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Abstract

Given a graph, like a social/computer network or the
blogosphere, in which an infection (or meme or virus) has
been spreading for some time, how to select the k best nodes
for immunization/quarantining immediately? Most previous
works for controlling propagation (say via immunization)
have concentrated on developing strategies for vaccination
pre-emptively before the start of the epidemic. While very
useful to provide insights in to which baseline policies can
best control an infection, they may not be ideal to make
real-time decisions as the infection is progressing.

In this paper, we study how to immunize healthy nodes,
in presence of already infected nodes. Efficient algorithms
for such a problem can help public-health experts make
more informed choices. First we formulate the Data-Aware
Vaccination problem, and prove it is NP-hard and also
that it is hard to approximate. Secondly, we propose
two effective polynomial-time heuristics DAVA and DAVA-fast.
Finally, we also demonstrate the scalability and effectiveness
of our algorithms through extensive experiments on multiple
real networks including epidemiology datasets, which show
substantial gains of up to 10 times more healthy nodes at
the end.

1 Introduction

Given a set of already infected people in a population,
what are the healthy people who should be immediately
given vaccines to best control the epidemic? How should
Twitter decide which accounts to suspend/delete to
stop rumors which are already present? Propagation-
style processes on graphs/networks are powerful tools
for modeling situations of interest in real-life like in
social-systems, in cyber-security and in epidemiology.
For example diseases spreading over population contact
networks, spam/rumors spreading on Facebook/Twitter,
malware spreading over computer networks, all are
propagation processes. As a result, manipulating and
controlling such harmful propagation is an important
and natural problem with numerous applications.

In this paper, we concentrate on the problem of
how best to distribute vaccines to nodes on a network,
when the disease has already spread to certain parts of
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the graph. Intuitively we want to study how to best
build a ‘wall’ against an emerging and already spreading
contagion. We assume the vaccines ‘immunize’ the nodes
completely i.e. they are removed from the network
immediately. Most previous work in immunization
(see Section 7 for a survey) tries to give algorithms
and policies for so-called pre-emptive immunization, in
which we are looking for the best baseline policies for
controlling an epidemic, before the epidemic has started.
As discussed later, these papers immunize against
an assumption that the epidemic can start anywhere
at a random point. In practice, this assumption is
almost never true—e.g., travelers or people working
with animals (say in case of avian flu) are more likely
to get infected and hence an epidemic is much more
likely to start from them. Hence while such baseline
policies give us good guidelines, they may not be ideal for
making real-time decisions, given that an epidemic has
already affected sets of people. Hence efficient algorithms
for such a Data-Aware Vaccination problem can help
policy makers react and make better policy choices to
changing conditions. The problem has clear applications
to social and cyber systems as well: which user-accounts
should be disabled in Facebook to best stop an active
spam message? which computer nodes should install the
patches first in presence of malware attacks?

Our main contributions include:

1. Problem Formulation and Hardness Results: We
formulate the Data-Aware Vaccination problem as
an combinatorial optimization problem on arbitrary
graphs, and prove it is NP-hard and also hard to ap-
proximate within an absolute error (see Section 4).

2. Effective Heuristics: We present effective
polynomial-time heuristics DAVA and DAVA-fast
for general graphs, and DAVA-tree, an optimal
algorithm for m-trees (see Section 5).

3. Experimental Evaluation: Finally, we present ex-
tensive experiments against several competitors on
multiple real datasets (including large epidemiolog-
ical social-contact graphs), and demonstrate the
efficacy and scalability of our algorithms. Our al-
gorithms outperform other algorithms by up to 10
times in both magnitude and running-time.



The rest of the paper is organized as follows.
Section 2 presents some preliminaries while Section 3
sets up the Data-Aware Vaccination problem. Section 4
discusses the computational complexity of our problem,
Section 5 presents our algorithms and Section 6 presents
experimental results on several datasets. We finally
conclude in Section 8.

2 Preliminaries

We give preliminaries in this section. Table 1 lists the
main symbols used in the paper. There is an underlying
contact network G (between people/computers/blogs
etc.) on which the contagion (disease/virus/meme
etc.) spreads. For ease of exposition, we assume our
graph is weighted and undirected, but all our methods
and machinery can be naturally generalized to directed
graphs.

