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Abstract—Given a contact network and coarse-grained di-
agnostic information like electronic Healthcare Reimbursement
Claims (eHRC) data, can we develop efficient intervention policies
to control an epidemic? Immunization is an important problem
in multiple areas especially epidemiology and public health.
However, most existing studies focus on developing pre-emptive
strategies assuming prior epidemiological models. In practice,
disease spread is usually complicated, hence assuming an under-
lying model may deviate from true spreading patterns, leading
to possibly inaccurate interventions. Additionally, the abundance
of health care surveillance data (like eHRC) makes it possible
to study data-driven strategies without too many restrictive
assumptions. Hence, such an approach can help public-health
experts take more practical decisions.

In this paper, we take into account propagation log and contact
networks for controlling propagation. We formulate the novel and
challenging Data-Driven Immunization problem without assuming
classical epidemiological models. To solve it, we first propose
an efficient sampling approach to align surveillance data with
contact networks, then develop an efficient algorithm with the
provably approximate guarantee for immunization. Finally, we
show the effectiveness and scalability of our methods via extensive
experiments on multiple datasets, and conduct case studies on
nation-wide real medical surveillance data.

I. INTRODUCTION

Vaccination and social distancing are among the principle
strategies for controlling the spread of infectious diseases [1],
[2]. CDC (Centers for Disease Control) guidelines for vaccine
usage are typically based on age groups, e.g., for young chil-
dren and seniors—these do not result in optimal interventions,
which minimize outcomes such as the total number of infec-
tions [1]. Additionally, most work on designing immunization
algorithms from a data-mining viewpoint have focused on
developing innovative strategies which assume knowledge of
the underlying disease model [3], [4] or make assumptions of
very fine-grained individual-level surveillance data [5].

Recent trends have led to the increasing availability of
electronic claims data and also capabilities in developing very
realistic urban population contact networks. This motivates the
following problem: given a contact network, and a coarse-
grained propagation log like electronic Health Reimburse-
ment Claims (eHRC), can we learn an efficient and realistic
intervention policy to control propagation (such as a flu
outbreak)? Further, can we do it directly without assuming any
epidemiological models? Influenza viruses change constantly,
hence designing interventions optimized for specific epidemic
model parameters is likely to be suboptimal [6].

The diagnostic propagation log data provides us with a
good sense of how diseases spread, while contact networks
tell us how people interact with others. We take into account
both for immunization and study the data-driven immunization
problem. Some of the major challenges include: (i) the scale
of these datasets (eHRC consists of billions of records and
contact networks have millions of nodes), and (ii) eHRC data
is anonymized, and available only at a zip-code level. The
main contributions of our paper are:
(a) Problem Formulation. We formulate the Data-Driven
Immunization problem given a contact network and the prop-
agation log. We first sample the most likely “social contact”
cascades from the propagation log to the contact network. and
then pose the immunization problem at a location level, and
show it is NP-hard.
(b) Effective Algorithms. We present efficient algorithms to
get the most-likely samples, and then provide a contribution-
based greedy algorithm, IMMUCONGREEDY, with provably
approximate solutions to allocate vaccines to locations.
(c) Experimental Evaluation. We present extensive experi-
ments against several competitors, including graph-based and
model-based baselines, and demonstrate that our algorithms
outperforms baselines by reducing upto 45% of the infection
with limited budget. Furthermore, we conduct case studies
on nation-wide real medical surveillance data with billions
of records to show the effectiveness of our methods. To the
best of our knowledge, we are the first to study realistic
immunization policies on such large-scale datasets.

Due to page restrictions, we omit most proofs giving
sketches where possible.

II. PRELIMINARIES

We give a brief introduction of the propagation data eHRC
and contact networks we used in this section.
Propagation Data (eHRC). The propagation data for this
study was primarily based on IMS Health claims data,
electronic Healthcare Reimbursement Claims (eHRC), which
consists of over a billion claims for the period of April
1st, 2009 - March 31st, 2010. The claims data consists of
reimbursement claims recorded electronically from health care
practitioners received from all parts of the US, including
urban and rural areas. The dataset, its features, and its overall
coverage/completeness are described in detail in [7], [8];
for this study, we used daily flu reports, based on ICD-9
codes 486XX and 488XX and individual locations (zip-code)



recorded in the claims. Prior to our study, we obtained internal
Institutional Review Board approval for analyzing the dataset.
Activity Based Populations. We use city-scale activity based
populations as contact networks (see [9], [10] for more de-
tails). These models are constructed by a “first-principles”
approach, and integrate over a dozen public and commercial
datasets, including census, land use, activity surveys and
transportation networks. The model includes detailed demo-
graphic attributes at an individual and household level, along
with normative activities. These models have been used in a
number of studies on epidemic spread and public health policy
planning, including response strategies for smallpox attacks
[10] and the National strategy for pandemic flu [2].

III. PROBLEM FORMULATIONS

Table I lists the main notation used throughout the paper.
Table I

TERMS AND SYMBOLS
Symbol Definition and Description
G(V,E) graph G with the node set V and the edge set

E
R propagation log
N infection matrix for the propagation log R
N(L`, ti) the number of patients at ti in L`
t0 the earliest timestep t0 = 0
n number of locations
L = {L1, . . . , Ln} set of locations
m number of vaccines
x vaccine allocation vector [x1, . . . , xn]′

k number of samples in M
M set of sampled cascades {M1, . . . ,Mk}
M a sampled cascade
SIM the starting infected node set in M
σG,M(x) the expected number of nodes SIM can reach

when x is given
ρG,Mi

(x) σG,M(0)− σG,M(x)
αM,` number of nodes that have at least one parent

in M at location L`
S` the initial starting node set at location L`, where

|S`| = N(L`, t0)

