving Problem II.2.
6. return S

Algorithm 1: DIHeN Framework.

III. EMPIRICAL STUDY

In this section, we design various experiments to evaluate
our results showing DIHeN is able to find critical nodes and
has practical benefits to CA tools. All experiments herein
were conducted on a 4 Xeon E7-4850 CPU with 512 GB of
1066Mhz main memory. We implement DIHeN using Python.
Our analytic code and an anonymized version of data have
been released for research purposes [16].
Datasets. We construct both national and regional level hetero-
geneous networks based on the US power system. We consider
different sectors of energy infrastructures, such as Bulk Elec-
tricity System (BES). We collect different categories of power
system components pertaining to BES. Every component in
a category also contains multiple power attributes (such as
voltage, load, generated power, etc.). Following, we describe
each network in detail.
• National-level Distance-centric: We construct the net-

work using the US national level geospatial critical in-
frastructure (CI) HIFLD [6]. For the edges, we define
the inter-dependencies among the components based on
the geographical distance between two components with
a distance threshold of 25km as described in Sec. II-A.



• National-level Domain-centric: For the network, the com-
ponents and inter-dependencies (edges) are entirely sup-
plied by the SMEs in contrast to using the geographical
distance.

• Regional-level: The national power system in the US is
comprised of three major interconnections of electric grid
infrastructures which operate independently from each
other, Eastern Interconnection (EI), Western Interconnec-
tion (WI), and Electric Reliability Council of Texas (ER-
COT) [17]. We construct networks using HIFLD data [6]
based on two major interconnections- EI (encompasses
the eastern region) and ERCOT (entire Texas state covers
most part of ERCOT).

We aim to show that DIHeN is adaptable for both national
and regional networks consisting of different interconnection
types. The overview of the networks are shown in Table II.
Research Questions. Our goal is to demonstrate that S found
through DIHeN provides a good solution to Problem II.2.
Specifically we want to address:
Q1. Does S fail large number of nodes to satisfy the goal of
maximum downstream damage?
Q2. Does S contains critical nodes useful for contingency
analysis?
Q3. How do different modules of F in DIHeN affect the
performance on S?
Q4. Does DIHeN enable the nodes to use as trigger compo-
nents in real power simulations?

Q1, Q2 are aligned with the goal of the output mentioned
in Problem II.1 and Problem II.2. We plan to showcase the
performance of DIHeN on multiple power system datasets
and compare with different non-trivial models. For Q3, we
analyze the performance of different variants of F in DIHeN
as described in Sec. II-C. With Q4, we are interested to
retrospect whether DIHeN provides S, that experts can use
for the power simulations.
Measures of Success. For evaluating S, we choose the
following metrics:

M1. failure spread: Motivated from the use of IC (Sec. II-B)
for selecting S, we plan to measure in terms of the
expected number of nodes failed in the network by S,
i.e., failure spread= E[#n|S].

M2. coverage gain: To measure that nodes in S are criti-
cal, we use the criticality criteria of power components
identified by the SMEs [18]. We select these criteria
based on availability of the attributes of the HIFLD data.
Table III shows the expert identified criteria, description,
and networks that used the the corresponding criteria. For
each criteria Rx and for each node ni ∈ N , let Z(ni, Rx)
be 1 if ni satisfies Rx and 0 otherwise. We define the
coverage gain for criteria Rx as the ratio of coverage of
S for Rx to the expected number of randomly selected
k nodes that satisfy Rx:

MGain =

∑
si∈S Z(si, Rx)/k∑

ni∈N Z(ni, Rx)/N
(6)

Baselines. For baselines, we consider popular network-based
model to demonstrate utility of DIHeN. We check the per-
formance of DIHeN against the popular network analysis
techniques (1-3) and models with uniform edge-weights (4).

1) PageRank (PR): Compute PageRank scores of nodes
using edge-weights as our F . Pick k nodes with highest
PageRank scores.

2) Degree-Centrality (DC): Pick k nodes with highest de-
gree.

3) Critical Score (CSxy): Model developed to quantify
criticality of nodes in US national level critical infras-
tructure network by computing a weighted average of the
PageRank scores and the PageRank scores in the reverse
graph (reverse PageRank) of each node [19]. We pick k
nodes with the highest CSxy (x, y denotes the weight
used for each score).