Table 1: Terms and Symbols
Symbol Definition and Description

DAV Data-Aware Vaccination problem

SIR Susceptible-Infected-Recovered Model

IC Independent Cascade Model

G(V,E) graph G with nodes set V and edges set E

I0 infected nodes set

pu,v propagation probability from node u to v

δ curing probability for the SIR model

k the budget (i.e., #nodes to give vaccines to)

S set of nodes selected for vaccination

σG,I0 (S) the expected number of infectious nodes at the
end (footprint)

σ′G,I0
(S) the expected number of healthy nodes at the end

γS(j) the expected benefit of σ′G,I0
(∗) when adding j

into S

We use two well-known and popular discrete-time
virus propagation models to model the virus spread-
ing on the network: the so-called Susceptible-Infected-
Recovered (SIR) model, and its special case the Inde-
pendent Cascade (IC) model. SIR is a fundamental
model which has been extensively used in epidemiol-
ogy [1, 13, 19] to model mumps (or chicken-pox) like
infections1. A node in the network is in one of three
states: susceptible (healthy), infected and recovered. In
each time-step, every infected node u tries to infect each
of its healthy neighbors v independently with probability
pu,v (the weight on each edge). The healthy neighbors
who are successfully attacked are considered to be in-
fected from the next time-step. In addition, at each
time-step each infected node has a curing probability δ
to become recovered (from the next step). Once recov-

1Generalizing our results to other disease models like the flu-like
SIS model is interesting future work.

ered, a node does not participate in the epidemic further.
The process begins when some initial nodes are infected
and terminates when no infected nodes remain.

IC is a well-known model [14] which is used to
abstract viral marketing and related meme processes. In
contrast to SIR, in the IC model, each infected node gets
precisely one chance to infect (‘activate’) its neighbors
with the edge-weight probability (in effect the curing
probability δ = 1 here). We will first describe our
algorithm on this model. Subsequently, extending our
algorithm to handle the general SIR case is reasonably
straightforward (which we explain in Section 5.4).

3 Problem Formulation

We are now ready to formulate our problem formally.
We are given a fixed-set of nodes I0, which are all the
infected nodes at the start of the process. If we give a
vaccine to a healthy node v, it means that it cannot be
infected by its neighbors at any time, effectively removing
it from the graph. We are given a graph G(V,E), the
set I0 and a budget of k vaccines. We want to find
the ‘best’ set S of healthy nodes that should be given
vaccines at the beginning. As the propagation model
is stochastic, denote σG,I0(S) to be the expected total
number of infected nodes during the whole process (the
‘footprint’), given that I0 nodes were infected at the
start, and S was the vaccinated set. The best set S is
the one which minimizes σG,I0(S). Formally,

Problem 1: Data-Aware Vaccination problem
DAV (G, I0, P, δ, k).

Given: A graph G(V,E) with node set V and edge
set E, the initially infected node set I0, SIR model with
propagation probability on each edge {i, j} pi,j ∈ P and
curing probability δ, and an integer (budget) k.

Find: A set S of k nodes from V − I0 to distribute
vaccine to minimize σG,I0(S), i.e.

S∗ = argmin
S

σG,I0(S)(3.1)

s.t. |S| = k

Comment 1 Define σ′(·) to be the expected num-
ber healthy nodes at the end i.e. σ′G,I0(S) = |V | −
σG,I0(S). Given the same set S and an integer k, clearly
minimizing σG,I0(S) is equivalent to maximizing σ′G,I0(S)
(as nodes can either be infected or healthy). In this pa-
per, for ease of description we adopt this alternate form
(of maximizing σ′G,I0(S)).

Comment 2 Clearly the problem is trivial when
k ≥ |N(I0) − I0|, where N(I0) is the set of immediate
neighbors of I0 in the graph G (as we can just vaccinate
all of these nodes, and the disease will stop). In reality,
this is never the case, as vaccines are expensive and
networks are huge. For example, for k = 10, in our



experiments, we found that |N(I0) − I0| ranged from
10 to 250 times our budget. Hence, we will implicitly
assume that k < |N(I0)− I0|.