We use G(V,E) to denote an undirected unweighted graph
and L = {L1, ..., Ln} to denote a set of locations. Vi ⊆ V
denotes the set of nodes at location Li; we assume there
are no overlapping nodes between locations. Large medical
surveillance data, like eHRC is usually anonymous due to
privacy issues. Hence, in this paper, we assume the number
of infections are given. Formally, the propagation log R is
an infection matrix N ((tmax + 1) × n), where t0 and tmax

are the earliest and last timesteps. Each element N(L`, t)
represents the number of patients in R at location L` at time t.
Each row vector N(t) = [N(L1, t), . . . , N(Ln, t)] represents
the number of infections at time t, and each column vector
NL`

= [N(L`, t0), . . . , N(L`, tmax)]
T represents the number

of infections at location L`.
Interactions and Surveillance. A contact network G mod-
els people’s interactions with others, which is a powerful
tool to control epidemics. For example, Prakash et al. [11]
showed that the first eigenvalue of the adjacency matrix of
G is related to the epidemic threshold. An epidemic will be
quickly extinguished given a small epidemic threshold. Several

Figure 1. Overview of our approach. We first generate a set of cascades,
then allocate vaccine to different locations.

effective algorithms have been proposed to minimize the first
eigenvalue to control epidemics [3], [12], [4]. However, all
of them assume an underlying epidemiological model like
Susceptible-Infected-Recovered (SIR) [13]. In addition, they
are strictly graph-based methods without looking into rich
medical surveillance data. Though graph-based methods can
provide us with good baseline strategies, they do not take
into account particular patterns of a given virus. On the other
hand, the disease propagation data R like eHRC, can give us
a coarse-grained picture of infections. However, there is very
little information on how an epidemic spreads via person-
to-person contacts from R. Hence, we believe the disease
propagation data R, along with a contact network G, can help
us develop better and more implementable interventions to
control an epidemic. For example, we can take the surveillance
data of the past flu season to allocate vaccines for the current
flu season.
Map R to nodes in G. The main challenge of integrating R
and G is that R (like eHRC) in practice is anonymized. Hence
we cannot associate each record in R with a node in G. In this
paper, we tackle this challenge by mapping infections from R
to nodes in G at the location level. The idea is that at each
location L` and time ti, we pick N(L`, ti) nodes in G as
infected nodes. Note that we can have multiple choices of
mapping R to G. For example, in Figure 1, N(L2, t0) = 1,
hence, we can pick either A or B as infected node at t0. We
denote these choices asM, whereM is a set of cascades. We
define a cascade M as follows:

Definition 3.1: (Cascade). A cascade M is a directed acyclic
graph (DAG) induced by R and G. Each node u ∈ VM is
associated with a location L` and a timestep ti, where u ∈ Vi
and u is infected at ti (denoted as t(u) = ti). For node u and
v in M, if eu,v ∈ E and t(u) = t(v) − 1, there is a directed
edge from u to v in M. We denote e(u, v) ∈ EM.

We could select N(L`, ti) nodes uniformly at random as
infected nodes in G for each M. However, it is not practical
as infection distributions are not uniform. For example, if a
node u has an infected neighbor, u can be infected by that
node; in contrast, if u does not have any infected neighbor in
R, it is unlikely to be infected. Hence, we propose to map R
to G according to the SOCIALCONTACT approach.
SOCIALCONTACT. We say an infected node u gets infected
by “social contact” in G, if u has a direct neighbor that is
infected earlier than u. Otherwise, we call a node is infected by



external forces. In reality, infectious diseases (like flu, mumps,
etc.) usually spread via person-to-person contact. Hence, for
a mapped cascade M, we want to maximize the number
of nodes caused by SOCIALCONTACT. Formally, we define
αM = |{u|∃v, e(v, u) ∈ EM}|, i.e., αM is the number of
nodes that have at least one parent in M. Then maximizing the
number of nodes infected by SOCIALCONTACT is equivalent
to maximizing αM. Figure 1 shows two cascades with the best
αM = 4: as only the node that starts the infection does not
have a parent. To get k cascades with SOCIALCONTACT in
M, we formulate the Mapping Problem:

Problem 3.1: (Mapping Problem). Given a contact network
G, propagation log R, and number of cascades k, find M∗ =
{M∗1, . . . ,M∗k} where each node u in M is associated with a
location L` and a time ti:

M∗ = argmax
M

∑
Mi∈M

αMi , s.t. |M| = k (1)

Remark 3.1: Since we do not specify any epidemiological
model (like SIR) for Problem 3.1, it is difficult to define any
probability distribution for M. Hence, the sample average
approximation approach is not applicable for this problem.
Data-Driven Immunization. Once we generate M, we want
to study how to best allocate vaccines to minimize the infection
shown in R. Recently, Zhang et al [4] proposed a model-based
group immunization problem, in which they uniformly-at-
random allocate vaccines to nodes within groups—this mimics
real-life distribution of vaccines by public-health authorities.
We leverage their within-group allocation approach. Let us
define x = [x1, . . . , xn]

′ as a vaccine allocation vector,
where xi is the number of vaccines given to location Li.
If we give xi vaccines to location Li, xi nodes will be
uniformly randomly removed from Vi. The objective is to
find an allocation that “break” the cascades most effectively.
We define SIM as the starting ‘seed’ infected nodes in M,
i.e., SIM = {u ∈ VM|tu = t0}, and σG,M(x) as the
expected number of nodes SIM can reach after x is allocated
to locations in M. Hence, we want to minimize σG,M(x) to
limit the expected infection over any cascade M ∈ M. For
example, in Figure 1, once 2 vaccines are given to L1 and L2,
we minimize the number of nodes that B can reach in the two
cascades.

For ease of description, let us define ρG,M(x) = σG,M(0)−
σG,M(x). ρG,M(x) can be thought as the number of nodes
we can save if x is allocated. Since σG,Mi(0) is constant,
minimizing σG,M(x) is equivalent to maximize ρG,M(x).
Formally, our data-driven immunization problem given M
(from Problem 3.1) is:

Problem 3.2: (Data-Driven Immunization). Given a contact
network G, a set of cascadesM , and budget m, find a vaccine
allocation vector x∗:

x∗ = argmax
x

1

|M|
∑

Mi∈M

ρG,Mi(x), s.t. |x|1 = m (2)

Hardness. Both Problem 3.1 and Problem 3.2 are NP-hard, as
they can be reduced from the Max-K-Set Union problem [14]
and the DAV problem [5] respectively.

