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ABSTRACT

If a false rumor propagates via Twitter, while the truth prop-
agates between friends in Facebook, which one will prevail?
This question captures the essence of the problem we ad-
dress here. We study the intertwined propagation of two
competing “memes” (or viruses, rumors, products etc.) in
a composite network. A key novelty is the use of a com-
posite network, which in its simplest model is defined as a
single set of nodes with two distinct types of edges inter-
connecting them. Each meme spreads across the composite
network in accordance to an SIS-like propagation model (a
flu-like infection-recovery). To study the epidemic behav-
ior of our system, we formulate it as a non-linear dynamic
system (NLDS). We develop a metric for each meme that
is based on the eigenvalue of an appropriately constructed
matrix and argue that this metric plays a key role in de-
termining the “winning” meme. First, we prove that our
metric determines the tipping point at which both memes
become extinct eventually. Second, we conjecture that the
meme with the strongest metric will most likely prevail over
the other, and we show evidence of that via simulations in
both real and synthetic composite networks. Our work is
among the first to study the interplay between two compet-
ing memes in composite networks.
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1. INTRODUCTION

Epidemic spreading models and techniques are used to
model and analyze many network phenomena across various
disciplines. Such network phenomena include the spread of
social information, computer viruses, fashion trends, reli-
gious beliefs, market penetration and product adoption [8|
1§]. Epidemic models initially described virus and disease
propagation [1]; however, due to the broad applicability of
such propagation schemes, we use the generic term meme
to represent any entity that spreads over a network [21].
Thus, a meme may represent a piece of data, information, a
rumor, a computer virus, a strand of flu or a new product.

Figure 1: (a) Example Composite Network topol-
ogy: a single set of nodes N with two distinct edge
sets F1 and F>. (b) The SI;1,S State Transition Di-
agram, where S represents the susceptible state and
I{1,2y indicate the infected state for memes M; and
Ms. The transitions between states are indicated by
the directed edges labeled ;2 and d(1 2}

We focus on the little-studied problem of two competing
memes that propagate over different links across the same
set of nodes. We use the term composite network to de-
scribe such a topology (illustrated in Figure . Individual
agents are represented across the two planes, as indicated
by the vertical lines, yet a meme may only propagate across
links corresponding to a single plane. We assume mutual
exclusivity of the memes, meaning that once an agent is af-
fected by one meme, that agent is not susceptible to the
cognate meme. This concept of mutual exclusivity is cap-
tured by our propagation model SI;12S, and exemplified in
Figure b). Furthermore, memes not only propagate along
different topologies, but they also have different propagation
properties that describe their viral strength (8) and persis-
tence (0).

To motivate our model, consider the following example.
According to popular reports [19], the 2011 Egyptian rev-
olution was partly coordinated using Twitter. In response,
a tech-savvy government may inject bogus and/or contra-
dictory information using a malicious Facebook application



Symbol Definition Symbol Definition
My, My Meme #1, #2 A4, A2 Adjacency matrices
01, 02 Meme persistence of My, Ms B1, B2 Meme strength of My, M2
S Susceptible state I, 1> Infected state for My, Mo
S1, S2 System matrix for Aq, Az, A1, A2 Largest eigenvalue of S1, Sz
where S = (1 — §) I+ A in absolute value.

Table 1: Terminology

that spreads to someone’s friends. The central question is:
which propagation will win? A related question is what is
the relative intensity of a propagation to ensure dominance.
Several cases could be modeled like this, at least at some
abstract level. For example, we can think of the spread
of a rumor in an enterprise or army via interpersonal com-
munications versus some information distributed via official
memos across the hierarchical structure of the enterprise.

The problem is very timely and relevant to many differ-
ent applications and disciplines. First, the Internet, smart-
phones, and the emergence of online social networks have
increased the communications modes among people. Fur-
thermore, these new modes of communication enable inter-
actions to be fast and to spread in an epidemic fashion.
There is ample evidence for this sort of communication: viral
YouTube videos that become highly popular in a week, the
epidemic spread of news over Twitter, and the distribution
of malware on Facebook. Second, a number of real-world
scenarios may be modeled as described above, including
the propagation of virus/anti-virus software, the spread of
information/mis-information, or competing marketing cam-
paigns (e.g., influencing a person to buy an iPhone or an
Android phone).