4 Complexity of the DAV problem

We discuss the complexity of the Data-Aware Vaccina-
tion problem next. In summary, we first prove that on
general graphs, the DAV problem is NP-hard, then show
that DAV problem is also hard to approximate.

4.1 Hardness result Unfortunately, our problem is
NP-hard. We will reduce it from the Minimum k-union
(MinKU) set problem (where we want to minimize the
union of k subsets), which was recently proven to be
hard [23].

Consider the corresponding decision version of DAV:
Problem 2: Data-Aware Vaccination (Decision Version)
DAV (G, I0, P, δ, k, τ):

Given: A graph G(V,E), the node set I0, the SIR
model with propagation probability pi,j ∈ P and curing
probability δ, and an integer (budget) k ≥ 0, and τ ≥ 0.

Find: Is there a set S of k nodes of G to distribute
the vaccine such that σ′G,I0(S) ≥ τ?

Theorem 4.1. DAV (Decision Version) is NP-hard.

Proof. (Brief sketch) We can reduce the MinKU prob-
lem to an instance of the DAV problem with δ = 1 (hence
the DAV problem under the IC model is also NP-hard).

4.2 Approximability Typically related optimization
problems arising in graphs have a submodular structure
lending themselves to the near-optimal greedy solution.
But unfortunately, our function is not submodular.

Remark 4.1. σ′G,I0(S) in DAV is not a submodular
function.

I
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Figure 1: Counter-Example

See Fig. 1. A sub-
modular function has the
property that if A ⊆ B,
then adding an element j
into both sets, we should
have f(A∪{j})− f(A) ≥
f(B ∪ {j})− f(B). Sup-
pose I is infected and A =
∅ and B = {X}, we have

σ′G,I0(A ∪ {Y }) − σ′G,I0(A) = 5 and σ′G,I0(B ∪ {Y }) −
σ′G,I0(B) = 8− 2 = 6. So σ′G,I0(S) is not a submodular
function.

Vinterbo [23] gave a greedy algorithm which can
approximate MinKU and its equivalent problem Maxi-
mum k-Intersection problem (MaxKI) (where we want
to maximize the intersection of k given subsets) within

a constant factor if the cardinality of all the subsets are
bounded by a constant. However, in our case the ‘subsets’
can be very large, and thus the approximation result is
not useful. The algorithm we develop is related to Vin-
terbo’s setting in the sense that it is also greedy, though
we use different efficient techniques for our particular
setting. For the general case, Xavier [24] proved that
the MaxKI problem cannot be approximated within
a tighter constant 1

Nε where N is the number of sub-

sets and ε > 0, under NP 6⊂ BPTIME(2N
ε

). Recently
Sheih et al [20] proved MaxKI is inapproximable within
an absolute error, with a smaller inapproximable gap
and under the weaker P 6=NP assumption. Using the
results in [20], unfortunately our problem is also inap-
proximable within an absolute error 1

2m
1−2ε+O(m1−3ε)

if m = |V | − |N(I0) − I0| − |I0|. Here, m means the
number of nodes except for the infected nodes and their
neighbors.

Theorem 4.2. Given any constant 0 < ε < 1/3, there
exists a mε such that the Data-Aware Vaccination
problem with m > mε, cannot be approximated in
polynomial time within an absolute error of 1

2m
1−2ε +

3
8m

1−3ε − 1 unless P=NP.

Proof. Omitted for brevity.

5 Our Proposed Method

Due to the results in the previous section, we present
effective heuristics next. We first describe our methods
assuming the IC model in the DAV problem (Section
5.1-5.3), and then extend our algorithm to handle the
general SIR case (Section 5.4).

5.1 Merging infected nodes The first observation
is that as the reduction suggests, we can merge the
all the infected nodes into a single ‘super infected’
node and get an equivalent simplified problem with
a single infected node. Intuitively this is because it
does not matter how the infected nodes are connected
among themselves—all it matters for our problem is
how they are connected to healthy nodes. If a healthy
node has multiple infected neighbors, it will have a new
edge probability which would be the logical-OR of the
individual probabilities. For example, if a healthy node c
has two infected neighbors a and b with edge probabilities
pa and pb, the new edge probability between I ′ and c
would be 1− (1− pa)(1− pb) = pa + pb − papb.