4) IC with edge-weight x ∈ [0, 1] (ICx): Use same edge-
weight x for all the edges and select k nodes running the
DIHeN framework.

A. Effectiveness (Q1-Q2)

We show that DIHeN is effective in finding S for which (i)
the expected number of nodes that will fail given failure of S
is large (in terms of M1) and (ii) contains critical nodes and
can be used for CA (in terms of M2).
(i) Evaluation using M1. For Q1, the S selected by DIHeN
and the baselines, we run our IC model M . Fig. 3 shows failure
spread (vertical axis) with the increase of k (horizontal axis)
on the Distance-centric network (we do not show the results
for other networks, as the scenario is the same for all other
networks). Our model outperforms all the baselines and the
difference of failure spread grows as k increases.

Fig. 3: Evaluating S in terms of M1 : failure spread vs k.
High failure spread is the better. DIHeN outperforms all
the baselines shown in (a) and (b).

(ii) Evaluation using M2. For Q2, similar to the above
experiments, we aim to show performance of DIHeN against
the baselines as well as varying k on different G. Fig. 4 shows
the performance of DIHeN comparing with the baselines using
M2 on all the datasets. The horizontal axis represents the
datasets mentioned in Table II and vertical axis represents
MGain for each model. Each bar represents a model. For the
space constraints, we only show the performance of ICx for
the best values of MGain, i.e., x = 1, 0.5, 0.2.



Network Name of Total Total Components Description
type Network Nodes Edges Type Size

National Distance-centric 118956 82750 1. EP 10564 Entire power system of the US.
2. TS 1806
3. TL 41600
4. DS 64986

National Domain-centric 93579 135951 1. EP 10732 Power system of US based
2. TS 3553 on the interconnections taken from SMEs.
3. TL 51425
4. DS 27869

Regional EI 77124 51851 1. EP 4138 A major interconnection
2. TS 6705 encompassing most of the
3. TL 25610 area east of US.
4. DS 40671

Regional ERCOT 9719 6294 1. EP 375 Entire TX covers most of ERCOT,
2. TS 646 a very different infrastructure
3. TL 3456 compared to EI and WI [17].
4. DS 5242

TABLE II: Overview of the networks utilized for the study.

Criteria Criteria Description Networks
Name Used
R1 V ≥ 345KV Transmission lines ≥ 345KV Distance-centric,

are deemed critical since Domain-centric,
they serve > 1000MVA load2 EI, ERCOT

R2 Near user-defined critical nodes A power system component that Distance-centric,
is one hop away from a Domain-centric,
user-defined arbitrary critical component EI, ERCOT

R3 V ≥ 345KV and Components of ≥ 345KV which are Distance-centric,
near user-defined critical node near a user-defined arbitrary critical component Domain-centric,

and located within one or two hop away EI, ERCOT
R4 L ≥ 300MW Components that supply Domain-centric

& load ≥ 300MW are critical
R5 Near-NG A power system component that is one Domain-centric

hop away from a Natural gas station

TABLE III: Criticality criteria for M2.

(a)

(b)

Fig. 4: Performance of DIHeN comparing with baselines in terms of the criticality criteria R1-R3 on different datasets.
Fig.(a)-(c) shows the comparison for the baseline models with uniform edge-weights. Fig.(d)-(f) shows comparison
against the popular network analysis approaches. Here, we consider k = 500 for Domain-centric network, and for all
other datasets we consider k = 50. High MGain is the better.



Our model consistently outperforms all the baselines on
the national networks for R1 − R3. Among all the networks,
DIHeN best performs 3.5× in R1, 2.75× in R2, and 5x
in R3

4. For R3, DIHeN is very high and around 240×
coverage gain (in the Distance-centric network) which no
other baselines can perform. For R4 − R5, DIHeN also
outperforms the other baselines on Domain-centric network
(see Fig. 5). The Distance-centric national network and the
regional networks EI and ERCOT do not contain the necessary
attributes to evaluate R4, R5. Fig. 4 (a)-(c) also indicates that
for the baseline IC1, when failure of initial nodes cause every
connected nodes in the cascade to fail, (i.e., a large spread of
failure) this can not guarantee critical nodes useful for CA.

Fig. 5: Domain-centric net-
work for R4 −R5.