IV. PROPOSED METHOD

In this section, we develop two efficient algorithms, MAP-
PINGGENERATION for Problem 3.1, and IMMUCONGREEDY
for Problem 3.2.

A. Generating Cascades from SOCIALCONTACT

Main Idea: To tackle Problem 3.1, we first focus on a
special case where k = 1 (find a single cascade M), then
extend it to multiple cascades. The challenge here is that
even when k = 1, Problem 3.1 is still NP-hard. Our main
idea to solve this is to first generate SIM (the seed set),
and then generate M from SIM. In principle, this can be
done from checking SIM’s i-hop neighbors. Clearly, SIM’s
quality will directly affect M’s quality. However, it is still
hard to find SIM and generate M from SIM. Instead, we
identify a necessary condition for the optimal M, and propose
a provable approximation algorithm to find SIM that satisfies
the condition. We make the algorithm faster by leveraging the
Approximate Neighborhood Function (ANF) technique. Then
we generate the corresponding cascade M from SIM, and
propose a fast algorithm MAPPINGGENERATION to extend it
to k cascades for Problem 3.1.
Finding SIM. To find a high quality SIM, we first examine
what is the optimal M. According to Eqn. 1, the optimal M
has the maximum value of αM. Let us define α∗M as the
maximum of αM (αM ≤ α∗M). Then we have the following
lemma:

Lemma 4.1: α∗M =
∑tmax

t=t1
|N(t)|1, i.e., the number of

infections after the earliest time t0.
Proof: (Sketch) When we map R to G, the optimal case

for a cascade M is that every node u with t(u) > t0 has at
least one parent in M, and the only nodes that do not have
any parents are the ones infected at the earliest time t0. Hence,
α∗M is the number of nodes that are infected after t0.

Now we know the maximum αM. However, it is hard to
find a SIM with the optimal M as shown in the next lemma.

Lemma 4.2: Find a set SIM for the cascade M with αM =
α∗M is NP-hard.

According to Lemma 4.2, it is intractable to examine the
whole graph to get SIM for large networks (like Houston
with 59 million edges in Section V). Hence, instead we will
look at each location independently to find SIM, and aggregate
the result to generate M.

Let us define αM,` as the number of nodes that have at
least one parent in M at location L`. Similarly to αM, we
have αM,` ≤ α∗M,` where α∗M,` =

∑tmax

i=1 N(L`, ti). α∗M,`

is the number of patients after t0 at location L` in R, and
it is the optimal value for αM,`. Since we want to find
a set of starting nodes, here we define S` as a node set
at location L`: i.e., S` = {v|v ∈ S and v ∈ V`} where
|S`| = N(L`, t0). For each location L`, we want to find a
set S` as the starting infected node set, such that S` will yield
a cascade M that minimizes αM,`. Our idea is to find S` that
satisfies a necessary condition for the best αM,`. We denote
CF (S`, ti) = |{u|u ∈ Vl,∃v ∈ S`, dist(v, u) ≤ i}|, i.e., the
number of nodes that S` can reach within distance i (i-hops) in



L` in G. Similarly, we denote CN(L`, ti) =
∑i

k=0N(L`, ti)
(the cumulative number of infections in L` in R until time ti).
The next lemma will show that for each location L`, when
αM,` = α∗M,`, the constraint in Eqn. 3 must be satisfied.

Lemma 4.3: (Necessary Condition) Given a cascade M
generating from S`, if αM,` = α∗M,`, then for any timestep
ti ∈ [0, tmax] and all locations L`, we have

CF (S`, ti) ≥ CN(L`, ti) (3)

Proof: (Sketch). If αM,` = α∗M,`, every node that is
infected after t0 has a parent. For any node u that is infected at
ti, u must be within the i-th hops of S`, which means the num-
ber of nodes within the i-hops of S` is greater than the number
of nodes infected at ti, i.e., CF (S`, ti) ≥ CN(L`, ti).

Lemma 4.3 demonstrates a necessary condition (Eqn. 3) for
the maximum αM,`. Hence, we seek to develop an efficient
algorithm that can produce accurate results for the necessary
condition. Our idea is to construct a new objective function,
which can get the necessary condition for the best M at
location L`. To do so, we propose the following problem to
find SIM:

Problem 4.1: Given graph G and infection matrix N. We
want to find S∗ = {S∗1 , . . . , S∗n} s.t., |S∗` | = N(L`, t0) for any
location L`, such that S∗` = argminS`

θ(S`), ∀ location L`,
where θ(S`) =

∑tmax

i=0 1CF (S`,ti)<CN(L`,ti)(CN(L`, ti) −
CF (S`, ti)).
Here 1CF (S`,ti)<CN(L`,ti) is an indicator function: if
CF (S`, ti) < CN(L`, ti) then it is 1, otherwise 0.
Justification of Problem 4.1. Recall that α∗M,` is the optimal
value for αM,`, and θ(S`) is non-negative. We have the
following lemma:

Lemma 4.4: If αM,` is optimal, then θ(S`) = 0.
Lemma 4.4 shows that if we minimize θ(S`), we are able

to get the necessary condition for the best M at location L`.
Therefore, we propose Problem 4.1 to get SIM.
Hardness. Problem 4.1 is NP-hard, as it can be reduced from
the set cover problem [14].
Solving Problem 4.1. Let us define g(S`) =
[
∑tmax

i=0 CN(L`, ti)] − θ(S`).
∑tmax

i=0 CN(L`, ti) is constant,
so minimizing θ(S`) is equivalent to maximize g(S`).

Lemma 4.5: g(S`) has the following properties: g(∅) = 0;
it is monotonic increasing and submodular.

Proof: (Sketch). We first show that CF (S`, ti) is mono-
tone non-decreasing and submodular functions, then extend it
to g(S`). Please see details in the appendix.

