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Given a graph, like a social/computer network or the blogosphere, in which an infection (or meme or

virus) has been spreading for some time, how to select the k best nodes for immunization/quarantining
immediately? Most previous works for controlling propagation (say via immunization) have concentrated on
developing strategies for vaccination pre-emptively before the start of the epidemic. While very useful to

provide insights in to which baseline policies can best control an infection, they may not be ideal to make
real-time decisions as the infection is progressing.

In this paper, we study how to immunize healthy nodes, in presence of already infected nodes. Efficient

algorithms for such a problem can help public-health experts make more informed choices, tailoring their
decisions to the actual distribution of the epidemic on the ground. First we formulate the Data-Aware
Vaccination problem, and prove it is NP-hard and also that it is hard to approximate. Secondly, we propose

three effective polynomial-time heuristics DAVA, DAVA-prune and DAVA-fast, of varying degrees of efficiency
and performance. Finally, we also demonstrate the scalability and effectiveness of our algorithms through
extensive experiments on multiple real networks including large epidemiology datasets (containing millions
of interactions). Our algorithms show substantial gains of up to 10 times more healthy nodes at the end
against many other intuitive and non-trivial competitors.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications–Data mining

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Graph Mining, Social Networks, Immunization, Diffusion

1. INTRODUCTION

Given a contact network, and some already infected people, which healthy persons should
be immediately given vaccines to best control the epidemic? Similarly, given the follower-
followee network and some rumors spreading on it, which accounts should Twitter decide
to suspend/delete/warn to stop the misinformation as fast as possible? Propagation-style
processes on graphs/networks are important tools to model situations of interest in real-
life like in epidemiology, in cyber-security and in social-systems. For instance, infectious
diseases spreading over contact networks, malware propagating over computer networks,
spam/rumors spreading on Twitter, all are propagation-style processes. Hence, controlling
and stopping such malicious propagation is a natural and significant problem with a large
number of applications.

In this paper, we focus on the problem of how to select the best nodes to distribute
vaccines on a network, when the disease has already spread over some parts of the network.
Intuitively speaking, we want to study how to best build a “wall” in the network against
an already spreading contagion. We assume the vaccines completely “immunize” nodes, i.e.
they are removed from the network. Most previous work in immunization is only interested
in designing algorithms and policies for so-called pre-emptive immunization (see Section 2
for a detailed survey), in which they try to find the best baseline strategies for controlling
an epidemic before the epidemic has started spreading. As we discuss later, these papers
assume that the epidemic can start anywhere on the network at any random point. However,
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in practice this assumption is almost never realistic—e.g., children and elderly are more
susceptible to the flu, and peoples working with animals are more likely to get infected (say in
case of avian flu), and hence a flu-epidemic tends to start from them. Therefore, though such
pre-emptive policies give us good baseline strategies, they may not be ideal for responsive
decision-making if an epidemic has already infected some people. In this paper we study a
novel “data-aware” immunization setting, which takes into account the current infections at
the time of vaccine allocation. Efficient solutions for such a Data-Aware Vaccination problem
can help policy makers make better decisions about how to best distribute vaccines. For
example, one way our algorithms can eventually enable “real-time’ vaccine allocation is by
re-running our algorithms every hour or every day. The Data-Aware Vaccination problem
can naturally be applied to cyber security and social media as well: which computers should
install the anti-virus software first when malware attacks have already spread; which user
accounts should be blocked in Twitter to best stop spam/rumor spreading?

Our main contributions include:

(1) Problem Formulation and Hardness Results: We formulate the Data-Aware Vaccination
(DAV ) problem on arbitrary graphs as an combinatorial optimization problem, and
prove it is NP-hard and also hard to approximate within an absolute error. To the best
of our knowledge, we are the first to address the Data-Aware Vaccination problem on
arbitrary graphs (please see Related Work for more details).

(2) Effective Algorithms: We first propose DAVA-tree, an optimal algorithm for merged trees,
then extend it to general graphs (DAVA algorithm). Furthermore, using careful pruning
techniques, we present a faster algorithm, DAVA-prune, which gives the same result as
DAVA. In addition, we provide a third heuristic, DAVA-fast, which is the fastest algorithm
with some loss of performance.

(3) Experimental Evaluation: We present extensive experiments against several popular
immunization algorithms on multiple real networks (including large epidemiological
social-contact graphs), and demonstrate the efficacy and scalability of our algorithms.
Our algorithms outperform other competitors by up to 10 times in both magnitude
and running-time. In addition to that, we also compare DAVA-prune and DAVA-fast:
DAVA-prune saves up to 16k more nodes than DAVA-fast in large networks while DAVA-fast
is the fastest algorithm.

Outline of the paper: The rest of the paper is organized as follows. We first discuss
the related work in Section 2, and then introduce some preliminaries in Section 3. Section 4
formulates the Data-Aware Vaccination problem, and Section 5 discusses the computational
complexity of our problem. Section 6 presents our algorithms and Section 7 extends our
algorithms to the Susceptible-Infected-Recovered (SIR) model. Experimental results on
several datasets are in Section 8. We finally discuss future work in Section 9 and conclude in
Section 10.

2. RELATED WORK

This paper is an extended version of our previous paper on the same topic [Zhang and
Prakash 2014]. In this journal version, we add more related works including Epidemiology,
Other Optimization Problems and Information Dissemination. In addition, we give all
non-trivial proofs of our theorems including proofs for the hardness result and correctness
of our algorithms. Furthermore, we propose a new prune algorithm, which is as accurate
as the best algorithm we had proposed in the conference version of the paper but clearly
much faster. And we give a more accurate way to extend our algorithms to the Susceptible-
Infected-Recovered (SIR) model. Finally, in addition to giving more experimental results,
we also show the effectiveness of our new algorithm.

To the best of our knowledge, except for [Zhang and Prakash 2014], the problem of
immunization under the more realistic setting of prior knowledge on general arbitrary graphs,
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has not been studied before. However, our work is related to the following previous work:
Epidemiology, Immunization Algorithms, Other Optimization Problems and Information
Dissemination.

Epidemiology. The canonical textbooks and surveys discussing fundamental epidemiological
models like Susceptible-Infected-Susceptible (SIS) and Susceptible-Infected-Recovered (SIR)
include [Hethcote 2000; Anderson and May 1991]. Much work has gone into in finding
epidemic thresholds (minimum virulence of a virus which results in an epidemic) for a variety
of networks [Bailey 1975; McKendrick 1925; Anderson and May 1991; Kephart and White
1993; Pastor-Satorras and Vespignani 2002; Wang et al. 2003; Ganesh et al. 2005; Prakash
et al. 2011; Meyers et al. 2006]. All the epidemic threshold work assume that the infection
will start from a random node—in contrast, in the DAV problem we are given a specific set
I0 of initially infected nodes.

Immunization Algorithms. Most existing work deals with identifying optimal strategies
for vaccine allocation before the start of the epidemic. The acquaintance immunization
policy for both the SIS and SIR model has been proposed (pick a random person, and
immunize one of its neighbors at random) [Cohen et al. 2003]. In addition, immunization
problems on power law graphs have been studied as well [Madar et al. 2004] [Briesemeister
et al. 2003]. E-mail virus attack on power-law computer networks under the so-called SHIR
model (Susceptible, Hidden, Infectious, Recovered) has been described [Hayashi et al. 2003].
The problem of blocking links in a network has been studied in [Kimura et al. 2008]. And
two formulations of the problem of blocking a contagion through edge removals under the
model of discrete dynamical systems [Barrett et al. 2008] are given [Kuhlman et al. 2013].
A game of inoculation given a cost and loss-risk, under random starting points has been
studied [Aspnes et al. 2005]. In a similar vein, a O(log n) approximation for minimizing
‘societal’ cost under a deterministic propagation model was given [Chen et al. 2010a]. Based
on minimizing the largest eigenvalue of the graph, pre-emptive node-based and edge-based
immunization algorithms for arbitrary graphs have been propose [Tong et al. 2010; Tong
et al. 2012].

Many works also compare the performance of a limited number of pre-determined se-
quences of interventions (like school closure, antiviral for treatment) within simulation
models [Ferguson et al. 2006; Halloran et al. 2008; Dushoff et al. 2007].

Finally, the most related work is [Yaesoubi and Cohen 2011]’s paper, which considered
the prior information of the epidemic. However, their problem is a special case of ours: they
only focused on the dynamic policies under a simplified flu-like model, and a homogenous
population (i.e. every node is connected to every other node).

To summarize, none of the above works look into the problem of distributing vaccines
under prior information and on arbitrary networks.

Other Optimization Problems. There are several node importance measurements in pre-
vious literature, including betweeness centrality [Freeman 1977; Newman 2005], PageR-
ank [Page et al. 1998], HITS [Kleinberg 1998], and coreness score [Moody and White 2003].
The Independent Cascade (IC) model and the influence maximization problem has been
introduced [Kempe et al. 2003], which aims to select nodes to infect so as to maximize the
number of nodes infected at the end. In contrast, we want to pick nodes to be removed,
under given information, to minimize the expected number of infections. Further, their goal
was submodular and hence approximable, but as we show later, our problem does not have
that structure. Other remotely related work is outbreak detection [Leskovec et al. 2007a]
and finding most-likely ‘culprits’ of an infection [Lappas et al. 2010; Prakash et al. 2012]
in the sense that we aim to select a subset of ‘important’ nodes on graphs. All the above
problems are also known to be NP-hard.
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Information Dissemination. Virus propagation is closely related to many important
dynamic processes on graphs. The recent paper [Matsubara et al. 2012] gave a Susceptible-
Infected (SI) based model (related to the IC model used in this paper) unifying patterns in
the popularity of online content exhibits on Twitter, blog posts and news media articles.
There is also a lot of research interest in studying other types of information dissemination
processes on large graphs, including (a) information cascades [Bikhchandani et al. 1992;
Goldenberg et al. 2001], (b) blog propagations [Leskovec et al. 2007b; Gruhl et al. 2004;
Kumar et al. 2003; Richardson and Domingos 2002], and (c) viral marketing and product
penetration [Leskovec et al. 2006]. For example, we can choose which Facebook or Twitter
accounts should be blocked to stop an existing spam and/or a rumor.

3. PRELIMINARIES

We give preliminaries in this section. Table I lists the main symbols used in the paper.