Remark 5.1. Given an instance of the DAV problem
(G, I0, P, k) under IC model, Algorithm 1 outputs an
equivalent problem instance (G′, I ′, P ′, k) where I ′ is the
sole infected node in the new graph G′.



Algorithm 1 MERGE

Require: Input graph G, infected node set I0, proba-
bility set P

1: G′ = G
2: Add node I ′ to G′

3: for each node i in I0 do
4: if there exists an edge eij between i and j then
5: if there is no edge eI′j then
6: Add edge eI′j into G′

7: pI′j ← pij
8: else
9: pI′j ← pI′j + (1− pI′j)pij

10: end if
11: Remove eij from G′

12: end if
13: end for
14: Remove all nodes in I0 from G′

15: return graph G′ and the infected node I ′

In Algorithm 1, line 3-13 is used to copy edges from
previous infected nodes set I0 to the new infected node
I ′. Line 5-10 shows how to assign new propagation
probability pI′j . Suppose the previous infected nodes
set I0 has EI0 edges in total, Algorithm 1 will take
O(|I0|+ EI0) time.

5.2 DAVA-TREE—Optimal solution when the
merged graph is a tree Let’s call the graph we get
after merging (i.e. after Algorithm 1) the m-graph. The
second important observation is that as we show next,
if the m-graph of our instance is a tree, then we can
get an optimal polynomial time algorithm under IC
model, for any edge propagation probability pi,j ∈ [0, 1].
We call the algorithm DAVA-TREE (Data Aware Vaccine
Allocation on a tree).

Before we describe our algorithm, define the quantity
γS(j)—which is the ‘benefit ’ of node j to the optimization
goal when nodes in S have already been removed. It is
essentially the expected number of nodes we save after
removing j, given that we have already removed nodes
from set S. We have:

(5.2) γS(j) = σ′G,I0(S ∪ {j})− σ′G,I0(S)

Let γ(j) = γ∅(j). Algorithm 2 proceeds by computing γj
efficiently for every neighbor node of I ′ (in a simple tree
traversal) and then taking those neighbors of the infected
node I ′ with top-k γ(·) values. Lemma 5.1 proves that
this gives us the optimal solution. In short, as there
is only one path from any node to any other node in
the tree: the optimal solution must be a subset of the
immediate neighbors of I ′ with top k value of γ(j).

Algorithm 2 DAVA-TREE

Require: Tree T , infected node I ′, k and pij
1: Set I ′ as the root
2: for each neighbor j of I ′ do
3: γ(j)← pI′j × calPartial(j)
4: end for
5: S = nodes with top-k values of γ(j)
6: return S

Function calPartial(node n)
if n is not a leaf then

benefit← 1
for each child i of n do

benefit← benefit + calPartial(i)× pni
end for

else
benefit← 1

end if
return benefit
EndFunction

Lemma 5.1. (Correctness of DAVA-TREE) If the m-
graph G(V,E) is a tree, then we can get optimal solution
of the DAV problem under IC model by Algorithm 2.

Proof. (Brief sketch) We show the following things: in
the optimal set, the chosen nodes must be neighbors of
the infected node I ′; the benefit of each such node is
independent of the rest of the set S; and finally that we
correctly calculate γ(j).

Lemma 5.2. (Running Time of DAVA-TREE)
Algorithm 2 DAVA-TREE costs O(|V | + |E| + klog|V |)
time in the worst case.

Proof. Omitted for brevity.

5.3 Arbitrary graphs under IC model What if
the m-graph is not a tree? We give an effective heuristic
next when m-graphs are arbitrary networks. After the
merge algorithm, we can guarantee that a connected
graph has only one infected node I ′. Intuitively, we
need to capture (a) the ‘closeness’ of nodes to the
infection (represented by I ′) and at the same time, (b)
the importance of the nodes in ‘saving ’ other nodes.
Thus good solutions are composed of nodes which are
close to I ′ and also prevent the infection of many others.