For EI, we outperform all
the baselines in R1, R3. For
R2, our MGain are compara-
ble in 5 out of 8 baselines. On
average ratio of our MGain

with respect to other base-
lines is 1.95× in R1, 1.18×
in R2, and 1.67× in R3.

For ERCOT, DIHeN
consistently outperforms the
baselines in R1 (5 out of 8
baselines). MGain for all the
baseline models and DIHeN
is 0 in R3 due to the presence of very sparse data (only 11
nodes in the network satisfy R3). In R2 DIHeN provides
consistent MGain on all the network based models (performs
best in 2 out 8 baselines). Overall, mean ratio of our model
gain to the baseline is 3.45× in R1 and .83× in R2.

Fig. 6(a)- 6(c) shows the performance of our model on dif-
ferent G varying k, for R1-R3 (Table III). Each bar represents
a power system network. The horizontal axis represents size of
k and vertical axis represents MGain for each Rx. The higher
MGain, the better the performance of DIHeN.

DIHeN consistently provides good set of critical nodes for
both national and regional networks and average MGain across
all the networks is 39.3× better than cherry picking the nodes
for R1, 4.87× for R2, and 108× for R3. For R1, the results
show decrease of MGain with the increase of k, although
the number of nodes in S satisfy R1 increases with k. This
indicates that we can get a good set of S satisfying R1, even
for small value of k. For R3, MGain for DIHeN is low in
ERCOT (0 for k < 200), since number of nodes satisfy R3

in ERCOT is very scarce (only 11 nodes out of 9500 satisfy
R3).

B. Ablation Studies (Q3)

To evaluate the impact of different variants of F , we
describe the models based on each of these variants (Sec. II-C).
Note that, we only set the edge-weights using each of the fol-
lowing model and select the top k nodes using our framework.

4The values are found considering the maximum value of ratio of MGain

of DIHeN and MGain of a baseline model, i.e., max
MDIHeN

gain

Mbaseline
gain

, Mbaseline
gain 6= 0

1. Failure-propagating (FP): Set the edge-weights, fij =
kij using Failure Propagation probability to check satis-
fying P1 is not enough.

2. Cascade-blocking (CB): Set edge-weights, fij = (1−uij)
using Cascade-blocking probability (Sec. II-C) to check
satisfying P2 is not enough.

3. No expert rule (NER): Assign the edge-weights fij =
kij ∗(1−uj) using Eq. 3 for all the edges to check effect
of using only model Sibling-Dist (sec. II-C2).

4. Random Gaussian (RG): Select edge-weights randomly
from the Gaussian distribution N(µ, σ), where µ is the
mean of DIHeN F and σ is the variance obtained from
DIHeN F . We intend to compare our domain inspired
meaningful method of edge selection (F ) over random
selection of edge-weights.

Using M2, in Fig. 7, we compare performance of DIHeN
against the models consists of different variants of F on all
the national and regional datasets.

Our model outperforms all other models in the national
network and shows competitive performance on the regional
network for criticality criteria R1-R3. For checking the consis-
tency of our performance, we run the DIHeN framework for
each model 1000 times. From Fig. 7(a)-(c), the low deviation
f MGain (black vertical lines on each model) shows MGain

of all the models are consistent. In the regional networks EI
and ERCOT, DIHeN performs almost similar comparing with
CB. This might be due to sparse graph unlike Distance-centric
and Domain-centric national network, where most components
have only one parent, hence kij = 1. Hence, edge-weights F
of DIHeN is similar weights as model CB (uij).
Remark: Note that, if we only consider the nodes which apply
to criticality criteria R1−R5, the total number of components
is 7000 in the Domain-centric national network. Analyzing
combination of 7000 nodes for CA is also exponential. On
the other hand, if we choose nodes randomly from 7000
nodes, it can not guarantee the failure of a large number of
nodes downstream. Hence, our goal behind using MGain is
to provide the SMEs sufficient reason to filter the nodes that
maybe important for CA.