Table I. Terms and Symbols

Symbol Definition and Description

DAV Data-Aware Vaccination problem
SIR Susceptible-Infected-Recovered Model
IC Independent Cascade Model

G(V,E) graph G with nodes set V and edges set E
I0 infected nodes set
pu,v propagation probability from node u to v
δ curing probability for the SIR model
k the budget (i.e., #nodes to give vaccines to)
S set of nodes selected for vaccination
σG,I0 (S) the expected number of infectious nodes at the end (footprint)
σ′G,I0

(S) the expected number of healthy nodes at the end

γS(j) the expected benefit of σ′G,I0
(∗) when adding j into S

3.1. Contact Network

There exists an underlying contact network G(V,E) (between people/computers/blogs etc.)
on which the contagion (disease/virus/meme etc.) can spread, and we assume our graph is
weighted and undirected. Each vertex v ∈ V represents an individual of the network and
edges represent the interaction between these individuals. In this paper, edge weight pu,v
represents the propagation probability of the contagion from u to v.

3.2. Virus Propagation Models

We use two widely used discrete-time virus propagation models to describe how the virus
spreads on the network: the so-called Susceptible-Infected-Recovered (SIR) model, and the
Independent Cascade (IC) model (a special case of SIR model).

Susceptible-Infected-Recovered Model. SIR, a fundamental model which has been
extensively used in epidemiology [Hethcote 2000; Anderson and May 1991; Shah and Zaman
2011], is used to model mumps (or chicken-pox) like infections. In the SIR model, there
are three states for each node in the network: susceptible (healthy), infected and recovered.
In each time-step, each infected node u tries to infect each of its healthy neighbors v
independently with probability pu,v (the weight on each edge). The healthy neighbors who
are successfully infected will be infected from the next time-step. In addition, at each
time-step each infected node has a curing probability δ to become recovered (from the next
step). Once recovered, a node can not participate in the epidemic further. The process begins
when some initial nodes are infected and ends when no infected nodes remain.
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Independent Cascade Model. IC is a well-known model [Kempe et al. 2003; Chen et al.
2010b; Goyal et al. 2010; Lin et al. 2013] which is used to describe viral marketing and
related meme processes. In contrast to SIR, in the IC model, each infected node has exactly
one chance to infect (‘activate’) its neighbors independently with the propagation probability
(in effect the curing probability δ = 1 here). The process of the IC model proceeds as follows.
It is a discrete-time model, in which a node in the graph can be either infected or healthy.
When a node u first becomes an infectious node at timestep t, it is given a single chance
to infect each of its currently healthy neighbors w, which it succeeds with probability pu,w
(the weight of the edge {u,w} in the contact graph G). If u succeeds, then w will become
infectious at time-step t+ 1. If multiple neighbors of w first become infectious at time-step
t, then their activation attempts are sequenced in an arbitrary order, but all performed at
time-step t. Whether or not u succeeds, it cannot make any further attempts to infect w in
subsequent rounds. The process terminates when no additional node becomes infectious.

We will first describe our algorithms in the IC model. Then, we will see that extending
our algorithms to the general SIR model is reasonably straightforward (which we explain in
Section 7).

4. PROBLEM FORMULATION

4.1. The “Data” in Data-Aware Vaccine Allocation

In this paper, we are interested in effectively allocating vaccines in the network given a
set of initially infected nodes (I0) and we call it Data-Aware Vaccine Allocation. Note that
the “initially” infected node set I0 does not necessarily refer to the infected nodes at the
beginning of the epidemic. Instead, it refers to the set of infected nodes as observed whenever
we decide to allocate the vaccines. Loosely speaking, we call I0 the “starting point” or
“initially” infected node set for ease of our description, but it does not mean the starting
point of the epidemic. The size of I0 is determined by how severe an epidemic is when we
observe it and decide to perform an intervention. For instance, if it is a deadly disease which
was undetected till a long time, then the I0 will be relatively large. Generally speaking, our
goal is to design a robust allocation strategy which can handle any size of I0.

We assume I0 is known, and can be drawn from any distribution. In practice, there
are several ways to obtain I0. In particular, in social media such as Twitter, the accounts
that post a certain rumor can be sampled from Twitter API [Morstatter et al. 2013]. In
epidemiology, we can get infectious cases from hospital reports or CDC documents [Medlock
and Galvani 2009]. In addition, there are large-scale micro-scale realistic simulations on how
to generate infection spreads [Eubank et al. 2004].

Note that in our paper, for the observability of infected nodes set I0, we assume a simple
scenario: as long as individuals have become symptomatic, and been diagnosed as infected
(hospitals will report the diagnosed cases), we assume they are infected. In social media, this
is easier and straightforward. We leave more complicated conditions of the observability of
I0 to future work.

4.2. Problem Definition

Now we are ready to formulate our problem formally. We are given a fixed-set of nodes I0,
which contains all infected nodes at certain time of the epidemic process as we discussed
above. We assume that if a vaccine is given to a healthy node v, v cannot be infected by its
neighbors at any time, which means v is effectively removed from the graph. We are given a
graph G(V,E), the set I0 and a budget of k vaccines. We want to find the ‘best’ set S of
healthy nodes that should be given vaccines at the beginning. As the propagation model is
stochastic, let us denote σG,I0(S) to be the expected total number of infected nodes at the
end of the process (the ‘footprint’), given that I0 nodes were infected at the start, and S
was the vaccinated set. The best set S is the one which minimizes σG,I0(S). Formally,
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Problem 1: Data-Aware Vaccination problem DAV (G, I0, P, δ, k).
Given: A graph G(V,E) with node set V and edge set E, the infected node set I0, SIR

model with propagation probability on each edge {i, j} pi,j ∈ P and curing probability δ, and
an integer (budget) k.

Find: A set S of k nodes from V − I0 to distribute vaccine to minimize σG,I0(S), i.e.

S∗ = argmin
S

σG,I0(S) (1)

s.t. |S| = k

Comment 1. Define σ′(·) to be the expected number healthy nodes at the end i.e. σ′G,I0(S) =

|V |−σG,I0(S). Given the same set S and an integer k, clearly minimizing σG,I0(S) is equivalent
to maximizing σ′G,I0(S) (as nodes can either be infected or healthy). In this paper, for ease

of description we adopt this alternate form (of maximizing σ′G,I0(S)).

Comment 2. Clearly the problem is trivial when k ≥ |N(I0)− I0|, where N(I0) is the set
of immediate neighbors of I0 in the graph G (as we can just vaccinate all of these nodes, and
the disease will stop). In reality, this is never the case, as vaccines are expensive and networks
are huge. For example, for k = 10, in our experiments, we found that |N(I0)− I0| ranged
from 10 to 250 times our budget. Hence, we will implicitly assume that k < |N(I0)− I0|.

5. COMPLEXITY OF THE DAV PROBLEM

We discuss the complexity of the Data-Aware Vaccination problem in this section. In
summary, we first prove that on general graphs, the DAV problem is NP-hard, then show
that DAV problem is also hard to approximate.

5.1. Hardness result

Unfortunately, our problem is NP-hard. We will reduce it from the Minimum k-union
(MinKU) set problem (where we want to minimize the union of k subsets), which was
proven to be hard [Vinterbo 2004].

Consider the corresponding decision version of DAV:
Problem 2: Data-Aware Vaccination (Decision Version) DAV (G, I0, P, δ, k, τ):
Given: A graph G(V,E), the node set I0, the SIR model with propagation probability

pi,j ∈ P and curing probability δ, and an integer (budget) k ≥ 0, and τ ≥ 0.
Find: Is there a set S of k nodes of G to distribute the vaccine such that σ′G,I0(S) ≥ τ?

Theorem 5.1. DAV (Decision Version) is NP-hard.

Proof. We prove that DAV is NP-hard via a reduction from the NP-Complete Minimum
k-union Problem (MinKU) problem [Vinterbo 2004].
Minimum k-union Problem (Decision Version). given a collection of n subsets

C = {S1, S2, ..., Sn} over a finite set of elements U = {u1, u2, ..., um} and an integer
0 ≤ k < n, and τ ≥ 0, is there exactly k subsets Sj1, ..., Sjk in S such that |Sj1∪... ∪ Sjk| ≤ τ

Note that [Vinterbo 2004] only proves that MinKU is NP-hard. But given an instance of
MinKU (Decision Version), it is easy to check whether |Sj1 ∪ ... ∪ Sjk| ≤ τ in polynomial
time, so MinKU ∈ NP as well and hence MinKU (Decision Version) is NP-complete.

Given an instance of MinKU, we construct a graph G with uniform propagation probability
p = 1, and δ = 1 (essentially IC model, a special case of SIR). Let each subset Si be a
node in the graph. Also let there be a node j in the graph for each element uj . Then a
sole infected node I connects to the all nodes in the set {S1, S2, ...Sn} and subsequently
each Si connects to its elements j. So G has 1 + m + n nodes. Clearly this construction
takes polynomial time. Figure 1 shows an example where S1 = {1}, S2 = {1, 2}, S3 = {1, 2},
S4 = {m}, S5 = {m}, and Sn = ∅.
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Based on the graph G, we can create an instance IN ≡ (G, I, P, δ, n− k, n− k +m− τ)
of DAV. Now we need to show that (1) if the instance of MinKU problem has an solution,
then the instance IN also has the solution; (2) if the MinKU Problem does not have a
solution, then the instance IN also does not have a solution.

I

S1 S2 S3 S4 S5 Sn

1 2 m

Fig. 1. Graph used in the reduction from Minimum k-union Problem.

(1). This is true. If we can select k subsets Sj1, ..., Sjk for the MinKU problem, then
we can choose other n − k nodes from the collection C for our DAV problem. In this
case, σG,I(S) = k + |Sj1 ∪ ... ∪ Sjk| + 1 ≤ τ + k + 1, so σ′G,I(S) = |V | − σG,I0(S) =

m+ n+ 1− σG,I0(S) ≥ m+ n− k − τ .
(2). This is also true. Suppose the instance I for DAV has a solution, we will show that

MinKU Problem also has a solution which is a contradiction. We can assume that the
solution set is S0, so we have σ′G,I(S0) ≥ m+ n− k − τ .

Firstly note that because of the construction of the graph G, if an assignment contains
nodes from 1, 2, ...m, we can always swap them with nodes named as S1, S2, ...Sn to get an
alternate assignment which is at least as good as the original. Note that if we choose a node
t from 1, 2, ...m, then the value of σ′G,I(S) (the number of nodes we block) only increases by

one. This is so as it is impossible to block nodes Si without choosing them (all the nodes
S1, S2, ...Sn are directly connected to I). Moreover t has connections only with nodes Si. So
t can not block any other nodes. Finally, if we choose a substitute node from S1, S2, ...Sn, it
is possible that some additional nodes in 1, 2, ...m may be blocked. Hence, swapping t with
a node in S1, S2, ...Sn will result in a solution which is at least as good.