We can still use DAVA-TREE algorithm by generating
a tree from the m-graph, rooted at I ′. Which tree should
we use? People have typically used spanning trees like
the Minimum Spanning Tree (MST) in related problems.
The problem with MST is that potential solution nodes
(for the original graph) can reside at higher depths
in the MST—but as we saw in the previous section,
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Figure 2: An example of dominator tree. For p=1 and
k=1, the optimal solution is node 4. For p=0.5 and k=1,
the optimal solution is node 1.

the DAVA-TREE algorithm only chooses nodes which are
neighbors of I ′. See Figure 2(a) for an example. Let
p = 1 on all edges, and budget k = 1. Then the MST
rooted at I ′ will not have the node 4 as a neighbor of
node I ′, but the optimal solution in this case will exactly
be node 4. On the other hand, if p = 0.5 and k = 1,
then it is easy to verify that node 1 will become the
optimal solution. Hence, instead, we propose to use the
dominator tree of the graph and then run DAVA-TREE

algorithm on the dominator tree. As we explain later,
the dominator tree avoids this problem, by precisely
capturing the ‘closeness’ property required from the
solutions.

In graph theory, given a source node I ′, a node v
dominates another node u if every path from I ′ to u
contains v. Node v is the immediate dominator of u,
denoted by v = idom(u), if v dominates u and every
other dominator of u dominates v. We can build a
dominator tree rooted at I ′ by adding an edge between
the nodes u and v if v = idom(u). Dominator trees
have been used extensively in studying control-flow
graphs. Building dominator trees is a very well-studied
topic, with near-linear time algorithms available [4, 16].
Figure 2(b) shows the dominator tree for graph in
Figure 2(a). Note that the edges in the dominator tree
may not in fact exist in the original graph (compared to
say the MST).

Note that we have not specified how to weight the
edges of this dominator tree yet. Even the simple
unweighted version of the dominator tree has structural
properties which are very useful for the DAV problem.
As we show in the next Lemma, the optimal solution for
the original graph can only be a subset of the neighbors
of I ′ in the unweighted dominator tree.

Lemma 5.3. For the DAV problem, the optimal solution
should be the children of root I ′ in the unweighted
dominator tree of the m-graph G.

Proof. Omitted for brevity.

Note that by building the dominator tree we can
reduce the search space substantially without losing any

information—we demonstrate this in experiments as well,
the number of neighbors of I ′ in the dominator tree is
typically a fraction of the total number of nodes in the
original graph. Further, we can prove that if p = 1,
running DAVA-TREE on dominator tree of m-graph G
returns the best first node.

Lemma 5.4. For the special case when the budget k = 1
and propagation probability p = 1, running algorithm
DAVA-TREE on dominator tree T of m-graph G weighted
with pu,v as above, gives the optimal solution.

Proof. Omitted for brevity.

Weighting the dominator tree DAVA-TREE as-
sumes that the edges in the network denote propagation
probabilities. We want to preserve such information
(coming from the original graph) in the dominator tree,
to make the ‘benefit’ computation accurate. Hence we
weight each edge {u, v} in the dominator tree by pu,v,
the total probability that node u can infect v in the
original graph (note that u and v may not be neighbors
in the original graph).

Lemma 5.4 and the preceding discussion suggest a
natural greedy heuristic: find the best single node i using
DAVA-TREE on the dominator tree (weighted with pu,v
as defined before); then remove node i from the graph;
recompute the dominator tree; and repeat till budget k
is exhausted. We call this algorithm BASIC.

Speeding up BASIC Unfortunately, computing the
probability pu,v for a given pair of nodes u and v in
the IC model is #P-complete [6]. It is essentially the
canonical s− t connectivity problem in random graphs.
We can use Monte-Carlo sampling to get an estimate
through simulations, but even that is too slow. Hence
we propose to approximate it by using the maximum
propagation path probability between nodes u and v,
which is intuitively the most-likely path through which
an infection can spread from node u to v in the original
graph.

In the original graph, suppose ppathi(u, v) means the
propagation probability from u to v through path i. We
define maximum propagation path probability p̃i,j as the
maximum value of ppathi(u, v). Here we can use p̃u,v as
the approximate propagation probability for the edge
{u, v} in the dominator tree. Max. path probability has
been used before in context of the influence maximization
problem [6], but they need to compute it between all
pairs of nodes. On the other hand, in our problem, we
need to compute it only for edges in the dominator tree
of the graph. In fact, further, it is easy to see that
in a dominator tree rooted at I ′, if v = idom(u), then

p̃v,u =
p̃I′,u
p̃I′,v

. This means we only need to calculate the

maximum propagation path probability from root I ′ to



all other nodes, which is similar to find shortest-paths
in graph theory.