C. Qualitative Case-study: Power-flow Analysis (Q4)

In this section, we show that the selected nodes using
DIHeN can be used for real CA simulations by leveraging high
fidelity simulation analysis on the power system of ERCOT
conducted through an in-depth study by the SMEs. Due to
privacy concern we cannot share the reported results.
Power-flow analysis. For the analysis, the SMEs choose
81 high voltage transmission lines (= 345KV ). They first
conduct a base case analysis, i.e., ideal scenario when no
components are removed (i.e., nothing has failed). From the
analysis, several parameters are recorded, e.g., the total load
due to power flow, number of voltage violation (rise of drop
of voltage), the convergence of the simulation, etc.). Next,
multiple simulation scenarios are created, each time removing
a different subset of transmission lines. The parameters are
compared with the base case scenario (amount of load loss,



(a) R1 (b) R2 (c) R3

Fig. 6: Performance of DIHeN for the criticality criteria R1-R3 mentioned in Table III using M2 on different networks
in terms of MGain vs size of k for each Rx. High MGain is the better.

Fig. 7: Ablation study on different variants of F on national and regional network for criticality criteria R1 −R3. For
each model, the black vertical bars show standard deviation of MGain running DIHeN framework 1000 iterations. In
ERCOT, for R3, Mgain = 0 for all the models, hence not present in Fig. (c)

number and nature of components which cause voltage viola-
tion, the simulation is convergent, etc.). Based on the above
comparisons, the experts rank each transmission line. DS
components that give the worst number of voltage violations
are also identified. If a simulation does not converge, the SMEs
consider such scenario as highly critical.

Our goal is to check the nodes in S with the expert provided
components in ERCOT. However, due to privacy concerns we
are unable to collect the exact ERCOT components used by
the utility company. Hence, we plan to use our ERCOT power
system data as mentioned in the Table II. Due to the difference
of these two datasets, we cannot compare top k nodes in S
using DIHeN with the SMEs provided rank of transmission
lines. Instead, we aim to qualitatively evaluate S in terms of
the available attributes of the nodes as provided by HIFLD [6].
We also record the attributes of the components reported by the
SMEs in the scenario analysis. Table IV shows these attributes,
its descriptions, and coverage gain (MGain) for each of the
following attributes R.
Analyzing detected nodes. Table. IV shows performance of
DIHeN using M2 for R6−R8. Note, all the nodes detected by
DIHeN are transmission lines (TL) which the SMEs selected
to use for their analysis (removing different sets of TL). For
R7, we analyze voltage of the DS connected with our selected
TL which failed due to S. Among all the nodes failed due to
cascade by S, 35% of them are DS nodes with high voltage
≥ 138KV . In all the attributes R6 − R8, DIHeN gain on
average is 25.3 (mean MGain based on the results shown

Name Attributes Rationale MGain

R6 TL = 345KV The transmission lines ranked 17.44×
by DEs are of 345KV .

R7 DS ≥ 138KV In most analysis DS ≥ 138KV 37.28×
cause worse voltage violations.

R8 DS ≥ 138KV& Using combination of 345KV 21.15×
TL = 345KV TLs results to fail its

associated DS ≥ 138KV
and results simulation
to not converge.

TABLE IV: Attributes for case-study and DIHeN perfor-
mance.

in Table IV). For R8, which is a potential attribute for a
simulation to not converge, coverage gain of DIHeN is 21.2×.
This indicates that selected nodes through DIHeN are suitable
as trigger nodes for contingency analysis.

D. Scalability Experiment

We record the run-times (in seconds) varying size of the net-
work (G) and number of seeds (k). To perform the experiments
on larger network than the datasets we use (Table II), we create
synthetic networks using multiple layers of consumer node
types using HIFLD dataset [6]. To ensure similar topology
as power system, we use the connections as supplied by the
SMEs at Oak Ridge National Laboratory. Table V(a) shows
runtime of DIHeN in seconds varying size of G (N + |F |)
keeping constant k = 50. We observe on a large network
(N + |F | > 2M ), DIHeN finish in approx. 13 mins and for
k = 500 in 35 mins.



E. User interface

Fig. 8: Snapshot of our UI (shows critical nodes that fall
in the trajectory path of Hurricane Elsa)

To guide the real CA simulations and improve usability
we design a web-based user interface (UI) that integrates our
proposed method DIHeN, all the baselines. Fig. 8 shows a
snippet of the UI. We can view the network on a geography
map. The blue trajectory in the map shows a hurricane shape
where the number of critical nodes at different locations
is shown in a circle. The top left corner in Fig. provides
users to select different components they want to consider for
the network construction. The bottom left corner shows the
ranking range of the selected components. The table below
the geography map shows the criticality rank and description
of each node in the network.