Hence we can assume without loss of generality that the optimal solution S∗ contains
only nodes from Si. Then we have σ′G,I(S

∗) ≥ σ′G,I0(S0) ≥ m+ n− k − τ , so σG,I(S
∗) =

n + m + 1 − σ′G,I(S
∗) ≤ τ + k + 1. In this case S∗ contains n − k nodes, if we choose

other k nodes Sj1, ..., Sjk from C − S∗ as the solution for MinKU problem, then we have
|Sj1 ∪ ... ∪ Sjk| = σG,I(S

∗) − 1 − k ≤ τ . This means the MinKU problem has a solution
which is a contradiction.

Combining (1) and (2) proves the hardness.

5.2. Approximability

Typically related optimization problems arising in graphs have a submodular structure
lending themselves to the near-optimal greedy solution. But unfortunately, our function is
not submodular.

Remark 5.2. σ′G,I0(S) in DAV is not a submodular function.

Proof. See Fig. 2. A submodular function has the property that if A ⊆ B, then adding
an element j into both sets, we should have f(A ∪ {j}) − f(A) ≥ f(B ∪ {j})− f(B).
Suppose I is infected and A = ∅ and B = {X}, we have σ′G,I0(A ∪ {Y })− σ′G,I0(A) = 5 and

σ′G,I0(B ∪ {Y })− σ′G,I0(B) = 8− 2 = 6. So σ′G,I0(S) is not a submodular function.
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I

X Y

1 2 3 4

5 6

Fig. 2. Counter-Example.

Vinterbo [Vinterbo 2004] gave a greedy algorithm which can approximate MinKU and
its equivalent problem Maximum k-Intersection problem (MaxKI) (where we want to
maximize the intersection of k given subsets) within a constant factor if the cardinality
of all the subsets are bounded by a constant. However, in our case the ‘subsets’ can be
very large, and thus the approximation result is not useful. The algorithm we develop is
related to Vinterbo’s setting in the sense that it is also greedy, though we use different
efficient techniques for our particular setting. For the general case, Xavier [Xavier 2012]
proved that the MaxKI problem cannot be approximated within a tighter constant 1

Nε

where N is the number of subsets and ε > 0, under NP 6⊂ BPTIME(2N
ε

). Recently Sheih
et al [Shieh et al. 2012] proved MaxKI is inapproximable within an absolute error, with a
smaller inapproximable gap and under the weaker P 6=NP assumption. Using the results in
[Shieh et al. 2012], unfortunately our problem is also inapproximable within an absolute
error 1

2m
1−2ε + O(m1−3ε) if m = |V | − |N(I0) − I0| − |I0|. Here, m means the number of

nodes except for the infected nodes and their neighbors.

Theorem 5.3. Given any constant 0 < ε < 1/3, there exists a mε such that the Data-
Aware Vaccination problem with m > mε, cannot be approximated in polynomial time within
an absolute error of 1

2m
1−2ε + 3

8m
1−3ε − 1 unless P=NP.

Proof. The Minimum k-union Problem (MinKU) is equivalent to the Maximum k-
intersection Problem (MaxKI) (where we want to maximize the intersection of k given
subsets) [Vinterbo 2004] . Shieh [Shieh et al. 2012] proved that MaxKI problem1 of
universe size m ≥ mε cannot be approximated in polynomial time within an absolute error
1
2m

1−2ε + 3
8m

1−3ε − 1 unless P=NP. Using the reduction in the NP-hard proof, we can
prove that the DAV problem is hard to approximate if MaxKI cannot be approximated in
polynomial time within an absolute error.

6. OUR PROPOSED METHODS

Due to the results in the previous section, we present effective heuristics next. We describe
our methods assuming the IC model in the DAV problem in this section, and then extend
them to handle the general SIR case (next section).

Roadmap of this section:. We first simplify the DAV problem by merging infected
nodes. Then we propose an optimal solution called DAVA-TREE on trees. Based on DAVA-TREE,
we give an effective algorithm, DAVA, on any arbitrary graph. However, DAVA is not scalable
to large networks, hence we provide a faster algorithm, DAVA-prune, which returns the same
result as DAVA. In addition to that, we propose a much faster heuristic, DAVA-fast in the end.

1Interestingly, the related inverse problem of minimizing the intersection, equivalent to the max-coverage
problem, has a 1− 1/e approximation.
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6.1. Simplification—Merging infected nodes

To simplify our problem, as the hardness reduction from the previous section suggests, we
merge all the infected nodes into a single ‘super infected’ node and get an equivalent problem
with only a single infected node. Intuitively this is because it does not matter how the
infected nodes are connected among themselves—all it matters for our problem is how they
are connected to healthy nodes. If a healthy node has multiple infected neighbors, it will have
a new edge probability which would be the logical-OR of the individual probabilities. For
example, if a healthy node c has two infected neighbors a and b with edge probabilities pa and
pb, the new edge probability between I ′ and c would be 1− (1− pa)(1− pb) = pa + pb− papb.

Remark 6.1. Given an instance of the DAV problem (G, I0, P, k) under IC model, Algo-
rithm 1 outputs an equivalent problem instance (G′, I ′, P ′, k) where I ′ is the sole infected
node in the new graph G′.

Proof. We can prove it by induction. If a healthy node c connects to two infected nodes
a and b, according to IC model, the propagation probability will be 1− (1− pa)(1− pb) =
pa+(1−pa)pb (equal to the probability of getting infected from at least one of a or b). Hence
Algorithm 1 (Line 9) outputs the same propagation probability for c. When c has l+1 infected
nodes, suppose pI′c is the propagation probability after merging l nodes, when merging a
new infected node d, the propagation probability is 1− (1−pI′c)(1−pd) = pI′c+(1−pI′c)pd,
which is the same as the output of Algorithm 1.

Algorithm 1 MERGE

Require: Input graph G, infected node set I0, probability set P
1: G′ = G
2: Add node I ′ to G′

3: for each node i in I0 do
4: if there exists an edge eij between i and j then
5: if there is no edge eI′j then
6: Add edge eI′j into G′

7: pI′j ← pij
8: else
9: pI′j ← pI′j + (1− pI′j)pij

10: end if
11: Remove eij from G′

12: end if
13: end for
14: Remove all nodes in I0 from G′

15: return graph G′ and the infected node I ′

In Algorithm 1, line 3-13 is used to copy edges from previous infected nodes set I0 to
the new infected node I ′. Line 5-10 shows how to assign new propagation probability pI′j .
Suppose the previous infected nodes set I0 has EI0 edges in total, Algorithm 1 will take
O(|I0|+ EI0) time.

6.2. DAVA-TREE—Optimal solution when the merged graph is a tree

Let us call the graph we get after merging (i.e. after Algorithm 1) the m-graph. The second
important observation is that as we show next, if the m-graph of our instance is a tree, then
we can get an optimal polynomial time algorithm under IC model, for any edge propagation
probability pi,j ∈ [0, 1]. We call the algorithm DAVA-TREE (Data Aware Vaccine Allocation
on a tree).
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Before we describe our algorithm, define the quantity γS(j)—which is the ‘benefit ’ of node
j to the optimization goal when nodes in S have already been removed. It is essentially the
expected number of nodes we save after removing j, given that we have already removed
nodes from set S. We have:

γS(j) = σ′G,I0(S ∪ {j})− σ′G,I0(S) (2)

Let γ(j) = γ∅(j). Algorithm 2 proceeds by computing γj efficiently for every neighbor node
of I ′ (in a simple tree traversal) and then taking those neighbors of the infected node I ′

with top-k γ(·) values. Lemma 6.2 proves that this gives us the optimal solution. In short,
as there is only one path from any node to any other node in the tree: the optimal solution
must be a subset of the immediate neighbors of I ′ with top k value of γ(j).

Algorithm 2 DAVA-TREE

Require: Tree T , infected node I ′, k and pij
1: Set I ′ as the root
2: for each neighbor j of I ′ do
3: γ(j)← pI′j × calPartial(j)
4: end for
5: S = nodes with top-k values of γ(j)
6: return S

Function calPartial(node n)
if n is not a leaf then

benefit← 1
for each child i of n do

benefit← benefit + calPartial(i)× pni
end for

else
benefit← 1

end if
return benefit
EndFunction

Lemma 6.2 (Correctness of DAVA-TREE). If the m-graph G(V,E) is a tree, then we
can get optimal solution of the DAV problem under IC model by Algorithm 2.

Proof. We show the following things: in the optimal set, the chosen nodes must be
neighbors of the infected node I ′; the benefit of each such node is independent of the rest of
the set S; and finally that we correctly calculate γ(j).

First the nodes we select must be neighbors of the infected node I ′. Suppose a solution
set M = {S ∪ v} (for some S) selects a node v that is not a neighbor of I ′, and since
G(V,E) is a tree there is only one path p from I ′ to v. If in S there is no other node in
the path p, then instead of v, we can choose the neighbor of I ′ in the path p, say node u.
be smaller if we select u instead of v. Note that v can get infected only if u gets infected.
Hence, σ′G,I′(S ∪ {u})− σ′G,I′(S ∪ {v}) > 0 as u can save at least one more node from being
infected than v. On the other hand, if except v there is a node in p in S, then we know that
σ′G,I′(S ∪ {v}) = σ′G,I′(S), so we can choose some another neighbor of I ′ instead of v, and

get a better value. Hence in either case, we can swap v with a neighbor of I ′ and get a better
solution than M .

Second we must select k neighbors of I ′ with top values of γ(j). For a S that contains
only I ′s neighbors, note that σ′G,I′(S) = |V | − σG,I′(S) = |V | − (σG,I′(∅) − Σi∈Sγ(i)) =

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January 2015.



A:11

I

1 2

3 4 5

6 7 8 9 10 11

(a) Original Graph.
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(b) Minimum Spanning Tree.

Fig. 3. An example of minimum spanning tree. For p=1 and k=1, the optimal solution is node 2 in MST.
However, in the original graph, the optimal solution is node 4.

σ′G,I′(∅) + Σi∈Sγ(i). In other words, the benefit of each node is independent of S. This is
because the subtree of each node j ∈ S is disconnected from the subtree of any other node
i ∈ S: hence node i ∈ S can not impact any other node j ∈ S. Thus we can just choose the
top-k values of γ to maximize σ′G,I′(S).

Finally, note that Line 3 in the DAVA-TREE calculates γ(j) correctly. See that γ(j) =
σ′G,I0({j})− σ′G,I′(∅) = σG,I′(∅)− σG,I′({j}). As each subtree is independent, this quantity
is equal to the probability that j is infected times the expected number of sick nodes in
node j’s subtree, when j is infected. It is easy to see that the function calPartial exactly
computes the latter value, and so we get the correct value of γ(j).