Lemma 4.5 suggests a natural greedy algorithm to solve
Problem 4.1. We call it SAMPLENAIVEGREEDY. Each time it
picks a node u∗ such that u∗ = argmaxu∈V`

g(S` ∪ {u})−
g(S`) until N(L`, t0) nodes have been selected to S`. We do
it for all locations to get SIM.

Lemma 4.6: For each location L`, SAMPLENAIVEGREEDY
gives a (1− 1/e)-approximate solution to g(S`).

SAMPLENAIVEGREEDY selects a node with the maximum
marginal gain of g(S`) iteratively. It takes O(|V |(|V |+ |E|))
time if we run BFS to get each CF (S`, ti) for each iteration.
The time complexity to get all |N(t0)|1 nodes as SIM is

O(|N(t0)|1|V |(|V | + |E|)), which is not scalable to large
networks. Hence, we need a faster algorithm.
Speeding up SAMPLENAIVEGREEDY. In SAMPLENAIVE-
GREEDY, each time we recompute CF (S` ∪{u}, ti) for all i,
which takes O(|E| + |V |) time. We can speed up this com-
putation by leveraging the ANF (Approximate Neighborhood
Function) algorithm [15], which uses a classical probabilis-
tic counting algorithm, the Flajolet-Martin algorithm [16] to
approximate the sizes of union-ed node sets using bit strings.
Here, we refer to the bit string that approximates CF (S`, ti) as
F(S`, i). To estimate CF (S`∪{u}, ti) , we first do a bitwise-
OR operation: F(S` ∪ {u}, i) = [F(S`, i) OR F({u}, i)], then
convert it to CF (S` ∪ {u}, ti) . According to the ANF
algorithm, CF (·, ti) = φ(F(·)) = (2b)/.77351, where b is
the average position of the leftmost zero bit of the bit string.
Since the bitwise-OR operation takes constant time, we can
reduce the running time of CF (S` ∪{u}, ti) for all timesteps
i from O(|E|+ |V |) to O(tmax).

We propose SAMPLEGREEDY (Algorithm 1), a modified
greedy algorithm with bitwise-OR operations for Problem 4.1.
It first gets F({u}, i) for all nodes at location L` over all
timesteps using ANF [15] (Line 2), then follows SAMPLE-
NAIVEGREEDY. However, we use bitwise-OR operations to
speed up the computation of CF (S` ∪ {u}, ti) (Line 7-8).

Algorithm 1 SAMPLEGREEDY

Require: graph G, and propagation log matrix N.
1: for each location L` do
2: Get F({u}, i) for all timestep i, all u ∈ V` using ANF [15]
3: y = N(L`, t0)
4: S` = ∅, and F(S`, i) = 0 for all timesteps i
5: for i = 1 to y do
6: for each node u ∈ V` − S` do
7: F(S` ∪ {u}, i) = F(S`, i) OR F({u}, i) for all ti
8: CF (S` ∪ {u}, ti) = φ(F(S` ∪ {u}, i)) for all ti
9: end for

10: u∗ = argmaxu∈V`−S` g(S`)− g(S` ∪ {u})
11: S` = S` ∪ u∗
12: end for
13: end for
14: return SIM = {S1, . . . , Sn}

Lemma 4.7: SAMPLEGREEDY takes O((|V ||N(t0)|1 +
|E|)tmax) time.
Generating cascades from SIM. Once we obtain SIM from
Algorithm 1, we can generate M from SIM. Similar to
the result of Lemma 4.2, generating M from SIM is also
hard. Here we propose a heuristic, the CASCADEGENERATION
algorithm (Algorithm 2) for M. Let us define D`

i = {u|u ∈
V`,∃v ∈ SIM, dist(v, u) = i}, i.e, a set of nodes in location
L` that SIM can reach at distance i. We first add SIM to
the cascade M, and compute D`

i for all time ti and location
L` by running a BFS starting from SIM (Line 2). Then
we select nodes into M by running another BFS from SIM
as well: at each distance i from SIM, for each location
L` we pick N(L`, ti) nodes uniformly at random to M,
and add corresponding edges (Line 4-18). Note that we do
it by permutating the set D`

i . N(L`, ti) nodes are selected



as follows: (1) if |CANDIDATEQUEUEl| ≥ N(L`, ti) (the
constraint in Eqn. 3 follows), we uniformly at random pick
N(L`, ti) to M from CANDIDATEQUEUE (Line 8-10); (2)
otherwise, we add all nodes in CANDIDATEQUEUE to M,
record the number of nodes left (Line 11-12), and finally
randomly pick other nodes in V` to M (Line 18).

Algorithm 2 CASCADEGENERATION

Require: Graph G, propagation log matrix N, and node set SIM
1: Add all nodes in SIM to the cascade M
2: Compute D`

i for all time ti (by running BFS from SIM)
3: PRESET = SIM, NUMLEFTNODE=0
4: for i = 1 to tmax do
5: for each location L` do
6: D̂`

i = Permutate(D`
i )

7: Add D̂`
i to the end of CANDIDATEQUEUE`

8: if |CANDIDATEQUEUE`| ≥ N(L`, ti) then
9: CURSET=pop N(L`, ti) nodes from the top of CANDI-

DATEQUEUE`
10: else
11: CURSET=pop all nodes in CANDIDATEQUEUE`
12: NUMLEFTNODE+=(N(L`, ti)−|CANDIDATEQUEUE|`)
13: end if
14: Add CURSET to M, and edges from PRESET to CURSET

if e(u, v) ∈ G for any u ∈ PRESET and v ∈ CURSET
15: end for
16: PRESET=CURSET
17: end for
18: Uniformly randomly pick NUMLEFTNODE nodes from V` to M
19: return M

Lemma 4.8: CASCADEGENERATION takes O(|V | + |E|)
time.
Extend CASCADEGENERATION to k cascades. We can
simply extend Algorithm 2 to k cascades. Note that CAS-
CADEGENERATION permutates the nodes in D`

i (Line 6),
hence, for different permutations, we can generate different
cascades. If the constraint in Eqn. 3 holds, at time ti, we
uniformly at random add N(L`, ti) into M from

∑i
j=1 |D`

i |−∑i−1
j=1N(L`, tj) candidate nodes. If the constraint does not

follow, we uniformly at random pick extra nodes from V −VM
to M.