IV. RELATED WORK

Power system Models: Several literature have been proposed
to facilitate vulnerability analysis in power systems through
network-based models [20], [21], [22]. Hunag et al. [23]
presented a visual analytic tool for decision support system
through network-based operations. Flueck et al. [24] con-
ducted a study on the state-of-the-art models to capture the in-
teraction of relays and protection with dynamics of cascading
failures. To facilitate vulnerability analysis in transmission net-
work, Yang et al. proposed to construct cascading fault graph
viewing it from network-science perspective [25]. To speed
up contingency analysis approach Gorton et al. proposed a
hybrid computing approach using HPC [26]. Recently, various
centrality measures have been proposed to serve CA through
a direct and fast pre-analysis tool by looking at the structural
graph analysis [27], [28]. To the best of our knowledge all
the literature are restricted to one type of component of power

TABLE V: Scalability Exper-
iment varying size of G.

Nodes (N ) Edges (|F |) Time (sec.)

179218 500746 151.57

231359 572216 192.33

234586 578255 178.63

269547 698866 1207.15

565084 1849856 804.54

TABLE VI: Scalability
Experiment varying k

k Run-Time (sec.)

50 164.42

100 422.33

200 821.47

300 1358.69

500 2124.19

system instead considering a heterogeneous network on large
scale national level power system. Besides, no methods have
been proposed to identify critical components for CA through
fine tuning the edge-weights through domain rules.
Critical Infrastructure (CI) Networks: Several literature
have been proposed to quantify importance of nodes in
CI network using well-known network-based centrality mea-
sures [19], [29], [30]. Tabassum et al. conducted a study on
the state-of-the-art research and tools to address computational
challenges in CIs using machine learning techniques [31].
Dzangier et al. developed a framework to address the recovery
coupling in a multilayered CI collecting recovery time of
millions of power grid failures [32]. Lee et al. first proposed
how to construct a CIs network from geographic shapefiles
and discussed how to compute importance of nodes using
CI network reachability score [7]. Chen et al. proposed a
new path-based cascade model in CI to find critical trans-
mission lines using path-based cascade model [33]. However,
their path-based model not efficient to use in large-scale
power network. Recently Oliva et al. proposed an approach
to measure criticality indices of CI nodes by aggregating
different centrality metrics through Logarithmic Least Squares
method [34]. However, their model finds critical nodes through
structural graph analysis in contrast to our dynamic model.

V. CONCLUSION AND DISCUSSIONS

We proposed a complementary network-based framework
DIHeN for power system CA to identify a set of contin-
gencies (‘trigger nodes’) using a heterogeneous network. For
the first time, we provide a capability within power system
inter-dependency analysis that identifies critical nodes within
an inter-dependent network not using network connectivity
(similar to baseline model IC1), instead use the knowledge
provided by the subject matter experts. We first construct a
heterogeneous network using large-scale real power system US
data for national and regional levels. DIHeN provides a good
set of nodes that cause significant failures in the network and
are critical for CA. We consistently outperform the baselines
in both national and regional level networks. Qualitatively, we
find a set of trigger nodes (25.38× coverage gain) that has
similar attributes as the experts used for their CA simulations.
Our results contain 21% components (number of components
among all the selected nodes by DIHeN) that have the similar
attributes (R6−R8 in Table IV) which the SMEs consider as
a potential contributor to a highly critical scenario. DIHeN is
based on carefully designed variants inspired from the real
CA simulation tools. Our model is very fast, and all the
experiments (except computing error bars) finish within 5-15
minutes. The speed and applicability of results are promising
towards real-time use of DIHeN in evaluating geographically
expansive threats, where large failures are expected but cannot
be predicted/assessed in reasonable time frames nor with any
expectation of solution convergence using traditional CA tools.