Hence a faster algorithm than BASIC would be to
assign probabilities p̃v,u in the dominator tree. We
call the complete algorithm DAVA for arbitrary graphs.
Pseudocode is given in Algorithm 3.

Algorithm 3 DAVA Algorithm for Arbitrary Networks

Require: Graph G, P , budget k, infected set I0
1: S = ∅
2: G′ = Run MERGE on G and I0
3: repeat
4: T = Build the dominator tree from G′ and assign

probabilities p̃v,u
5: v = Run DAVA-TREE on T with budget = 1
6: S = S ∪ v
7: Remove node v from G′

8: until |S| = k
9: return S

Lemma 5.5. (Running time of DAVA) Algorithm 3 takes
O(k(|E|+ |V |log|V |)) worst-case time.

Proof. Omitted for brevity.

DAVA works fine on small graphs, but can be slow
on large graphs, as it re-builds the dominator tree k
times. Hence we propose an even faster heuristic DAVA-
fast, which runs DAVA-TREE on the dominator tree with
the full budget k, instead of running it with k = 1 after
each step. Essentially we are picking neighbor nodes
(in the dominator tree) of I ′ with the top-k γ(·) values.
Pseudo-code is in Algorithm 4. DAVA-fast performs very
well in our experiments, with minimal loss of quality at
a fraction of the running time of DAVA.

Algorithm 4 DAVA-fast Algorithm

Require: Graph G, P , budget k, infected set I0
1: S = ∅
2: G′ = Run MERGE on G and I0
3: T = Build the dominator tree from G′ and assign

probabilities p̃v,u
4: S = Run DAVA-TREE on T with budget =k
5: return S

Lemma 5.6. (Running time of DAVA-fast) Algorithm 4
takes O(|E|+ |V |log|V |) worst-case time.

Proof. Omitted for brevity.

5.4 Extending to the SIR model Next we explain
how to extend our solution to the SIR case. Recall that
in the SIR model, as opposed to the IC model, a node u
tries to infect its neighbor v multiple times. Suppose Zu
is the random variable denoting the number of time-steps

u stays infected until recovery (this is also the number
of time-steps that u tries to infect v). The probability
that v gets infected by u is Buv = 1 − (1 − pu,v)

Zu .
Note that Zu has a geometric distribution Pr(Zu =
z) = (1 − δ)z−1δ, with E(Zu) = 1

δ (δ is the curing
probability). Thus if we force u to be infected for only
one time-step before recovering (as in the IC model), then
the equivalent probability that u infects v successfully
can be approximated by βu,v = 1 − (1 − pu,v)

1
δ (using

Taylor series). Hence, we directly apply our algorithms
to the SIR case, by just using an equivalent IC model
with βu,v as the propagation probability.

6 Experiments

In this section, we give an experimental evaluation of
our DAVA and DAVA-fast algorithms.

6.1 Experimental Setup We describe our setup
next.

Datasets We run our experiments on multiple real
datasets. In addition to trying to pick datasets of various
sizes, we also chose them from different domains where
the DAV problem is especially applicable. Table 2 shows
datasets we used.

Table 2: Datasets
Dataset Model Description

OREGON IC A Oregon AS router graph containing
633 links among 2172 AS peers.

STANFORD IC A Stanford CS hyperlink network con-

taining 8929 nodes and 53829 links.

GNUTELLA IC A peer-to-peer network containing
39994 links among 10876 peers.

BRIGHTKITE IC A friendship network which consists of
58228 nodes and 214078 edges.

PORTLAND SIR A large urban social-contact graph

which has been used in national small-
pox modeling studies [9]. It contains
0.5million people (nodes) and more

than 1.6million edges (interactions)
with contact time between people.

MIAMI SIR Another social-contact graph from [9].
It has about 0.6million people and

2.1million edges.