Lemma 6.3 (Running Time of DAVA-TREE). Algorithm 2 DAVA-TREE costs O(|V |+|E|+
k log |V |) time in the worst case.

Proof. Calculating the expected benefit needs a complete tree traversal, so it takes
O(|V |+ |E|) time. Suppose I ′ has m neighbors, selecting top k nodes needs O(k logm) using
a heap.

6.3. DAVA—An effective algorithm on arbitrary graphs under IC model

What if the m-graph is not a tree? We give an effective heuristic next when m-graphs are
arbitrary networks. After the merge algorithm, we can guarantee that a connected graph
has only one infected node I ′. Intuitively, we need to capture (a) the ‘closeness ’ of nodes to
the infection (represented by I ′) and at the same time, (b) the importance of the nodes in
‘saving ’ other nodes. Thus good solutions are composed of nodes which are close to I ′ and
also prevent the infection of many others.

We can still use DAVA-TREE algorithm by generating a tree from the m-graph, rooted at
I ′. Which tree should we use? People have typically used spanning trees like the Minimum
Spanning Tree (MST) in related problems. The problem with MST is that potential solution
nodes (for the original graph) can reside at higher depths in the MST—but as we saw in
the previous section, the DAVA-TREE algorithm only chooses nodes which are neighbors of
I ′. See Figure 3 for an example. Let p = 1 on all edges, and budget k = 1. Then the MST
rooted at I ′ will not have the node 4 as a neighbor of node I ′, but the optimal solution in
this case will exactly be node 4. On the other hand, if p = 0.5 and k = 1, then it is easy to
verify that node 1 will become the optimal solution.

Dominator tree. We propose to use the dominator tree of the graph and then run
DAVA-TREE algorithm on the dominator tree. As we explain later, the dominator tree avoids
this problem, by precisely capturing the ‘closeness’ property required from the solutions.
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(a) Original Graph.
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(b) Dominator Tree.

Fig. 4. An example of dominator tree. For p=1 and k=1, the optimal solution is node 4. For p=0.5 and
k=1, the optimal solution is node 1.

In graph theory, given a source node I ′, a node v dominates another node u if every path
from I ′ to u contains v. Node v is the immediate dominator of u, denoted by v = idom(u), if
v dominates u and every other dominator of u dominates v. We can build a dominator tree
rooted at I ′ by adding an edge between the nodes u and v if v = idom(u). Dominator trees
have been used extensively in studying control-flow graphs. Building dominator trees is a
very well-studied topic, with near-linear time algorithms available [Lengauer and Tarjan 1979;
Buchsbaum et al. 1998]. Figure 4(b) shows the dominator tree for graph in Figure 4(a). Note
that the edges in the dominator tree may not in fact exist in the original graph (compared
to say the MST).

Note that we have not specified how to weight the edges of this dominator tree yet. Even
the simple unweighted version of the dominator tree has structural properties which are very
useful for the DAV problem. As we show in the next lemma, the optimal solution for the
original graph can only be a subset of the neighbors of I ′ in the unweighted dominator tree.

Lemma 6.4. For the DAV problem, the optimal solution should be the children of root
I ′ in the unweighted dominator tree of the m-graph G.

Proof. Suppose the optimal solution set S∗ contains a node v which is not the neighbor
of I ′ in the dominator tree. So there must exist a node u that is the child of I ′, and it
dominates v in the original graph (as the dominating relationship is transitive). This means
that all paths from I ′ to v have to pass through u. In other words, node v does not get
infected if u is not infected. The rest of the proof is similar to the argument used in Lemma
5.1. In sum, we can swap v with a neighbor of I ′ and get solution which is at least as
good.

Note that by building the dominator tree we can reduce the search space substantially
without losing any information—we demonstrate this in experiments as well, the number of
neighbors of I ′ in the dominator tree is typically a fraction of the total number of nodes in
the original graph. Further, we can prove that if p = 1, running DAVA-TREE on dominator
tree of m-graph G returns the best first node.

Lemma 6.5. For the special case when the budget k = 1 and propagation probability
p = 1, running algorithm DAVA-TREE on dominator tree T of m-graph G weighted with pu,v
as above, gives the optimal solution.

Proof. According to Lemma 6.4, the node v we select should be a child of root in the
dominator tree. Also, when k = 1, by the definition the best node to pick is the one with
the max. value of γ(·). The only nodes v can prevent from infection are those nodes u for
which v lies on every path from I ′ to u (as removing v will cut off all possible paths of
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infection)—or the nodes exactly in the subtree of v in T . And for those nodes that are not
in the subtree of v in T , when v is removed, they are still infected since they have at least
one path from I ′ to them in the original graph. So the value of γ(·) for v in the original
graph is the number of nodes for which v lies on every path from I ′ to them. This means
the value of γ(·) in the original graph is equal to the value of γ(·) in T . So the best solution
for the dominator tree is also the best solution for the original graph.

Weighting the dominator tree. DAVA-TREE assumes that the edges in the network
denote propagation probabilities. We want to preserve such information (coming from the
original graph) in the dominator tree, to make the ‘benefit’ computation accurate. Hence we
weight each edge {u, v} in the dominator tree by pu,v, the total probability that node u can
infect v in the original graph (note that u and v may not be neighbors in the original graph).

Lemma 6.5 and the preceding discussion suggest a natural greedy heuristic: find the best
single node i using DAVA-TREE in the dominator tree (weighted with pu,v as defined before);
then remove node i from the graph; recompute the dominator tree; and repeat till budget k
is exhausted. We call this algorithm BASIC.

Speeding up BASIC. Unfortunately, computing pu,v for a given pair of nodes u and v
in the IC model is #P-complete [Chen et al. 2010b]. It is essentially the canonical s − t
connectivity problem in random graphs. We can use Monte-Carlo sampling to get an estimate
through simulations, but even that is too slow. Hence we propose to approximate it by using
the maximum propagation path probability between nodes u and v, which is intuitively the
most-likely path through which an infection can spread from node u to v in the original
graph.

In the original graph, suppose ppathi(u, v) means the propagation probability from u to v
through path i. We define maximum propagation path probability p̃i,j as the maximum value
of ppathi(u, v). Here we can use p̃u,v as the approximate propagation probability for the edge
{u, v} in the dominator tree. Max. path probability has been used before in context of the
influence maximization problem [Chen et al. 2010b], but they need to compute it between
all pairs of nodes. On the other hand, in our problem, we need to compute it only for edges
in the dominator tree of the graph. In fact, further, it is easy to see that in a dominator tree

rooted at I ′, if v = idom(u), then p̃v,u =
p̃I′,u
p̃I′,v

. This means we only need to calculate the

maximum propagation path probability from root I ′ to all other nodes, which is similar to
find shortest-paths in graph theory.

Hence a faster algorithm than BASIC would be to assign probabilities p̃v,u in the dominator
tree. We call the complete algorithm DAVA for arbitrary graphs. Pseudocode is given in
Algorithm 3.

Algorithm 3 DAVA Algorithm for Arbitrary Networks

Require: Graph G, P , budget k, infected set I0
1: S = ∅
2: G′ = Run MERGE on G and I0
3: repeat
4: T = Build the dominator tree from G′ and assign probabilities p̃v,u
5: v = Run DAVA-TREE on T with budget = 1
6: S = S ∪ v
7: Remove node v from G′

8: until |S| = k
9: return S
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Lemma 6.6. (Running time of DAVA) Algorithm 3 takes O(k(|E|+ |V | log |V |)) worst-case
time.

Proof. Building a dominator tree costs O(|V | + |E|) time [Buchsbaum et al. 1998].
If the original graph has the uniform propagation probability, we are able to obtain p̃I′,v
by through Breadth-First Search (BFS) which takes O(|V |+ |E|) time. Otherwise we can
use Dijkstra’s Algorithm to get p̃I′,v which takes O(|E|+ |V | log |V |) time. Thus, assigning
probabilities costs O(|E|+ |V | log |V |) worst-case time. Removing node v also takes linear
time.

6.4. DAVA-prune—A faster algorithm with the same result as DAVA

DAVA works fine on small graphs, but can be slow on large graphs, as it re-builds the
dominator tree multiple times. Hence we propose an faster algorithm DAVA-prune, which
speeds up DAVA using prune techniques while returning the same result as DAVA. (Note: we
also present another costlier pruning algorithm, which is still faster than DAVA but slower
than DAVA-prune. We describe it in the appendix as it may be of independent interest).

Building a dominator tree costs linear time, while weighting a dominator tree using
maximum propagation probability takes O(|E| + |V | log |V |) time. Hence, the bottleneck
for DAVA is the reweighting process. If we are able to reduce the reweighting time, we can
speed up DAVA. The following lemmas (Lemma 6.7, Lemma 6.8 and Lemma 6.9) will give
us some guidance to reduce the time complexity of reweighting. Basically, the idea is that
we do not need to recalculate weights for some nodes, and we can reduce the complexity of
recalculating necessary weights as well.

To recap, we have the original graph G, m-graph G′, and the infected node I ′ in G′. Let
us denote v to be the node selected from G′ using DAVA, Gnew to be the new graph after
removing v from G′, Told to be the old dominator tree before removing v, and Tnew to be
new (re-built) dominator tree.

First, the following two lemmas will show that we do not need to reweight nodes that are
not in the first layer of the old dominator tree Told.

Lemma 6.7. After removing the selected node v from the m-graph G′ using DAVA, nodes
that are not in the first layer of the old dominator tree Told will have the same parent nodes
in the new (re-built) dominator tree Tnew.

Proof. First, we prove that for any node i that is neither in the first layer of the old
dominator tree Told nor under the subtree of v in Told, after removing v, i’s neighbors in Gnew
will not change, which means i’s neighbors in G′ cannot be under the subtree of v in Told.
Here we use a non-trivial property of the dominator tree from [Lengauer and Tarjan 1979]
that in the graph the dominators of a node a is the intersection of its neighbors’ dominators.
Since i’s dominators is the intersection of its neighbors’ dominators, after removing v, i’s
dominators in Tnew cannot increase. Furthermore, i must have the same dominators in Tnew:
if i has a smaller number of dominators in Tnew, at least one of i’s neighbor j in G′ must be
under the subtree of v in Told. Since i is not in the subtree of v in Told, there exists at least
one path from I ′ to i in G′ which does not include v. So there exists at least one path from
I ′ to j as well such that v is not in that path. Hence, j is not under the subtree of v in Told,
which contradicts our assumption. Therefore, none of i’s neighbor is under the subtree of v
in Told. Similarly, for any node i that is not in the first layer of Told, i’s neighbors must be
under the same subtree as i.