There are several interesting directions to further study and
guide CA through DIHeN. First, the network construction may
play an important role in DIHeN performance. E.g., while our



performance was promising in all the datasets, the gain of our
model in ERCOT was not as high as the others. This might be
due to the sparsity of the network across critical components
(e.g., fewer high voltage nodes). Investigating this aspect
across regional grids more in detail would be interesting. Next,
although we use multiple criticality criteria for evaluating
S, there are several user-defined and domain-specific criteria
that can be incorporated to tailor the methodology to specific
analysis needs. Using such new criticality criteria can be
more beneficial for selective CA and hence is an interesting
direction of study. As a part of future work, we plan to
analyze DIHeN quantitatively with the ground-truth trigger
components collected by real CA simulations.
Acknowledgements: This paper is based on work partially
supported by NSF (Expeditions CCF-1918770, CAREER
IIS-2028586, RAPID IIS-2027862, Medium IIS-1955883,
Medium IIS-2106961, CCF-2115126, NRT DGE-1545362),
CDC MInD program, ORNL, faculty award from Facebook,
and funds/computing resources from Georgia Tech. We thank
Nikhil Muralidhar for his thoughtful comments during initial
time of the research.

REFERENCES

[1] Q. Chen and J. D. McCalley, “Identifying high risk n-k contingencies
for online security assessment,” IEEE Transactions on Power Systems,
vol. 20, no. 2, pp. 823–834, 2005.

[2] Z. Huang, Y. Chen, and J. Nieplocha, “Massive contingency analysis
with high performance computing,” in 2009 IEEE power & energy
society general meeting. IEEE, 2009, pp. 1–8.

[3] “Psse – transmission planning and analysis psse power
system simulation and modeling software.” [Online].
Available: https://new.siemens.com/global/en/products/energy/energy-
automation-and-smart-grid/pss-software/pss-e.html

[4] J. Banerjee, A. Das, and A. Sen, “A survey of interdependency models
for critical infrastructure networks,” arXiv preprint arXiv:1702.05407,
2017.

[5] S. M. Kaplan, “Electric power transmission: background and policy
issues.” Library of Congress, Congressional Research Service, 2009.

[6] “Homeland Infrastructure Foundation-Level Data (HIFLD).” [Online].
Available: https://hifld-geoplatform.opendata.arcgis.com/

[7] S. Lee, L. Chen, S. Duan, S. Chinthavali, M. Shankar, and B. A. Prakash,
“Urban-net: A network-based infrastructure monitoring and analysis
system for emergency management and public safety,” in 2016 IEEE
International Conference on Big Data (Big Data). IEEE, 2016, pp.
2600–2609.

[8] J. Song, E. Cotilla-Sanchez, G. Ghanavati, and P. D. Hines, “Dynamic
modeling of cascading failure in power systems,” IEEE Transactions on
Power Systems, vol. 31, no. 3, pp. 2085–2095, 2015.

[9] H. Guo, C. Zheng, H. H.-C. Iu, and T. Fernando, “A critical review of
cascading failure analysis and modeling of power system,” Renewable
and Sustainable Energy Reviews, vol. 80, pp. 9–22, 2017.

[10] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network,” in Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2003, pp. 137–146.

[11] M. Jazaeri, M. Farzinfar, and F. Razavi, “Evaluation of the impacts of
relay coordination on power system reliability,” International Transac-
tions on Electrical Energy Systems, vol. 25, no. 12, pp. 3408–3421,
2015.

[12] D. C. Elizondo, J. de La Ree, A. G. Phadke, and S. Horowitz,
“Hidden failures in protection systems and their impact on wide-area
disturbances,” in 2001 IEEE Power Engineering Society Winter Meeting.
Conference Proceedings (Cat. No. 01CH37194), vol. 2. IEEE, 2001,
pp. 710–714.

[13] “Addressing security and reliability concerns of large power trans-
formers.” [Online]. Available: https://www.energy.gov/oe/addressing-
security-and-reliability-concerns-large-power-transformers

[14] W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization in
social networks,” in Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2009, pp. 199–
208.

[15] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen,
and N. Glance, “Cost-effective outbreak detection in networks,” in
Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2007, pp. 420–429.

[16] “Code repository,” 2021. [Online]. Available:
https://github.com/AdityaLab/DIHEN

[17] “U.S. electric system is made up of interconnections
and balancing authorities - Today in Energy - U.S.
Energy Information Administration (EIA).” [Online]. Available:
https://www.eia.gov/todayinenergy/detail.php?id=27152

[18] “Bes cyber system categorization.” [Online]. Avail-
able: https://www.nerc.com/pa/Stand/Reliability%20Standards/CIP-002-
5.1a.pdf

[19] P. Devineni, B. Kay, H. Lu, A. Tabassum, S. Chintavali, and S. M. Lee,
“Toward quantifying vulnerabilities in critical infrastructure systems,” in
2020 IEEE International Conference on Big Data (Big Data). IEEE,
2020, pp. 2884–2890.