Remark 4.1: The above random process will generate
O(

∏
L`∈L

∏
i |D`

i |) cascades.
Remark 4.1 shows that we have a large number of cascades.

In case if we need more, we can generate extra cascades by
ranking the result of SAMPLEGREEDY: instead of picking the
best S`, we pick the top sets (in Algorithm 1 Line 10-11). In
practice, as shown in our experiments, we do not need to do
this, as we have enough cascades. In addition, our cascades
have high quality: the average value of αM is almost the same
as the optimal solution (Table III).
MAPPINGGENERATION. Combining the above results, we
propose the MAPPINGGENERATION algorithm (Algorithm 3)
to solve Problem 3.1.

Claim 4.1: The time complexity of MAPPINGGENERATION
(Algorithm 3) is O((|V ||N(t0)|1 + |E|)tmax + k̂(|V |+ |E|)),
where k̂ is the number of runs for CASCADEGENERATION to
get k cascades.

Algorithm 3 MAPPINGGENERATION

Require: graph G, propagation log R
1: Generate propagation log matrix N
2: Run SAMPLEGREEDY (G,N) (Algorithm 1) to get SIM
3: RunCASCADEGENERATION (G,N, SIM) (Algorithm 2) until k

unique cascades are found for M
4: return M.

B. Data-Driven Immunization

Main Idea: In this section, we solve the Data-Driven Immu-
nization (Problem 3.2) assuming the samples are available. We
first show that ρG,Mi(x) in Problem 3.2 is neither submodular
nor supermodular. We then propose to optimize an alternative
credit-based objective function, which is an upperbound of
ρG,Mi

(x) (Problem 4.2). We show that this function is non-
negative, increasing and has the diminishing return property.
Based on these properties, we propose a greedy algorithm
which gives a (1− 1/e)-approximate solution.

Figure 2. Counter-Example

Note that in Problem 3.2,
ρG,Mi(x) is defined over an
integer lattice, and is not a sim-
ple set function. If a function
h(x) has the diminishing return
property over an integer lattice,
then for any x′ ≥ x and k,
we have h(x + ek) − h(x) ≥

h(x′+ ek)−h(x′) (ek be the vector with 1 at the kth index).
According to [4], there exists a near-optimal algorithm to
maximize h(x). Unfortunately, ρG,Mi

(x) does not follow the
diminishing return property.

Remark 4.2: ρG(x,Mi) does not have diminishing return
property. Figure 2 shows a counter-example, where all nodes
are in different locations. Suppose x = 0, x′ = e1, then x ≤
x′, however, ρG,Mi(x+ e2)− ρG,Mi(x) = 5 and ρG,Mi(x

′+
e2)− ρG,Mi

(x′) = 8− 2 = 6.
Instead, we develop a contribution based approach. The

idea is if we remove a node u in Mi, the number of
nodes u can save is related to u’s children. Each child of
u can contribute to the savings of removing u. First, let
us denote INMi

(S) as the set of S’s parents in Mi, i.e.,
INMi(S) = {u|e(u, v) ∈ Mi, v ∈ S}, and OUTMi(S) as
the set of S’s children in Mi. We define the contribution
CG,Mi

(S) recursively,

CG,Mi(S) = |S|+
∑

v∈OUTMi
(S)

|INMi({v}) ∩ S|
|INMi({v})|

CG,Mi({v}).

|INMi
({v})∩S|

|INMi
({v})| is the fraction of savings v contributes to S.

The intuition is that since we do not have any propagation
models, it is reasonable to assume the infected v should be
infected by any of its parents equally, hence v contributes
its savings equally to each of its parents. Now we define the
contribution function over an integer lattice,

ζG,Mi(x) =
∑
S

Pr(S)CG,Mi(S), (4)



where S is a node set sampled from the random process
of distributing x (|S| = |x|1). Lemma 4.9 will show that
ζG,Mi(x) is the upperbound of ρG,Mi(x), and it is also
lowerbounded by expected number of nodes S can reach.

Lemma 4.9: Given a cascade Mi, ρG,Mi
(x) ≤ ζG,Mi

(x).
We use ζG,Mi

(x) to estimate ρG,Mi
(x). Hence, we formally

define the following problem for Problem 3.2.
Problem 4.2: Given a contact network G(V,E), a set of

cascades M, and budget m, find a vaccine allocation vector
x∗:

x∗ = argmax
x

1

|M|
∑

Mi∈M

ζG,Mi(x), s.t.|x|1 = m. (5)

Lemma 4.10: ζG,Mi(x) has the following properties:
(P1) ζG,Mi

(x) ≥ 0 and ζG,Mi
(0) = 0.

(P2) (Nondecreasing) ζG,Mi(x) ≤ ζG,Mi(x+ ei) for i.
(P3) (Diminishing returns) For any x′ ≥ x, we have

ζG,Mi
(x + ei) − ζG,Mi

(x) ≥ ζG,Mi
(x′ + ei) −

ζG,Mi
(x′).

Given the properties of ζG,Mi
(x) in Lemma 4.10, we

propose a greedy algorithm, IMMUNAIVEGREEDY for
Problem 4.2: each time we give one vaccine to location L`∗ ,
such that

`∗ = argmax
L`

∑
Mi∈M

ζG,Mi(x+ e`)− ζG,Mi(x),

until m vaccines are allocated.
Lemma 4.11: IMMUNAIVEGREEDY gives a (1 − 1/e)-

approximate solution to Problem 4.2.
In IMMUNAIVEGREEDY, since we uniformly randomly

distribute vaccines, we can apply the Sample Aver-
age Approximation (SAA) framework, i.e., ζG,Mi