Now we prove the lemma by induction. First, consider node u in the second layer of Told,
as we proved above, u’s neighbors cannot under the subtree of v in Told, and they are at the
same subtree of Told as u, hence the intersection of dominators of u’s neighbors must contain
u’s parent in Told. Therefore, u’s parent remains the same in the new dominator tree Tnew.
Second, suppose for nodes under the lower layer L of Told where 2 < L ≤ N , they have the
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same parents in Tnew. Then, consider node u under the N + 1 layer of Told. If u’s neighbors
are under the higher layer, their parents will be the same in Tnew, which means they have
the same immediate dominators in Tnew. And for nodes that are under the lower layer, their
dominators is also the dominators of u, hence u’s parent will be the same node in Tnew.

Therefore, nodes that are not in the first layer of Told will have the same parent nodes in
the new dominator tree Tnew.

Lemma 6.8. After removing the selected node v from G′ using DAVA, nodes that are not
in the first layer of the old dominator tree Told will have the same edge-weights to their
parents in the new (re-built) dominator tree Tnew.

Proof. Suppose i is the node not in the first layer of Told, and j is its parent. According
to Lemma 6.7, j is still i’s parent in the new dominator tree Tnew. pj,i is the probability
from the maximum propagation path from j to i in G′. If the maximum propagation path
from j to i does not contain nodes under the subtree of v in Told, clearly pj,i remains the
same in Tnew.

Let us assume there exists a node n that is under the subtree of v in Told, and also in the
maximum propagation path from j to i. Since j is not under the subtree of v in Told, there
must exist at least one path from I ′ to j in G′ that does not contain v. Since n is in the
maximum propagation path from j to i, there must have a path from I ′ to n which goes
through j but does not contain v. Hence, n cannot be dominated by v, which contradicts our
assumption that n is under the subtree of v in Told. Therefore, the maximum propagation
path from j to i does not contain nodes under the subtree of v in Told which means pj,i will
stay the same in Tnew.

Though all the edge-weights of nodes that are not in the first layer of Told remain the same
in Tnew, we cannot ignore these nodes because they may be in the maximum propagation
path from I ′ to nodes in the first layer of Tnew. However, luckily the next lemma will show
that we do not need to consider nodes that that not in the first layer of Told when calculating
weights of nodes in the first layer of Tnew (the maximum propagation path from I ′ to nodes
that are in the first layer of Tnew).

Lemma 6.9. After removing the selected node v from G′ using DAVA, in the new (re-built)
dominator tree Tnew, the maximum propagation path from I ′ to nodes that are in the first
layer of the old dominator tree Told only contains nodes in the first layer of Told.

Proof. First, for node j in the first layer of Told, either j only has one neighbor, I ′, in
G′, or there exist at least two distinct paths from I ′ to j. Here, distinct paths mean there is
no common nodes in these paths. If there exist common nodes in different paths from I ′ to
j, j cannot be in the first layer of Told.

If j only has one neighbor I ′ in G′, then clearly in the new dominator tree Tnew, pI′j
remains the same. Now let us consider the case that there exist at least two distinct paths
from I ′ to j. Suppose there exists a node n that is not in the first layer of Told, but belongs
to a path from I ′ to j. Since j is not the direct neighbor of I ′ in G′, there must exist at least
two distinct path from I ′ to j in G′. Hence for node n, there also exist at least two distinct
paths from I ′ to n in G′, which means n only has one dominator, that is I ′. Hence n is in
the first layer of Told, which contradicts the assumption that n is not in the first layer of
Told. Hence, every path from I ′ to node j in the first layer of Told can only contain nodes
that are in the first layer of Told.

Therefore, after removing v, in Tnew the maximum propagation path from I ′ to j only
contains nodes in the first layer of Told.

Lemma 6.7 shows that if a node u is not in the first layer of Told, u’s parent in the
new dominator tree Tnew remains the same, and furthermore according to Lemma 6.8, the
maximum propagation probability from u’s parent to u in Tnew will not change as well. In
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addition, Lemma 6.9 demonstrates that to calculate new edge-weights for nodes in the first
layer of Tnew, we do not need to run Dijkstra’s algorithm on the whole graph G′. Instead,
using the fact that maximum propagation paths from I ′ to node j in the first layer of
Told only contain neighbors of I ′ in Told, we can get the new edge-weight pI′j by running
Dijkstra’s algorithm on the subgraph with only I ′ and nodes in the first layer of Told.

Hence we propose a faster heuristic than DAVA. We call this algorithm DAVA-prune. Pseu-
docode is given in Algorithm 4. DAVA-prune rebuilds the dominator tree after selecting a
node but only reweights the edge-weights of those nodes in a subgraph of G′ (see Lines 8-10).
The next lemma shows that DAVA-prune returns the same result as DAVA.

Algorithm 4 DAVA-prune Algorithm

Require: Graph G, P , budget k, infected set I0
1: S = ∅
2: G′ = Run MERGE on G and I0
3: T ′ = Build the dominator tree from G′ and assign probabilities p̃v,u
4: repeat
5: v = Run DAVA-TREE on Told with budget = 1
6: S = S ∪ v
7: Remove node v from G′

8: T ′ = Build the dominator tree from G′

9: G′′ =Removing nodes that are not in the first layer of T on G′

10: Run Dijkstra’s algorithm on G′′ to get new weights
11: until |S| = k
12: return S

Lemma 6.10. (Correctness of DAVA-prune) DAVA-prune returns the same result as DAVA.

Proof. Lemma 6.8 shows that for nodes that are not in the first layer of the old
dominator tree Told, all of their edge-weights remain the same, while Lemma 6.9 indicates
that for node u in the first layer of Told, the maximum propagation path from I ′ to u only
contains nodes in the first layer of Told. Hence, if we run Dijkstra’s algorithm on G′′ (a
subgraph only containing nodes in the first layer of T ), we can get the same the maximum
propagation probability from I ′ to u in the new (re-built) dominator tree Tnew. Therefore,
DAVA-prune gives the same results as DAVA.

Lemma 6.11. (Running time of DAVA-prune) Algorithm 4 takes O(|V | log |V |+ k(|E|+
F logF ) worst-case time where F is the number of nodes in the first layer of the dominator
tree T .

Proof. Building a dominator tree costs O(|V | + |E|) time [Buchsbaum et al. 1998],
and weighting the dominator tree for the first take costs O(|E| + |V | log |V |). After that,
reweighting dominator tree only takes O(F logF ) time. Hence in general, the worst-case
time complexity for DAVA-prune is O(|V | log |V |+ k(|E|+ F logF ).

6.5. DAVA-fast—An even faster heuristic

Even with pruning techniques, DAVA-prune may still be slow on large graph, as it depends on
the number of nodes in the first layer. Hence we propose an even faster heuristic DAVA-fast,
which runs DAVA-TREE on the dominator tree with the full budget k, instead of running it
with k = 1 after each step. Essentially we are picking neighbor nodes (in the dominator tree)
of I ′ with the top-k γ(·) values. Pseudo-code is in Algorithm 5. DAVA-fast performs well in
our experiments, with some loss of quality but at a fraction of the running time of DAVA.
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Algorithm 5 DAVA-fast Algorithm

Require: Graph G, P , budget k, infected set I0
1: S = ∅
2: G′ = Run MERGE on G and I0
3: T = Build the dominator tree from G′ and assign probabilities p̃v,u
4: S = Run DAVA-TREE on T with budget =k
5: return S

Lemma 6.12. (Running time of DAVA-fast) Algorithm 5 takes O(|E|+ |V | log |V |) worst-
case time.

Proof. Building a dominator tree costs O(|V |+ |E|) time [Buchsbaum et al. 1998], and
assigning probabilities costs O(|E|+ |V | log |V |) worst-case time. Running DAVA-TREE costs
O(|V |+ |E|+ k log |V |) time.

6.6. Discussion of proposed methods

We will discuss the performance of DAVA, DAVA-prune and DAVA-fast in terms of the structure
of graph next.

DAVA. As we showed in Lemma 6.2, if the graph is a tree, DAVA gives the optimal solution.
In addition to that, the total benefit of the set S (the number of nodes we can save after
removing S) as computed from the dominator tree, denoting as σ′Dom(S), is related to the
true benefit σ′G,I′(S) from the original graph.

Lemma 6.13. σ′Dom(S) ≤ σ′G,I′(S).

Proof. First, σ′Dom(S) equals to footprint of the diffusion from I ′ to nodes in the subtree
of u ∈ Si after running IC model. For any node u in the set S, after removing u from the
graph G, every node v under the subtree of u in the dominator tree will be isolated from
the super node I ′ in G since every path from I ′ to v must go through u. So the benefit we
can at least get is the footprint of the diffusion from I ′ to all nodes under the subtree of
u ∈ S, which is exactly σ′Dom(S). Hence, σ′Dom(S) ≤ σ′G,I′(S).

Lemma 6.13 shows the connection between the dominator tree and the original graph
in terms of the nodes we save. Furthermore, it also demonstrates how our DAVA algorithm
approximates the DAV problem: it maximizes the lower bound of the number of nodes we
can actual save from the original graph.

However, if there are too many nodes in the first layer of the dominator tree, the bound in
Lemma 6.13 will become loose, and DAVA will not perform well because under this scenario, we
lose too much information from the original graph. Nevertheless we found in the experiments
(Section 8.2), in practice, the number of nodes in the first layer of the dominator trees is not
large enough (only a fraction of total number of healthy nodes in the graph). Hence, DAVA
performs very well on real networks.

DAVA-prune. We showed that DAVA-prune gives the same result as DAVA (Lemma 6.10).
In addition to that, it is faster than DAVA because we can reweight the dominator tree in a
smaller graph. However, if the number of nodes in the first layer of the dominator tree is
large enough, DAVA-prune can be as slow as DAVA. As we discuss later, in practice the first
layer of the dominator tree is a fraction of the size of the graph, so DAVA-prune is much
faster than DAVA. Hence, since we cannot run DAVA on large networks, DAVA-prune can serve
as a baseline for measuring the performance of faster heuristics. Additionally, as we discuss
below, the difference in performance between DAVA-prune and DAVA-fast depends on the
structure of the network. If a dominator tree changes dramatically, DAVA-prune will provide
a much better performance compared to DAVA-fast, no matter how network size changes. Our
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experiments show that DAVA-prune can save 16, 000 more nodes (for the budget k = 2000)
for large networks like PORTLAND. Furthermore, for small graphs like STANFORD, it can save
almost 10% more nodes than DAVA-fast. Hence, even though DAVA-prune is not as fast as
DAVA-fast, it is still a viable option for applications where effectiveness is very critical: to
achieve high performance, one can afford to sacrifice some running time.