We find that previous works have not focused on this prob-
lem. Most previous efforts study a single epidemic on a
single topology [10, 16]. Those that have evaluated two
competing pathogens focus on spread across a single topol-
ogy |13} [15]. We discuss previous work in more detail in
section [f] In this paper, we provide the first theoretical and
experimental study of the competing memes problem in a
composite network. Our work can be summarized in the
following key points:

1. We provide a rigorous formulation of competing memes
on composite networks using a modified susceptible-
infected-susceptible (SIS) propagation mechanism. The
full process is stochastic but at the same time very
complex to analyze for real, general networks.

2. We propose a Non-Linear Dynamic System (NLDS)-
based solution for the epidemic threshold (defined in
Section [3)) that determines the phase transition of the
behavior of the system. Our analysis suggests that the
first eigenvalue of an appropriately-constructed system
matrix for each meme is a critical metric that deter-
mines system behavior.

3. We provide further evidence of the importance of our
eigenvalue-based metric via simulations using: (1) syn-
thetic composite networks with up to 50,000 of nodes,
and (2) real-world composite network of mobile phone
calls and text messages of 235 users.

To the best of our knowledge, our work is one of the first
steps in understanding the interplay between two compet-

ing memes in a composite network. The power of the eigen-

value analysis is that it condenses the topological informa-

tion. Furthermore, by bringing forward this less-studied,

but interesting problem and its variations, we hope to spur

research activity in this direction. Of course, other meme

propagation and interaction models, e.g., one epidemic spread
to a large population, nodes infected by both memes, or

cross-contamination between the layers are possible; we leave

their exploration to future work (Section [5).

2. MODEL AND DEFINITIONS

Our model is described by two components: (1) a compos-
ite network and (2) a propagation mechanism. We define a
composite network as C = (N, E1, E»), a single set of nodes
N with two distinct edge sets E1 and E2. Each layer of the
composite network corresponds to a single adjacency matrix
Aq, A

The propagation mechanism is based on the popular “flu-
like” SIS (Susceptible-Infected-Susceptible) model [10]. We
name our model SI112S (Susceptible — Infected; — Infecteda
— Susceptible). Each node in the composite network is in one
of three states: Susceptible (healthy), I; (infected by M),
or I (infected by Mz). The state transitions are shown
in Fig. b). Note that this is one of the several meme
propagation models that one could consider, others being
SI, SIR, etc. We believe that our model is a reasonable
starting point, and we leave the analysis of other models as
future work.

Meme persistence: §. If a node is in state I; (or I2),
it recovers on its own with probability 61 (or d2). This pa-
rameter captures the persistence of the meme in an inverse
way: a high § means low persistence. For example, a very
convincing rumor that sticks to one’s mind will be modeled
with a low ¢ value.

Note that we assume that while a node is infected by one
meme, it cannot be infected by the other. We do not antic-
ipate that allowing a meme to preempt each other (i.e., in-
fect and subsume an infected node) would change the results
from a qualitative point of view: this would be equivalent
to having a node skip the recovery state and go straight to
a new infection. As we will see later on, our metrics and
methods consider the § values explicitly.

Meme strength: . A healthy node gets infected by in-
fected neighbors, and the meme strength is captured by (1
and B2. Specifically, this parameter is the probability that
an infected neighbor would pass the infection to a healthy
neighbor in the absence of any other interaction. We refer
to this potential infection-in-isolation as an attack. In the
presence of multiple infected neighbors, we need to decide
which infection succeeds (infects a susceptible node ) as fol-
lows. Let C1 be the number of attacks (each happening with
probability 31 independently) by node i’s neighbors which
are in state I; (infected by M ); similarly, let C be the num-



ber of neighbors infected by M2. Then, we have three pos-
sible scenarios for a node in the Susceptible state:(1) node
¢ remains in the Susceptible state if C1 = 0 and C2 = 0;(2)
node i gets infected with M; with probability %; (3)

node i gets infected with Mo with probability %

It is easy to see that this is a natural generalization of
the SIS model to a competing-memes scenario. Moreover,
note the competition between the memes: each meme has
to compete with each other for healthy victims.

3. THE EPIDEMIC THRESHOLD

We want to determine the epidemic threshold (that deter-
mines viral dominance) analytically. First, we approximate
the infection process by a discrete-time Non-Linear Dynam-
ical System (NLDS) whose general form is pi+1 = g(p:).
The NLDS gives the evolution of the system with time, as
we explain below.