(x) ≈
1
|S|

∑
S∈S CG,Mi

(S), where S is a set of samples taken
from the vaccine allocation process. This approach takes
O(|S|(|V | + |E|)) to estimate ζG,Mi(x), and we need
to look into |M| cascades to pick the best location L`∗

for one iteration. We have |L| locations and m vaccines.
Hence, the total time complexity of IMMUNAIVEGREEDY
is O(m|L||M||S|(|V | + |E|)), which is not practical for
large networks. However, we can speed up this naive greedy
algorithm.
Speeding up IMMUNAIVEGREEDY. We propose a faster al-
gorithm, IMMUCONGREEDY (Contribution-based Greedy Im-
munization) in Algorithm 4, which takes only O(m|M|(|V |+
|E|)) time. The idea is that we can compute the contribution
function efficiently when the budget m = 1, i.e., all values of
ζG,Mi(e`) in Mi can be obtained in O(|V |+ |E|) time. This
is because ζG,Mi

(e`) =
∑

u∈V`

1
|L`|CG,Mi({u}), and we can

get CG,Mi({u}) for all u ∈ V by traversing Mi once. For sim-
plicity, let din(v) = |INMi

({v})|. We have CG,Mi
({u}) =

1 +
∑

v∈OUTMi
({u})

1
din(v)

CG,Mi
({v}). If u does not have

any children (OUTMi({u}) = ∅), CG,Mi({u}) = 1. Since
Mi is a DAG, we can iteratively obtain CG,Mi

({u}) for all
u ∈ V from a reversed order of a topological sort, which takes
O(|V |+ |E|) time.

In Algorithm 4, we compute contribution function
CG,Mi({u}) for all Mi (Line 4), which takes O(|M|(|V | +

|E|)) time. Then we obtain
∑

Mi∈M ζG,Mi
(e`) for each

location L` by summing up the contribution for each u ∈ V`
(Line 5), which takes O(|M||V |) time. Once we allocate
one vaccine to the best location L`∗ , we update each Mi

by uniformly at random removing one node in L`∗ (Line 7).
This way we can just compute

∑
Mi∈M ζG,Mi

(e`) instead of∑
Mi∈M ζG,Mi

(x+ e`) after the next iteration.

Algorithm 4 IMMUCONGREEDY

Require: graph G(V,E), propagation log R, and budget m
1: M =MAPPINGGENERATION (G,R) {Section IV-A}
2: x = 0
3: for j = 1 to m do
4: ∀Mi ∈M: compute CG,Mi({u}) for each node u
5: ∀ location L` ∈ L: compute

∑
Mi∈M ζG,Mi(e`)

6: `∗ = argmaxL`

∑
Mi∈M ζG,Mi(e`)

7: ∀Mi ∈M: update Mi by uniformly at random removing one
node at location L`∗

8: x = x+ e`∗
9: end for

10: return x

Lemma 4.12: IMMUCONGREEDY takes O(m|M|(|V | +
|E|)) time.

V. EXPERIMENTS

We conducted the experiments using a 4 Xeon E7-4850
CPU with 512GB of 1066Mhz main memory1.

A. Experimental Setup

Networks. We do experiments on multiple datasets (Table II).
Stochastic Block Model (SBM) [17] is a well-known graph
model to generate synthetic graphs with groups. WorkPlace
and HighSchool are social contact networks2. Nodes in
HighSchool are students from 5 different sections and edges
represent two students who are in vicinity of each other. Nodes
in WorkPlace are employees of a company with 5 depart-
ments and edges indicate two people are in proximity of each
other. We treat each section/department as a location. Miami
and Houston are million-node social-contact graphs from
city-scale activity based synthetic populations as described in
Section II. We divided people by their residential zipcodes.

Table II
NETWORK DATASETS

Dataset Nodes Edges Locations
WorkPlace 92 757 5
HighSchool 182 2221 5

SBM 1000 5000 20
Miami 2.2 million 50 million 74
Houston 2.7 million 59 million 98

Propagation logs. We have the billion-record eHRC data
(described in Section II) as the propagation log R for Miami
and Houston. The Miami and Houston have 118K and
132K patients respectively For SBM, HighSchool, and
WorkPlace, we run the well-known SIR model (infection

1Code in Python: http://people.cs.vt.edu/yaozhang/data-immu/.
2http://www.sociopatterns.org



rate as 0.4, and recovery rate as 0.6) to generate the propa-
gation log R: we first uniformly at random pick 5% nodes at
each location as seeds at t0, then run a SIR simulation to get
other infected nodes.
Settings. We set the number of samples |M| = 1000 for
MAPPINGGENERATION, and number of bitmasks as 32 for
computing F(·) in SAMPLEGREEDY (similar to the ANF
algorithm [15]).
Baselines. As we are not aware of any direct competitor
tackling our problem, we use several baselines to better judge
our performance. These baselines have been regularly used
for immunization studies. However, none of them take into
account both propagation log and contact networks.
(1) RANDOM: uniformly randomly assign vaccines to loca-
tions.
(2) PROPPOPULATION: a data based approach: assign vaccines
to locations in proportion to population in locations.
(3) PROPINFECTION: a data based approach: assign vaccines
in proportion to total number of infections in locations.
(4) DEGREE: a graph based approach: calculate the average
degree dLi of each location Li, and independently assign
vaccines to Li with probability dLi/

∑
Lk∈L dLk

.
(5) IMMUMODEL: a model based approach: apply the model-
driven group immunization algorithm (the QP version) in [4].
IMMUMODEL aims to minimize the spectral radius of a
contact graph. Spectral radius is the first eigenvalue of the
graph, which has been proven to be the threshold of an
epidemic in the graph [11]. We set edge weights to be 0.24
according to [8].

B. Results

In short, we demonstrate that our immunization algo-
rithm IMMUCONGREEDY outperforms other baselines on all
datasets. We also show our approach is robust as the size
of the propagation log R varies. In addition, we show that
our sampling algorithm SAMPLEGREEDY provides accurate
results for generating cascade samples. Finally, we study the
scalability of our approach.
Effectiveness of IMMUCONGREEDY. Figure 3 shows results
of minimizing the spread on cascades for the whole log R.
In all datasets, IMMUCONGREEDY consistently outperforms
others. WorkPlace and HighSchool have < 200 nodes,
hence we varied m till 10. However, even with the small bud-
get 10, IMMUCONGREEDY can reduce 45% of the infection,
which is about 10% better than the second best IMMUMODEL.
For Miami and Houston with upto 2.7million nodes,
IMMUCONGREEDY can reduce about 50% of the infection
on the cascades generated by SOCIALCONTACT with only
50K vaccines. Model-based IMMUMODEL and data-based
PROPINFECTION perform better than RANDOM and DEGREE
as they take into account either epidemic threshold in the
contact graph or the eHRC data. However, IMMUCONGREEDY
easily outperforms them, as it leverages both contact networks
and the eHRC data.