DAVA-fast. As is clear from the pseudo-code, if the dominator tree does not change after we
select certain nodes, DAVA-fast will give the same result as DAVA and DAVA-prune. Suppose we
remove node u in G′ (the merged graph). The dominator tree will change only if there exists
a node v such that after removing u, every path from I ′ to v in G′ must go through a certain
node. In practice, the number of such nodes v is not that large; hence, the performance of
DAVA-fast is competitive. Experimental results also demonstrate that DAVA-fast performs well:
though it is not as good as DAVA and DAVA-prune, it outperforms other baseline algorithms.

7. EXTENDING TO THE SIR MODEL

In this section, we will explain how to extend our solution to the SIR case. Recall that in the
SIR model, as opposed to the IC model, a node u tries to infect its neighbor v multiple times.
Suppose Zu is the random variable denoting the number of time-steps u stays infected until
recovery (this is also the number of time-steps that u tries to infect v). The probability that
v gets infected by u is Buv = 1− (1− pu,v)Zu . Note that Zu has a geometric distribution
Pr(Zu = z) = (1− δ)z−1δ, with the expectation E[Zu] = 1

δ (δ is the curing probability). If
we force u to be infected for only one time-step before recovering (as in the IC model), then
βu,v, the equivalent probability that u infects v successfully, can be approximated by the
expectation of Buv, E[Buv].

Lemma 7.1. The expectation of Buv (the probability that node v gets infected by a
neighbor node u) in the SIR model is given by, E[Buv] =

pu,v
1−(1−δ)(1−pu,v) .

Proof. First, E[Buv] = 1 − E[(1 − pu,v)Zu ] = 1 − E[eZu ln(1−pu,v)]. Let us denote t =
ln(1− pu,v), then E[Buv] = 1− E[etZu ].

Since Zu is a geometric distribution where Pr(Zu = z) = (1 − δ)z−1δ, and t ≤ 0 <

− ln(1− δ), using its moment-generating function E[etZu ] = δet

1−(1−δ)et [Goldberg 1986], we
can get:

E[Buv] = 1− δet

1− (1− δ)et
= 1− δ(1− pu,v)

1− (1− δ)(1− pu,v)
=

pu,v
1− (1− δ)(1− pu,v)

According to Lemma 7.1 we can directly apply our algorithms to the SIR case, by just
using an equivalent IC model with βu,v as the propagation probability where βu,v can be
approximated by

pu,v
1−(1−δ)(1−pu,v) .

Recall that the IC model is a special case of the SIR model where each infected node
u has only one chance to infect its neighbor v with the probability pu,v, which essentially
means δ = 1. So as a sanity check, if we apply Lemma 7.1 to the IC model, βu,v is exactly
pu,v, as expected (i.e. we recover the original weights).

8. EXPERIMENTS

In this section, we give an experimental evaluation of our algorithms. We describe our setup
next. We conducted the experiments using a 4 Xeon E7-4850 CPU with 512GB of 1066Mhz
main memory, and implemented the algorithms in Python2.

2Code can be downloaded from http://people.cs.vt.edu/∼yaozhang/code/tkdd-dava.
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We seek to answer the following questions via our experiments:

(1) How do DAVA, DAVA-prune and DAVA-fast perform compared with the baselines?
(2) How effective DAVA-prune is compared to DAVA?
(3) What is the scalability of our algorithms?
(4) Does I0 affect the performance of our algorithms?

8.1. Experimental Setup

Datasets. We run our experiments on multiple real datasets. In addition to trying to
pick datasets of various sizes, we also chose them from different domains where the DAV
problem is especially applicable. Table II shows datasets we used.

Table II. Datasets

Dataset Model #Vertices #Edges

OREGON IC 633 2172
STANFORD IC 8929 53829
GNUTELLA IC 10876 39994
BRIGHTKITE IC 58228 214078

PORTLAND SIR 0.5 million 1.6 million
MIAMI SIR 0.6 million 2.1 million

OREGON: The Oregon AS router graph is a network graph collected from the Oregon router
views. It contains 633 links among 2172 AS peers.3 The contagion here can be thought
of malware and computer-network viruses, which we want to control by shutting-off or
patching relevant routers.

STANFORD: It is the Stanford CS hyperlink network from 2001, in which a web page
links to another page.4 We made the graph undirected, and chose the largest connected
component—it contains 8929 nodes and 53829 links. Contagions here can be false information
spreading through the webspace, and we want to prevent their spread by posting true
information at strategic web pages.

GNUTELLA: It is a peer-to-peer network showing the snapshot of the Gnutella P2P file sharing
network from August 2012. It contains 39994 links among 10876 peers. Similar to OREGON,
we can control the spread of malware and harmful files by patching some important peers.

BRIGHTKITE: It is a friendship network from the SNAP dataset collection,5 from a former
location-based social networking service provider Brightkite6, which consists of 58228
nodes and 214078 edges. As friends regularly frequent the same places, such location-based
networks can be useful for the public-health.

PORTLAND: We experimented on this social-contact graph based on detailed microscopic
simulations [NDSSL 2007], versions of which have been used in national smallpox modeling
studies [Eubank et al. 2004]. We used the dataset we get by tracking all the different
types of activities of about 0.5million people (nodes) in the city of Portland, Oregon. The
resulting graph had about 1.6million edges (interactions). The edges were weighted with

3http://topology.eecs.umich.edu/data.html.
4http://www.cise.ufl.edu/research/sparse/matrices/Gleich/.
5http://snap.stanford.edu/data/index.html.
6http://www.brightkite.com.
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the contact-times (in secs) between people.

MIAMI: It is another social-contact graph based on detailed microscopic simulations [NDSSL
2007] with about 0.6million people and 2.1million edges.

Settings. For the IC model, we use three illustrative settings: (a) Uniform probability
p = 0.6; (b) Uniform probability p = 1; and (c) pu,v uniformly randomly chosen from
{0.1, 0.5, 0.9} (following literature [Chen et al. 2010b]). For the SIR model, since our socio-
contact graphs have contact time between people [NDSSL 2007], we will use normalized
contact time as the attack probability pu,v, and set a uniform recovery rate δ = 0.6. Note
that the performance of our algorithms does not change when δ varies since when we change
δ, edge weights in the network are changed (see Section 7).

For most of experiments, we randomly choose 100 nodes to be infected as the set I0 for
the IC model, and 300 nodes for the SIR model (as the graphs are larger). Using such
setting, we aim to model the infection at the time early intervention happens. However, we
also empirically study the effect of the distribution and size of I0 on our algorithms (see
Section 8.2.3 and 8.2.4 for more details).

We choose roughly 1% of the whole population as the budget k for large networks in our
experiments. To get the expected number of healthy nodes after immunization, we run the
processes (either IC or SIR) 1000 times and take the average.

Baseline Algorithms. We compare our algorithms DAVA, DAVA-prune and DAVA-fast
against various other competitors to better judge their performance. Except for RANDOM, all
baselines use weighted edges.

(1) RANDOM: In this method, we choose to give the vaccines to k uniformly randomly chosen
healthy nodes.

(2) DEGREE: In this method, we choose to give the vaccines to the top-k healthy nodes accord-
ing to their weighted degree. This is similar to the popular acquaintance immunization
method [Cohen et al. 2003].

(3) PAGERANK: Here, we choose to give the vaccines to the top-k healthy nodes with the
highest pagerank. PAGERANK is a popular node importance measurement which has
been widely used in social media for many tasks [Page et al. 1998]. We use the restart
probability of 0.15.

(4) PER-PRANK: In this method, we choose the top-k healthy nodes with the highest per-
sonalized pagerank with respect to the given infected nodes [Jeh and Widom 2003].
Intuitively, PER-PRANK takes into consideration how close the nodes are to the infected
nodes set (I0). We use the restart probability of 0.15.

(5) NETSHIELD: This is a state-of-the-art pre-emptive immunization algorithm [Tong et al.
2010], which aims to minimize the epidemic threshold of the graph. We take the top-k
healthy nodes according to the algorithm (i.e. we get the ranking from this algorithm,
and ignore nodes which are already infected in our problem).

Implementation Note. Lenguaer and Tarjan [Lengauer and Tarjan 1979] proposed two
algorithms for constructing a dominator tree: a complicated near-linear time algorithm
which takes O(mα(m,n)) time where m is the number of edges, n is the number of nodes
and α(m,n) is a functional inverse of Ackermann’s function; and a simpler one which takes
O(m log n) time. Buchsbaum et al [Buchsbaum et al. 1998] presented an exact linear-time
dominator algorithm, but their algorithm ran slower on real flowgraphs than the algorithms
in [Lengauer and Tarjan 1979]. We hence use the simpler O(m log n) algorithm in our
implementation (common libraries also include this version typically).
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8.2. Experimental Results

We describe the results of our experiments next. First, we show that DAVA and DAVA-prune
give the same results. Second, we demonstrate that DAVA, DAVA-prune and DAVA-fast get
upto 10 times better solutions compared to the baselines (resulting in thousands of more
healthy nodes), and DAVA-prune saves upto 16k (roughly 3% of the graph) more nodes than
DAVA-fast for large networks. In addition, we demonstrate that the size of I0 will not change
the accuracy of our algorithms. Finally, we also show the scalability of our algorithms on
large datasets.

We would like to note here that the number of the nodes in the first layer of the dominator
trees of the graphs were a fraction (ranging from 0.3 to 0.7) of the total number of healthy
nodes in the graph. As discussed before, because of Lemma 6.4, this reduces the solution
space substantially.
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Fig. 5. Effectiveness of DAVA-prune: IC model with p = {0.1, 0.5, 0.9} on various Real Datasets. Expected
number of healthy nodes after distributing vaccines according to different algorithms (i.e. σ′

G,I′(S)) VS

budget k. DAVA-prune outputs the same results as DAVA.

8.2.1. Effectiveness of DAVA-prune. We compare DAVA-prune with DAVA to demonstrate that
DAVA-prune outputs exactly the same result as DAVA. Since DAVA is not scalable to PORTLAND
and MIAMI, we do not show plots for them. also show how well the performance of DAVA-prune
when comparing it with DAVA-fast.

Figure 5 shows the results of DAVA-prune and DAVA when p = {0.1, 0.5, 0.9} for OREGON,
GNUTELLA, STANFORD and BRIGHTKITE: DAVA-prune always gives the same results as DAVA for
all networks when we vary k, which is consistent with our theoretical result (see Lemma 6.10).
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Fig. 6. Effectiveness for DAV (Comparison with baselines): IC model with p = 1 on various Real Datasets.
Expected number of healthy nodes after distributing vaccines according to different algorithms (i.e. σ′

G,I′ (S))

VS budget k. Higher is better. Note that DAVA-prune and DAVA-fast consistently outperform the other
algorithms by up to 10 times in magnitude, and DAVA-prune saves more nodes than DAVA-fast. Best seen in
color.