[20] M. Bao, Y. Ding, C. Shao, Y. Yang, and P. Wang, “Nodal reliability
evaluation of interdependent gas and power systems considering cas-
cading effects,” IEEE Transactions on Smart Grid, vol. 11, no. 5, pp.
4090–4104, 2020.

[21] I. B. Sperstad, E. H. Solvang, and S. H. Jakobsen, “A graph-based
modelling framework for vulnerability analysis of critical sequences of
events in power systems,” International Journal of Electrical Power &
Energy Systems, vol. 125, p. 106408, 2021.

[22] R. S. Biswas, A. Pal, T. Werho, and V. Vittal, “A graph theoretic ap-
proach to power system vulnerability identification,” IEEE Transactions
on Power Systems, vol. 36, no. 2, pp. 923–935, 2020.

[23] Z. Huang, P. C. Wong, P. Mackey, Y. Chen, J. Ma, K. P. Schneider, and
F. L. Greitzer, “Managing complex network operation with predictive
analytics.” in AAAI Spring Symposium: Technosocial Predictive Analyt-
ics, 2009, pp. 59–65.

[24] A. J. Flueck, I. Dobson, Z. Huang, N. E. Wu, R. Yao, and G. Zweigle,
“Dynamics and protection in cascading outages,” in 2020 IEEE Power
& Energy Society General Meeting (PESGM). IEEE, 2020, pp. 1–5.

[25] S. Yang, W. Chen, X. Zhang, C. Liang, H. Wang, and W. Cui, “A graph-
based model for transmission network vulnerability analysis,” IEEE
Systems Journal, vol. 14, no. 1, pp. 1447–1456, 2019.

[26] I. Gorton, Z. Huang, Y. Chen, B. Kalahar, S. Jin, D. Chavarrı́a-Miranda,
D. Baxter, and J. Feo, “A high-performance hybrid computing approach
to massive contingency analysis in the power grid,” in 2009 Fifth IEEE
International Conference on e-Science. IEEE, 2009, pp. 277–283.

[27] E. P. R. Coelho, M. H. M. Paiva, M. E. V. Segatto, and G. Caporossi, “A
new approach for contingency analysis based on centrality measures,”
IEEE Systems Journal, vol. 13, no. 2, pp. 1915–1923, 2018.

[28] M. R. Narimani, H. Huang, A. Umunnakwe, Z. Mao, A. Sahu,
S. Zonouz, and K. Davis, “Generalized contingency analysis based
on graph theory and line outage distribution factor,” arXiv preprint
arXiv:2007.07009, 2020.

[29] H. Yang and S. An, “Critical nodes identification in complex networks,”
Symmetry, vol. 12, no. 1, p. 123, 2020.

[30] T. Verma, W. Ellens, and R. E. Kooij, “Context-independent centrality
measures underestimate the vulnerability of power grids,” International
Journal of Critical Infrastructures 7, vol. 11, no. 1, pp. 62–81, 2015.

[31] A. Tabassum, S. Chinthavali, L. Chen, and A. Prakash, “Data mining
critical infrastructure systems: Models and tools,” IEEE Intelligent
Informatics Bulletin, vol. 19, no. 2, 2018.

[32] M. M. Danziger and A.-L. Barabási, “Recovery coupling in multilayer
networks,” arXiv preprint arXiv:2011.04623, 2020.

[33] L. Chen, X. Xu, S. Lee, S. Duan, A. G. Tarditi, S. Chinthavali, and
B. A. Prakash, “Hotspots: Failure cascades on heterogeneous critical
infrastructure networks,” in Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management, 2017, pp. 1599–1607.

[34] G. Oliva, A. E. Amideo, S. Starita, R. Setola, and M. P. Scaparra,
“Aggregating centrality rankings: A novel approach to detect critical
infrastructure vulnerabilities,” in International Conference on Critical
Information Infrastructures Security. Springer, 2019, pp. 57–68.