First, we see the probability that node ¢ is infected by
neighbor node j with meme M; at time t is ,Blel (t—1).
This is what we referred to as attack earlier or infection by
a neighbor in absence of other influences. Then, we have
the probability ¢} () that node i does not receive the infec-
tion of M; from its neighbors (assuming the neighbors are
independent) as:

Cll (t) = HjEi’s neighbo'rs(l - /31Pj1 (t - 1)) (1)

Thus, the probability that node i receives the infection of
M at time ¢ from its neighbors is:

1- C'Ll(t) =1- HjEi’.s neighbo’rs(l - Blpjl(t - 1)) (2)

Using the same reasoning, we can obtain the probability of
that node i receives the infection of My from its neighbors
at time ¢ is:

1- sz(t) =1- HjEi’s neighbo’rs(l - 62Pj2(t - 1)) (3)

Now, the probability that node ¢ is infected by M; from its
neighbors at time ¢ is the probability that node i receives the
infection of M; and does not receive infection of Ms from
its neighbors at time t. Here we assume that the 5 and ¢
values are all extremely small (or, equivalently, the time be-
tween state transitions is extremely small). We focus on the
case when the epidemics are mutually-exclusive, i.e., a node
cannot be infected with both viruses, but both compete for
healthy victims. Other extensions are also possible where
the viruses interact more strongly, which we leave as future
work. This ensures that in any given timestep, the probabil-
ity of having two or more events is vanishingly small. Thus,

we get:

THt) = (1= ¢} (1) - ¢ (8) 4)
With the same reasoning, the probability that the node is
infected by M at time t is:

T () = (1= ¢ (1) - ¢ (b) (5)
Hence the probability that node ¢ is in state I; is:
Pl(t) = (1= 61)- P (t = 1) + T} (t) - Si(t — 1) (6)

and the probability that it is in state I2 is:
PA(t) = (1—=62) - PA(t = 1) + TZ(t) - Si(t — 1) (M
and the probability that it is in state S (Susceptible) is:
Si(t) = (1 =T} (t) = T (1))Si(t — 1)+
§1PH(t — 1) + 82 P2(t — 1)

As mentioned before, for M; we define the vector P'(t) =
(P} (t), Ps(t), ..., Px(t)) where P} (t) is the probability that

node 7 is infected by meme M; at time ¢. Similarly, for
Mo, we have P2(t) = (P2(t), P3(t), ..., P3(t))". Let V(t) =
(P(t), P2(t)) be the concatenation of two vectors. Using
the NLDS formulation, we can now describe the whole in-
fection process evolution as V (t) = f(V (t — 1)), with:

(1 =61)PHt - 1)+

ﬂ B THt)S:(t—1) ifi <N
fi(V(t—1)) = (1= 6)P2(t — 1)+ (8)
T2(£)S;(t — 1) ifi >N

Substituting T3 (t) , T} (¢) and S;(t — 1) into equation we

find that f;(V (¢ — 1)) is equal to the following;:

(1=8)P (t=1) + (1= ¢ 1))

(1— Pt —1)— P3(t — 1)) ifi<N
(1 =62)P2(t — 1) + (1= G2 ()¢} (1)

(1— Pt —1)— P3(t — 1)) ifi >N

We make use of the following theorem about the asymp-
totic stability of an NLDS at a fixed point:

THEOREM 1 (HIRSCH AND SMALE, 1974 [11]). The sys-
tem given by piy1 = g(pt) is asymptotically stable at an
equilibrium point p*, if the eigenvalues of the Jacobian J =
vg(p*) are less than 1 in absolute value, where

apk,t+1
8101 t

’

|pt=p*

i =[Vg(®)]kt =

The fixed point we are interested in for analyzing the thresh-
old is the point where no node is infected (all nodes are
healthy), i.e., V* = 0. Using this, we have the following
theorem:

THEOREM 2. The system is asymptotically stable at V=
0 if the first eigenvalue of the system matrices for both memes
as defined in Table are less than 1, i.e., A1 < 1 and
A2 < 1, where \1 is the largest eigenvalue of matriz S1 =
(1 =01)I + B1 A1 (and similarly for X2 ).

PRrROOF. Recall that we are interested in the stability of

the fixed point V* = 0. Let the Jacobian at this point be
V(f) (a 2N x 2N matrix). Then

V(s = 78};%1‘11)”
J

We can write it into a block matrix composed of the system
matrices:

vin =[]

In order to find the first eigenvalue of V(f)\‘;f, we define

X as 2N elements vector:

x-S
X2
where X1 and X have N elements respectively. We then
have:

= [ S1]8; X ] X,
V(f)|17fX_ [ Sy | S, :| : |: X’Z :| _)‘V(f)|vf |: X’Z :|



Doing the matrix multiplications, we get:

51)?1 + Sgiz = )\v(f)|v7il

SaX1 + S2 Xz = Ag(p)lv; Xz

Wlth Sl = (1 — 51)] —+ ,31141, SQ = (1 — 62)[ + ,BQAQ and
S3 =S4 = 0 (where I is the N x N identity matrix), as we
show in Table [Tl and as discussed below.