We also study how to leverage the rich log data to develop
vaccine interventions in the future. To do so, we split the eHRC

data into training parts and testing parts: we get the vaccine
allocations from the training parts (the fall regime of flu from
Aug 2009 - Oct 2009), and apply the allocations to the testing
parts (the winter regime of flu from Nov 2009 - Feb 2010)
to examine how effective our approach IMMUCONGREEDY
is. Figure 4 shows the results of infection reductions on the
cascades generating from the testing data. IMMUCONGREEDY
consistently outperforms others in both Miami and Houston:
it can reduce about 25% of the infection with only 5K
vaccines, compared to other baselines like IMMUMODEL and
PROPINFECTION.

We use simulations of the SIR model to evaluate the per-
formance of IMMUCONGREEDY on the activity based urban
social contact networks (described in Section II). These were
first calibrated to get the same outbreak size as in the eHRC
data for these cities. We then choose a random subset of
individuals in each zipcode to be vaccinated, based on the
allocation by IMMUCONGREEDY. We find the reduction in
the number of infections is quite substantial in many cases.
For instance, for Miami, for a budget of 50K vaccines,
the IMMUCONGREEDY allocation leads to more than 50%
reduction, compared to a random allocation.
Robustness of IMMUCONGREEDY. We study how sensitive
IMMUCONGREEDY is, as the size of the propagation log R
varies next. To do so, we first generate synthetic propagation
log R from the SIR model, then manually change the size
of R as the input of our data. Finally, we compare IMMU-
CONGREEDY to the model based approach IMMUMODEL.
For each dataset, we generate R by running a SIR simula-
tion (with the infection rate 0.4 and the recovery rate 0.6
for WorkPlace, HighSchool and SBM, and the infection
rate 0.24 and timesteps to recovery 7 for Miami according
to [8]). Once R is generated, we change the size of R by
extracting a portion [N(t0), . . . ,N(tmax)] as the input (p%
of R). For example, suppose tmax = 20 and p = 50, we
use [N(t0), . . . ,N(t10)] as the propagation log. Since we
know all configurations come from the SIR model, we expect
the model-based approach IMMUMODEL to do better than
IMMUCONGREEDY. However, as p increases, as more data
is used, IMMUCONGREEDY should approach IMMUMODEL.
Figure 5 shows the results: as expected, for all datasets, clearly
as p increases, IMMUCONGREEDY becomes better. Interest-
ingly for smaller datasets like WorkPlace, HighSchool,
SBM, even with only 25% of data, we can get upto 85% of
the performance. For large networks like Miami, we need
more data: however, when all the data is used, compared to
IMMUMODEL, IMMUCONGREEDY can achieve 90% of the
savings.
Effectiveness of MAPPINGGENERATION. We also study the
performance of MAPPINGGENERATION by comparing αM to
the optimal value α∗ (Problem 3.1). We obtain α∗ using the
brute-force algorithm. See Table III: α̂M, the average value
of αM over all sampled cascades, is almost the same as
α∗ for all datasets. For example, in SBM, α̂M is 107.9, a
difference of only 1.1 from α∗. In addition, we found that α∗

is exactly the same as the number of nodes that are infected



(a) WorkPlace (b) HighSchool (c) Miami (d) Houston
Figure 3. Effectiveness of IMMUCONGREEDY on the whole R. Infection ratio r vs. Vaccine budget m. Infection ratio r =

∑
Mi∈M

σG,Mi
(x)∑

Mi∈M
σG,Mi

(0)
. Lower

is better. IMMUCONGREEDY consistently outperforms other baselines over all datasets.

(a) Miami (b) Houston

Figure 4. Effectiveness of IMMUCONGREEDY for the testing data. Infec-
tion ratio r vs. Vaccine budget m. Lower is better. IMMUCONGREEDY
consistently outperforms other baselines for both Miami and Houston.

Figure 5. Robustness of IMMUCONGREEDY as data size varies. Ratio of
saved nodes RS vs. percentage of used log data p%. RS = SData

SModel
. SData

(SModel): the number of nodes we can save when vaccines are allocated
according to IMMUCONGREEDY (IMMUMODEL). Percentage of used log
data p: [N(t0), . . . , p%N(tmax)]. Higher: IMMUCONGREEDY is closer
to IMMUMODEL.

after the first timestep t0, which suggests the best scenario for
SOCIALCONTACT is that only nodes which are infected at the
earliest time are not caused by social contact.
Scalability. Figure 6 shows the running time of MAP-
PINGGENERATION and IMMUCONGREEDY w.r.t. the vaccine
budget m and the number of cascades k on SBM. For Fig-
ure 6(a) we set k = 100, while for Figure 6(b) we set
m = 20. We observe that as m increases and k increases, the
running time scales linearly (figures also show the linear-fit
with R2 values). Consistent with the time complexity bounds
for our algorithms in Section IV, large datasets need fairly
extensive time. For example, Miami takes about 2 days to
get 5K vaccines. This is still reasonable: importantly, note
that we expect to run immunization algorithms for infectious
epidemics, so the solution quality is much more critical than
the fastest running time.

Table III
MAPPINGGENERATION. α̂M: AVERAGE OF αM OVER ALL M ∈M;

α∗: OPTIMAL VALUE OF αM; N =
∑tmax
t=t1

|N(t)|1 .
Dataset α̂M α∗ N

WorkPlace 79.2 83.0 83
HighSchool 165.2 170.0 170

SBM 107.9 109.0 109

(a) Varying m (b) Varying k

Figure 6. Scalability. (a) total running time of MAPPINGGENERATION
and IMMUCONGREEDY vs. vaccine budget m; (b) total running time of
MAPPINGGENERATION and IMMUCONGREEDY vs. number of cascade
samples k.