8.2.2. Comparison with baselines. Since DAVA and DAVA-prune output the same result as we
discussed before, in this section, we only show the performance of DAVA-prune for ease of
exposition.
Summary of results. DAVA-prune and DAVA-fast consistently outperform other baseline

algorithms for all networks with different settings. Comparing DAVA-prune and DAVA-fast, we
found that, as expected DAVA-prune has better performance: it saves upto 16k (roughly 3%
of the graph) more nodes than DAVA-fast in large networks. Hence, if the performance is the
top priority, DAVA-prune is the best choice. If the running time is equally crucial, DAVA-fast
with a much faster running time (which does not depend on k) would be a better choice.
Having said that, the running time for DAVA-prune is also competitive (see Section 8.2.3): it
itself is much faster than DAVA.

IC model. Figures 6, 7 and 8 demonstrate our experimental results when p = 1, p = 0.6
and p = {0.1, 0.5, 0.9}. In all networks, DAVA-prune and DAVA-fast consistently outperform
baseline algorithms, and DAVA-prune gives the best results for all networks.

As OREGON had only ∼ 600 nodes, we varied k till 50 (roughly 9% of the graph). OREGON
has a jelly-fish-type structure, hence for lower k, most algorithms work well by targeting
the nodes in the core. But for larger k, the periphery needs to be targeted, and here our
algorithms provide the best solution. For bigger networks like GNUTELLA and STANFORD
with tens of thousands nodes, the difference in performance of DAVA-prune and DAVA-fast
from the other algorithms is clearer. Also, the gains from our algorithms reduced as the
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Fig. 7. Effectiveness for DAV (Comparison with baselines): IC model with p = 0.6 on various Real Datasets.
Expected number of healthy nodes after distributing vaccines according to different algorithms (i.e. σ′

G,I′ (S))

VS budget k. Higher is better. Note that DAVA-prune and DAVA-fast consistently outperform the other
algorithms by up to 10 times in magnitude, and DAVA-prune saves more nodes than DAVA-fast. Best seen in
color.

p value decreased. This is expected as weaker the disease (in spreading), lower is benefit
of vaccinating i.e. lower is the savings gain from carefully selecting important nodes (as
removing a node will not further change the expected infections much). PER-PRANK and
PAGERANK perform well in STANFORD (a web-graph, with many hubs which these baselines
exploit). Additionally NETSHIELD performed well only in BRIGHTKITE, demonstrating that
the type of solutions change drastically, once we take the data of who is infected into account.
In all these cases, DAVA-prune and DAVA-fast performed the best: DAVA-prune and DAVA-fast
both saved about upto 10 times more nodes than baseline algorithms on STANFORD.

SIR model. We got similar results under the SIR model on PORTLAND and MIAMI too
(Figure 9): DAVA-prune and DAVA-fast outperform other baselines. We notice that the larger
k becomes, the better DAVA-prune and DAVA-fast perform than other algorithms: they both
save more than 75k (roughly 15% of the graph) nodes than DEGREE when k = 2000 (which
is similar to the well-known acquaintance immunization method used in practice [Cohen
et al. 2003])!

Finally, under both the IC and SIR experiments, though our faster heuristic DAVA-fast
performed very well, getting competitive solutions, it is not as good as DAVA-prune: DAVA-
prune gives the best results for all networks, e.g., it saves about 400 more nodes than
DAVA-fast on STANFORD when k = 150. The difference is clearer on PORTLAND and MIAMI:
DAVA-prune saves 16k (roughly 3% of the graph) more nodes than DAVA-fast when k = 2000.
Hence, if we care mainly about the performance, DAVA-prune is the best choice, and the
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Fig. 8. Effectiveness for DAV (Comparison with baselines): IC model with p = {0.1, 0.5, 0.9} on various Real
Datasets. Expected number of healthy nodes after distributing vaccines according to different algorithms (i.e.
σ′
G,I′(S)) VS budget k. Higher is better. Note that DAVA-prune and DAVA-fast consistently outperform the

other algorithms, and DAVA-prune saves more nodes than DAVA-fast. Best seen in color.
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Fig. 9. Effectiveness for DAV (Comparison with baselines): SIR model on Real Datasets. Expected number
of healthy nodes after distributing vaccines according to different algorithms (i.e. σ′

G,I′(S)) VS budget k.

Higher is better. Note that DAVA-prune and DAVA-fast consistently outperform the other algorithms, and
DAVA-prune saves upto 16k more nodes than our second best algorithm DAVA-fast. Best seen in color.

running time of DAVA-prune is also competitive (see Section 8.2.3). Though DAVA-fast is not
as good as DAVA-prune, it has its advantage: it is a much faster algorithm.

8.2.3. Quality w.r.t. size of I0. We also show the performance of our algorithms w.r.t. the size
of I0. We demonstrate the results of PORTLAND and MIAMI in Figure 10. For other networks
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with IC model, we got similar results. First, we have an obvious observation that as the size
of I0 increases, the expected number of healthy node at the end decreases. Second, on both
PORTLAND and MIAMI, DAVA-prune and DAVA-fast consistently outperform other baselines as
the size of I0 changes. Hence, our algorithms are robust w.r.t. the size of I0, i.e., the gains
of our algorithms are consistently higher than other baselines.
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Fig. 10. Effectiveness for DAV (Comparison with baselines over the size of I0): SIR model on Real Datasets.
Expected number of healthy nodes after distributing vaccines according to different algorithms (i.e. σ′

G,I′ (S))

VS Size of I0. Higher is better. Note that DAVA-prune and DAVA-fast consistently outperform the other
algorithms. Best seen in color.

8.2.4. Quality w.r.t. distribution of I0. We now show the performance of our algorithms
w.r.t. a specific distribution of I0 as well. Figure 11 shows the results when I0 is uniformly
at random chosen from people with the age over 60 (commonly treated as the vulnerable
population) on PORTLAND and MIAMI. As shown in Figure 11, DAVA-prune and DAVA-fast
consistently outperform other baselines as well. Notice that plots in Figure 11 is almost the
same as the result in Figure 9 when I0 is chosen from the whole population. Therefore, our
algorithms are robust w.r.t. the distribution of I0 too, i.e., the gains of our algorithms are
consistent with different distributions of I0.
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Table III. Running time (sec.) of DAVA, DAVA-prune DAVA-fast and NETSHIELD when k = 200. Runs
terminated when running time t > 24 hours (shown by ’-’). We did not show the running time of
RANDOM, DEGREE, and PAGERANK because they are fast heuristics.

DAVA-fast DAVA-prune DAVA NETSHIELD

OREGON 0.89 17.5 23.3 4.9
STANFORD 14.2 1365.2 2920.4 74.1
GNUTELLA 20.1 2245.4 4700.5 79.4
BRIGHTKITE 109.3 8921.3 19444.1 246.8
PORTLAND 778.4 66424.4 - 8211.6
MIAMI 1034.2 81638.5 - 11233.9

8.2.5. Scalability. Although our algorithms are polynomial-time, we show some running
time results to demonstrate scalability. Table III shows the running time for DAVA, DAVA-
prune, DAVA-fast and NETSHIELD for different datasets when the budget k = 200. We did not
show the running time of RANDOM, DEGREE, PAGERANK and PER-PRANK because they are fast
heuristics that finish in the order of seconds, e.g., all four heuristics finish within 60 seconds
on the largest network, MIAMI. DAVA-fast is much faster than both DAVA and DAVA-prune—it
took only 20 seconds to select 200 nodes in GNUTELLA while DAVA takes more than an hour
to finish it. For the large-scale datasets like PORTLAND and MIAMI, DAVA-fast took less than
15 minutes to select 200 nodes, while DAVA could not finish in the allotted time. Further,
DAVA-fast is up to 10 times faster than NETSHIELD—this is because NETSHIELD has a O(nk2)
complexity (while our algorithms are linear in the budget). DAVA-prune is faster than DAVA
as well—it only took about half the time DAVA takes. Further, for PORTLAND and MIAMI,
DAVA-prune can finish in the allotted time. Despite being slower than DAVA-fast, for small
graphs, the performance improvement of DAVA-prune is worth its increased running time: e.g.,
on STANFORD, it saves 350 more nodes than DAVA-fast (i.e., more than 10% as many nodes as
DAVA-fast saves, and 4% of nodes w.r.t. the graph size), while having a competitive running
time (within 25 minutes) especially when we consider applications where performance is the
top priority. On the other hand, for large graphs such as PORTLAND and MIAMI, DAVA-fast
has its advantage: it is about 80 times faster than DAVA-prune while the difference in nodes
saved is marginal (about 250 nodes for k = 200). However, for a larger budget k, as we see
above in Section 8.2.2, the difference in performance between DAVA-prune and DAVA-fast may
increase a bit. In that case, DAVA-prune might be a good option. Nevertheless, the choice
of DAVA-prune and DAVA-fast really depends on the application: if we do not need a fast
algorithm, DAVA-prune is clearly a better choice; while for some time-sensitive applications,
DAVA-fast will be more suitable, e.g. in case we need to quickly update our allocations.
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We also shows the running times of our algorithms w.r.t. k (see Figure 12(a)). We
demonstrate the result of GNUTELLA, but for other networks we got similar results. We
observe that as k increases, the running time increases linearly for both DAVA-prune and DAVA
which are consistent with their theoretical complexities, while the running time of DAVA-fast
is constant as its running time does not depend on k (see Lemma 6.12). Finally, we also
experimented with different graphs to show the running times of our algorithms w.r.t. the
size of the graph (see Figure 12(a)) when k = 200. We use the BTER Model [Seshadhri et al.
2012] to generate graphs of various sizes. BTER Model is a well-known graph model which
accurately captures the properties of real-world networks. Here the graphs we generated
preserve the community structure and degree distribution of GNUTELLA. We observe that as
the size of graph increases, the running time increases almost linearly for DAVA, DAVA-prune
and DAVA-fast, again as expected from their running time complexities.

9. DISCUSSION AND FUTURE WORK

Infected Node Set I0. As mentioned in Section 4.1, I0 does not refer to the starting
point of the epidemic. Instead, it denotes the set of infected nodes observed at any time of
the epidemic when we want to intervene. Nevertheless, in this paper we call I0 “initially”
infected node for ease of our description. In addition, I0 can be drawn from any distribution:
so our problem is a general problem in a sense that we do not assume any distribution.
However, it is an interesting question if we can get more accurate or efficient solution if we
assume specific distributions such as favoring elderly people and children. In our opinion, it
is possible that assuming a specific distribution can lead to a better algorithm. For example,
considering the trivial case that if we know there is only one infected node, then we just
need to vaccinate its neighbors if it is within the budget.