Settings For the IC model, we use three illustrative
settings: (a) Uniform probability p = 0.6; (b) Uniform
probability p = 1; and (c) pu,v uniformly randomly
chosen from {0.1, 0.5, 0.9} (following literature [6]). We
randomly choose 100 nodes to be infected initially as
the set I0.

For the SIR model, since our socio-contact graphs
have contact time between people [18], we will use
normalized contact time as the attack probability pu,v,
and set a uniform recovery rate δ = 0.6. As the graphs
are larger, we randomly choose 300 nodes to be infected
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Figure 3: Effectiveness for DAVA: IC model on various Real Datasets. (a)(b)(c)(d): p = 0.6; (e) p = 1 (f)
p ∈ {0.1, 0.5, 0.9}. Expected number of healthy nodes after distributing vaccines according to different algorithms
(i.e. σ′G,I′(S)) VS budget k. Higher is better. Note that our algorithms consistently outperform the other
algorithms by up to 10 times in magnitude. Further DAVA-fast performs almost as well as DAVA, at a fraction of
the cost.

initially as the set I0.
To get the expected number of healthy nodes after

immunization, we run the processes 1000 times and take
the average.

Baseline Algorithms We compare our algorithms
DAVA and DAVA-fast against various other competitors
RANDOM, DEGREE, PAGERANK and NETSHIELD [22]. Note
that NETSHIELD is a state-of-the-art pre-emptive immu-
nization algorithm, which aims to minimize the epidemic
threshold of the graph. We take the top-k healthy nodes
according to each algorithm. All our experiments were
conducted on a 4 Xeon E7-4850 CPU with 512GB of
1066Mhz main memory, and the algorithms were imple-
mented in Python2.

6.2 Experimental Results We describe the results
of our experiments next. In short, our results demon-
strate DAVA and DAVA-fast get upto 10 times better solu-
tions compared to the baselines (resulting in thousands
of more healthy nodes). In addition, we also show the
scalability of our algorithms on large datasets (DAVA-fast
finishes within 20mins for our largest graphs). Finally,
we show that DAVA-fast returns solutions which are very

2Code can be downloaded from http://people.cs.vt.edu/

~yaozhang/code/dava

comparable to the ones returned by the more expensive
DAVA.

6.2.1 Effectiveness for DAV First of all, the num-
ber of the nodes in the first layer of the dominator trees
of the graphs were a fraction (ranging from 0.3 to 0.7)
of the total number of healthy nodes in the graph. As
discussed before, because of Lemma 5.3, this reduces the
solution space substantially.

IC model Figure 3 shows our results for the IC
model. In all networks, DAVA and DAVA-fast consistently
outperform baseline algorithms.

As OREGON had only ∼ 600 nodes, we varied k till 50
(roughly 9% of the graph). OREGON has a jelly-fish-type
structure, hence for lower k, most algorithms work well
by targeting the nodes in the core. But for larger k, the
periphery needs to be targeted, and here our algorithms
provide the best solution. For bigger networks like
GNUTELLA and STANFORD with tens of thousands nodes,
the difference in performance of DAVA and DAVA-fast from
the other algorithms is clearer. PAGERANK and DEGREE

perform well in STANFORD (a web-graph, with many hubs
which these baselines exploit). Additionally NETSHIELD

performed well only in BRIGHTKITE, demonstrating that
the type of solutions change drastically, once we take



the data of who is infected into account. In all these
cases, DAVA and DAVA-fast performed the best.

Our faster heuristic DAVA-fast performed very well
in all the networks, getting solutions almost as good as
DAVA consistently. On STANFORD, DAVA-fast and DAVA

both saved about upto 10 times more nodes than baseline
algorithms, yet DAVA-fast took a fraction of the running
time of DAVA (see Table 3). Also, the gains from our
algorithms reduced as the p value decreased. This is
expected as weaker the disease (in spreading), lower is
benefit of vaccinating i.e. lower is the savings gain from
carefully selecting important nodes (as removing a node
won’t further change the expected infections much).
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Figure 4: Effectiveness for DAVA: SIR model on Real
Datasets. Expected number of healthy nodes after
distributing vaccines according to different algorithms
(i.e. σ′G,I′(S)) VS budget k. Higher is better.