C. Case Studies

We conduct case studies to analyze vaccine allocations per
zipcode for both Houston and Miami. Figure 7 shows the
total population, the total #patients in the eHRC data, the
total #vaccines taken in the eHRC data3, the total #vaccines
from IMMUMODEL, and the total #vaccines from IMMUCON-
GREEDY, respectively.

Figure 7(a), (b), (c), (d) and (e) show the case study for
Houston. First, the areas with zipcode 77030 and 77024 in
Figure 7(b) have the largest number of patients, and vaccine
allocations from both eHRC (Figure 7 (c)), and IMMUCON-
GREEDY (Figure 7 (e)) also prefer these areas. Second, vac-
cines taken in the eHRC data do not follow the total population
(Figure 7(a)), but roughly follow the distribution of #patients in
eHRC. This may suggest the immunization strategy in practice
is to give vaccines based on the proportion of reported patients.
Third, IMMUMODEL distributes 38% of vaccines to three areas
(77002, 77008 and 77056), which are the center of Houston
Metropolitan Area (like downtown and uptown) with a large
number of interactions in the contact network. However, both
data-based and model-based approaches do not perform well
(see Figure 3). Our method, IMMUCONGREEDY, gives 43%
of vaccines to the areas 77030, 77024 and 77002. The first
two areas have the highest infections in eHRC, while the
last one is essential for minimizing the epidemic threshold as
IMMUMODEL suggests. Hence, IMMUCONGREEDY considers
both eHRC and contact networks. It is interesting that the
Texas Medical Center (one of the largest medical centers in
the world) is in 77030, and Houston downtown is in 77002.
Hence, IMMUCONGREEDY targets regions with high risk of
influenza outbreak.

3We extract vaccine reports based on ICD-9 codes V04.81. These are actual
vaccine allocations as given in the eHRC data.



Figure 7(f), (g), (h), (i) and (j) show the case study for
Miami. First, vaccines taken in eHRC (Figure 7(h)) follow
the distribution of #patients as well (Figure 7(g)). Second,
IMMUMODEL distributes 31% of vaccines in one area with
zipcode 33165 (Figure 7(i)). We believe this area with large
number of households, is critical to minimize the spectral
radius of the contact network in Miami. However, both data-
based and model-based approaches do not perform well in
Miami as well (as shown in Figure 3). Interestingly, as shown
in Figure 7(j), our approach, IMMUCONGREEDY, gives most
of the vaccines (29%, 18% ) to areas with the largest number of
patients (33140 and 33176 respectively). We observe that dif-
ference from Houston, in Miami IMMUCONGREEDY tend
to prefer data-based approaches. However, the areas adjacent
to 33165, which IMMUMODEL targets, also get higher vaccine
allocations than others—this means IMMUCONGREEDY also
takes into account information in the contact network. In fact,
the areas IMMUCONGREEDY targets indeed have high risk
of an influenza outbreak: they are either tourist attractions
(33140) or residential areas (33176). For example, 33140
belongs to Miami Beach, which is a famous place with large
transient population.

VI. RELATED WORK

We review closely related work next. Remotely related
work includes those on blogs and propagations [18], and viral
marketing [19] (e.g. Goyal et al. [20] studied the influence
maximization problem using a data-based approach).
Epidemiology. The early canonical textbooks and surveys in-
clude [13], [21], which describe the fundamental epidemiolog-
ical models like the so-called SIS and SIR models. Epidemic
thresholds (minimum virulence of a virus that causes an epi-
demic) for various models have been extensively studied [22],
[11]. In practice, viruses are always changing, and hence
assuming a prior model may be suboptimal.
Immunization. There has been a lot of work on developing
optimal strategies to control propagation over graphs. Cohen
et al [23] proposed the popular acquaintance immunization
policy, while Aspnes et al. [24] developed inoculation policies
for victims of viruses using game theory. Tong et al. [3], [12],
Van Miegham et al. [25], and Prakash et al. [26] studied the
problem of minimizing the spectral radius (epidemic thresh-
old) of the graph for a variety of models. In addition, other
immunization work in the literature has been proposed based
on differential equation methods [1], [27]. The most related
work includes Zhang et al. [4] who studied the immunization
at the group scale, while Zhang et al. [5] and Khalil et
al. [28] developed several model based efficient algorithms for
immunization given partial information of infections. All past
work proposed either model-based or graph-based approaches
for immunization. Instead we leverage rich surveillance health
care data together with the network information for the prob-
lem of controlling disease spread.
eHRC. Previous studies have pointed to the utility of eHRC
data to identify trends in epidemic incidence across the
US [29], [30]. Leveraging eHRC, the spatial and temporal

patterns of flu incidence during 2009-2010 pandemic flu
season have been discovered [7]. In addition, Malhotra et al.
used sequential pattern mining techniques to reveal common
sequences of clinical procedures administered to patients for a
variety of medical conditions from eHRC [31]. In sum, none
studied the immunization problem with the eHRC data.

VII. CONCLUSIONS

This paper addresses the novel problem of controlling
epidemics in presence of coarse-grained health surveillance
data and population contact networks. We formulate the Data-
Driven Immunization problem, which first aims to align
the propagation log with contact networks, and then allo-
cate vaccines to minimize spread in the data. We develop
an efficient approach MAPPINGGENERATION to obtain high
quality cascades, and then give an approximation algorithm
IMMUCONGREEDY with provable solutions for immunization
on sampled cascades. We demonstrate the effectiveness of our
method through extensive experiments on multiple datasets
including nation-wide real electronic Health Reimbursement
Claims data. Finally, case studies in Miami and Houston
metropolitan regions show that our allocation strategies take
both the network and surveillance data into account to effec-
tively distribute vaccines.

Future work can include investigating other sampling strate-
gies, incorporating more data sources, and studying vaccine
allocations to other groups, such as demographics like age.
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