Nevertheless, in this paper, we have empirically investigated the effect of the distribution
and size of I0 on our algorithms in our experiments and found that our algorithms constantly
outperform others baselines no matter how I0 changes.

Edge weight pu,v. In this paper, we assume that the edge weights pu,v (the infectivity
of the contagion) are known. For the IC model, there has been some work on learning
propagation probabilities from historical data [Saito et al. 2008; Goyal et al. 2010; Lin et al.
2013]. For the SIR model, we use the normalized contact time as the weight of each edge.
The higher contact time is, higher the probability that a person will get infected from his/her
neighbor. There are also general guidelines for estimating the empirical infectivity of certain
diseases such as [Nelson 2005]. It is definitely an interesting problem to relax the assumption
that pu,v is known.

Generalizations. Future work can also consist of applying our algorithms to directed
graphs (DAVA and DAVA-fast are easily generalizable, while DAVA-prune will require more work)
and generalizing our methods to more complicated versions of the Data-Aware Vaccination
problem. These can include considering other epidemiological spreading models (like the
so-called SIS and SIRS models with temporary immunity and the SEIR model with an
incubation period), investigating the effects of uncertain data (e.g. dealing with noisy
infection data and uncertain propagation probabilities on edges), and designing accurate
real-time immunization strategies.

10. CONCLUSION

This paper addresses the problem of immunizing healthy nodes in presence of already
infected nodes given a graph like a social/computer network or the blogsphere. The potential
applications are broad: from distributing vaccines to control the epidemic, to stopping
already present rumors in social media.

Our main contributions are: we formulated the problem called Data-Aware Vaccination,
proved it is NP-hard and also hard to approximate within an absolute error. After that we gave
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an optimal algorithm DAVA-tree for m-trees, and presented three polynomial-time heuristics
DAVA, DAVA-prune and DAVA-fast for general graphs of varying degrees of performance. We
demonstrated the effectiveness and efficiency of our algorithms through extensive experiments
on multiple datasets, including large epidemiological social contact networks, computer
networks and social media networks, on both the well-known IC and SIR models. Our
algorithms outperform other competitors by up to 10 times in magnitude. Among our
methods, DAVA-prune saves up to 16k more nodes than DAVA-fast, but DAVA-fast is the fastest.
In addition we also presented the scalability of DAVA-prune and DAVA-fast on large-scale
networks.

Acknowledgment

The authors would like to thank the editors and anonymous reviewers for their comments,
and the Virginia Bioinformatics Institute for sharing the PORTLAND and MIAMI datasets
with us. This material is based upon work partially supported by the NSF under Grant No.
IIS-1353346, by the Maryland Procurement Office under contract H98230-14-C-0127, and by
a Facebook faculty gift. Any opinions, findings and conclusions or recommendations express
in this material are those of the author(s) and do not necessarily reflect the views of the
respective funding agencies.

References

Roy M. Anderson and Robert M. May. 1991. Infectious Diseases of Humans. Oxford University Press.

James Aspnes, Kevin Chang, and Aleksandr Yampolskiy. 2005. Inoculation strategies for victims of viruses
and the sum-of-squares partition problem. In SODA (2005), 43–52.

Norman Bailey. 1975. The Mathematical Theory of Infectious Diseases and its Applications. Griffin, London.

Christopher L. Barrett, Harry B. Hunt III, Madhav V. Marathe, S. S. Ravi, Daniel J. Rosenkrantz,
Richard Edwin Stearns, and Mayur Thakur. 2008. Errata for the paper ”Predecessor existence problems
for finite discrete dynamical systems” [TCS 386 (1-2) (2007) 3-37]. Theor. Comput. Sci. 395, 1 (2008),
132–133.

Sushil Bikhchandani, David Hirshleifer, and Ivo Welch. 1992. A Theory of Fads, Fashion, Custom, and
Cultural Change in Informational Cascades. Journal of Political Economy 100, 5 (October 1992),
992–1026.

Linda Briesemeister, Patric Lincoln, and Philip Porras. 2003. Epidemic Profiles and Defense of Scale-Free
Networks. WORM 2003 (Oct. 27 2003).

Adam L. Buchsbaum, Haim Kaplan, Anne Rogers, and Jeffery R. Westbrook. 1998. A new, simpler linear-time
dominators algorithm. ACM Trans. Program. Lang. Syst. 20, 6 (Nov. 1998), 1265–1296.

Po-An Chen, Mary David, and David Kempe. 2010a. Better vaccination strategies for better people. In
Proceedings of the 11th ACM conference on Electronic commerce (EC ’10). ACM, New York, NY, USA,
179–188.

W. Chen, C. Wang, and Y. Wang. 2010b. Scalable influence maximization for prevalent viral marketing in
large-scale social networks. KDD (2010).

Reuven Cohen, Shlomo Havlin, and Daniel ben Avraham. 2003. Efficient Immunization Strategies for
Computer Networks and Populations. Physical Review Letters 91, 24 (Dec. 2003).

Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck. 1989. An efficient
method of computing static single assignment form. In Proceedings of the 16th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. ACM, 25–35.

J Dushoff, JB Plotkin, C Viboud, L Simonsen, M Miller, M Loeb, and DJ Earn. 2007. Vaccinating to protect
a vulnerable subpopulation. PLoS Med 4, 5 (2007), e174.

Stephen Eubank, Hasan Guclu, V. S. Anil Kumar, Madhav V. Marathe, Aravind Srinivasan, Zoltan Toroczkai,
and Nan Wang. 2004. Modelling disease outbreaks in realistic urban social networks. Nature 429, 6988
(May 2004), 180–184.

NM Ferguson, DA Cummings, C Fraser, JC Cajka, PC Cooley, and DS Burke. 2006. Strategies for mitigating
an influenza pandemic. Nature 442, 7101 (2006), 448–452.

L. C. Freeman. 1977. A set of measures of centrality based on betweenness. Sociometry (1977), 35–41.
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Appendix—Another prune algorithm

The appendix provides a method for maintaining an updated dominator tree in face of
node deletions without rebuilding from scratch each time, which might be useful for other
problems that utilize dominator trees. For example, dominator trees are widely used to
analyze the dependency of variables/expressions after building a control flow graph in
Software Engineering [Cytron et al. 1989]. However, when conducting dynamic analysis for
a program, it might be necessary to maintain the dominator tree in the phase of variable
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deletion. The technique in the appendix may help such application to speed up the analysis
since rebuilding the dominator tree will not be required.

Here we show another prune technique for DAVA. The idea is that, since nodes that are
not in the first layer of the dominator tree will not change their parent nodes (Lemma 6.7),
we may not need to re-build the dominator tree multiple times. Hence we need to find out
the new immediate dominators of nodes in the previous dominator tree, and update the
previous dominator tree without re-building it. However, this prune algorithm may run slow
in practice because updating the dominator tree in this algorithm may not be completed in
linear time. Hence, we do not use this pruning technique in our algorithm DAVA-prune, and
present it here for independent interest.

First, according to Lemma 6.7 and 6.8, we do not need to consider nodes that are not
in the first layer of the old dominator tree Told. Now let us only consider nodes in the first
layer of Told. Suppose v is the node we select after running DAVA-TREE. For a node u in the
first layer of Told, according to the definition of the dominator [Lengauer and Tarjan 1979],
the new set of dominators of u is

⋂
i∈NG′ (u)

⋂
i/∈NG′ (v)DOM(i) where NG′(u) is the set of

neighbors of u in the merged graph G′ and DOM(i) is the set of dominators of i in G′ (the
intersection of u’s neighbors dominators). Hence, we can build the dominator tree of G′ only
once, and after that update the new dominators of nodes in the first layer appropriately.
Algorithm 6 shows the prune process, and Algorithm 7 shows the whole new prune algorithm.
Lines 3-9 in Algorithm 6 show how to update the new immediate dominators of nodes in
the first layer. For the reweighting process, we use the same technique as Algorithm 4.

Algorithm 6 Prune Algorithm

Require: G,P , I0, T , v
1: {//Step 1 ReLocating: Change locations of nodes in the first layer}
2: NodeCandidates=NeighborsT (I0)
3: for node u in NodeCandidates do
4: DomCandidates=

⋂
i∈NeighborsG(u)

⋂
i/∈NeighborsG(v)DOM(i)

5: if DomCandidates 6= ∅ then
6: parentu =a node in DomCandidates with the lowest layer
7: Move u to its new parent parentu in T
8: end if
9: end for

10: {//Step 2 ReWeighting: Change weights of nodes in the first layer}
11: G′′ =Removing nodes that are not in the first layer of T in G′

12: Run Dijkstra’s algorithm on G′′ to get new weights
13: Remove node v from G′ and T
14: return T

Running Time: Suppose D means the maximum degree in the graph G, H is the height
of the dominator tree, and recall that F is the number of nodes in the first layer of dominator
tree.

Lemma 10.1. (Running time of DAVA-prune-2) Algorithm 7 takes O(|V | log |V |+ |E|+
k(FHD + F logF )) worst-case time.

Proof. Building a dominator tree costs O(|V |+ |E|) time [Buchsbaum et al. 1998], and
weighting the dominator tree for the first take costs O(|E|+ |V | log |V |). After that, pruning
dominator tree costs O(FHD + F logF ) time (O(FHD) is the worst time for relocating
nodes in the first layer of the dominator tree while O(F logF ) is the running time for
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Algorithm 7 DAVA-prune-2 Algorithm

Require: Graph G, P , budget k, infected set I0
1: S = ∅
2: G′ = Run MERGE on G and I0
3: T = Build the dominator tree from G′ and assign probabilities p̃v,u
4: repeat
5: v = Run DAVA-TREE on T with budget = 1
6: S = S ∪ v
7: Run Prune on G′, T , P and v
8: until |S| = k
9: return S

reweighting nodes in the first layer). Hence in general, the worst-case time complexity for
DAVA-pruning is O(|V | log |V |+ |E|+ k(FD + F logF )).

Unlike DAVA-prune, Algorithm 7 does not need to rebuild the dominator tree multiple
times. However, the running time to change locations of nodes in the first layer in Algorithm 7
can be quadratic for the worst case. But in DAVA-prune, rebuilding the dominator tree can
be done in the linear time. Hence for the worst case, DAVA-prune is faster than Algorithm 7.
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