SIR model We got similar results under the SIR
model on PORTLAND and MIAMI too: see Figure 4. Since
PORTLAND and MIAMI contain about 0.5million nodes,
DAVA was slow and could only allocate < 100 nodes in 1
day and hence we do not show it in the plots (NETSHIELD
took 1.5 days to allocate 2000 vaccines while DAVA-fast
finished in 20 mins). We notice that the larger k becomes,
the better DAVA-fast performs than other algorithms:
it saves more than 4, 000 nodes than the second best
algorithm PAGERANK, and more than 20, 000 nodes than
DEGREE (which is similar to the well-known acquaintance
immunization method used in practice [7])!

6.2.2 Scalability Although our algorithms are
polynomial-time, we show some running time results to
demonstrate scalability. Table 3 shows the running time
for DAVA, DAVA-fast and NETSHIELD when k = 200. DAVA-
fast is much faster than DAVA—it took only 20 seconds
to select 200 nodes in GNUTELLA while DAVA takes more
than an hour to finish it. For the large-scale datasets
like PORTLAND and MIAMI, DAVA-fast took less than 15
minutes to select 200 nodes, while DAVA could not finish
in the alloted time. Further, DAVA-fast is up to 10 times
faster than NETSHIELD—this is because NETSHIELD has
a O(nk2) complexity (while our algorithms are linear in

the budget).

Table 3: Running time(sec.) of NETSHIELD, DAVA and
DAVA-fast when k = 200. Runs terminated when running
time t > 10 hours. (shown by ’-’)

DAVA-fast NETSHIELD DAVA

OREGON 0.89 4.9 23.3
STANFORD 14.2 74.1 2920.4
GNUTELLA 20.1 79.4 4700.5

BRIGHTKITE 109.3 246.8 19444.1
PORTLAND 778.4 8211.6 -
MIAMI 1034.2 11233.9 -

7 Related Work

We discuss the most closely related literature from
immunization algorithms next.

Most existing work deals with identifying optimal
strategies for vaccine allocation before the start of the
epidemic. Briesemeister et al [3] and Madar et al [17]
focus on immunization of power law graphs. Cohen et
al [7] studied the popular acquaintance immunization
policy (pick a random person, and immunize one of
its neighbors at random—which roughly picks nodes
according to their degrees), for both the SIS as well as
the SIR model. Hayashi et al [12] introduce the SHIR
model (Susceptible, Hidden, Infectious, Recovered) to
model computers under e-mail virus attack on power-
law networks. Kimura et al [15] studied the problem of
blocking links in a network. Aspnes et al. [2] studied
a game of inoculation given a cost and loss-risk, under
random starting points. In a similar vein, Chen et al [5]
gave a O(log n) approximation for minimizing ‘societal’
cost under a deterministic propagation model. Tong et
al [21,22] gave pre-emptive node-based and edge-based
immunization algorithms for arbitrary graphs, based on
minimizing the largest eigenvalue of the graph.

Many works also compare the performance of a lim-
ited number of pre-determined sequences of interventions
(like school closure, antiviral for treatment) within simu-
lation models [8, 10,11]. Finally, the most related work
is the recent paper by Yaesoubi and Cohen [25] which
focuses on the optimal dynamic policies under a simpli-
fied flu-like model, and a homogenous population (i.e.
every node is connected to every other node).

To summarize, none of the above works look into the
problem of distributing vaccines under the more realistic
setting of prior information and on arbitrary networks.

8 Conclusion

This paper addresses the problem of immunizing healthy
nodes in presence of already infected nodes given a
graph like a social/computer network or the blogsphere.
The potential applications are broad: from distributing
vaccine to control the epidemic, to stopping already
present rumor in social media.



We formulated the problem called Data-Aware
Vaccination, and proved it is NP-hard and also hard
to approximate within an absolute error. After that
we gave an optimal algorithm DAVA-tree for m-trees,
and presented two polynomial-time heuristics DAVA and
DAVA-fast for general graphs. We demonstrated the
effectiveness and efficiency of our algorithms through
extensive experiments on multiple datasets, including
epidemiological social contact networks, computer
networks and social media networks, on both IC and
SIR models. DAVA and DAVA-fast outperform any other
baseline algorithms by up to 10 times in magnitude. In
addition we also presented the scalability of DAVA-fast
on large-scale networks.
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