Hence, the Jacobian V(f) is a block diagonal matrix and
its eigenvalues are the same as the eigenvalues of S; and Sa.
So the largest eigenvalue of V(f) can be either A1 or A\2. [

Discussion: adjacency versus system matrix. We
can understand how the eigenvalue of the system matrix is
the key parameter, if we consider the definition of the system
matrix. At the same time, it is useful to stress the difference
between the adjacency matrix, A, and the system matrix,
S. One such matrix exists for each meme but here we drop
the meme subscript.

The key point that we make is the following: the system
matrix for a meme and thus the related eigenvalue are a
function of the topology and the properties of the meme.
The eigenvalues of the adjacency matrix Aa are related to
the eigenvalues of the system matrix Ag. Recall that the
system matrix is defined as S = (1 — §)I + SA, where A is
the adjacency matrix. Therefore, if we consider an eigenvec-
tor for A, that would also be an eigenvector for S and the
following will hold for the eigenvalues:

As=1—6+pBAa (9)

In conclusion, the system eigenvalue \g increases with the
meme strength, 5 and the adjacency eigenvalue. Naturally,
As decreases as the meme persistence ¢ increases.

4. SIMULATION STUDY

We use a discrete-time simulation of our system that sim-
ulates the stochastic behavior of competing meme on several
different synthetic and real composite networks.

4.1 Small-scale Data Sets (N < 1,000)

Real-world enterprise composite network (ENT).
We have obtained a composite network dataset that repre-
sents the phone call and SMS text message communications
within an urban branch of a large Chinese corporation [20].
Each node is an employee (|N| = 235), the edges in F; corre-
spond to SMS messages exchanged between employees, and
edges in E3 correspond to phone calls made between employ-
ees. The data was captured over the course of six months.
Among all communicating pairs of users, 31% communicate
via calls alone, 28% via SMS alone, and 41% via both calls
and SMS.

Synthetic composite networks. We have created two
synthetic graphs with 1,000 nodes: the first one is an Erdds-
Rényi graph, whereas the second one is a scale-free graph; we
use the Barabdsi-Albert model [3]. We have experimented
with several different combinations of topologies. Here, we
focus on these two, because: (a) we would like to have signif-
icantly different topologies, in order to show that our meth-
ods are not tailored to a particular family of graphs, and
(b) scale-free graphs are known to emerge in complex hu-
man and communication networks [3|.

4.2 Large-scale Data Sets (1,000 < N < 50,000)

To further stress-test the accuracy of our model, we con-
ducted experiments on synthetic social networks with 1,000 <
N < 50,000 nodes using the forestFire, randomWalk, and
nearestNeighbor graph generation models provided by Sala
et al. |17]. These synthetic models are informed by real
world measurements of social networks (e.g, Facebook) and
provide graph structures that resemble such networks.

4.3 Simulation Experiments

All experiments on real and synthetic composite networks
were conducted using a combination of Matlab and Python.
All values are averaged over 100 simulation runs. In each
experiment, each meme infects a unique set of nodes Iniy
and Iniz, each with the same size, selected uniformly at
random from N, subject to the constraint Ini; N Iniz = ()
(i.e., mutually exclusive). We run each simulation until it
reaches a relatively stable state, at which point, we deter-
mine the average number of nodes infected by M; and M,
and report the outcome, which then gets averaged across 100
runs. Note that: the definition of “relatively stable state”
hides several subtleties, which have to do with the asymp-
totic behavior of the system, namely what happens as time
goes to infinity |[16]. However, as we are reliant on simu-
lations, we are forced to adopt a more practical definition.
First, we examine the behavior, after a sufficient warm-up
period, when the system converges to some relatively stable
state (with only small fluctuations of its infected nodes).

4.4 Analysis of Results

From Section [3] we know that if the system matrix’s first
eigenvalue of one meme is less than 1, the corresponding
meme will die-out eventually. Therefore, in this scenario,
we can predict which meme prevails eventually using the
following three rules:

(1) if A1 < 1 and A2 > 1, then M> tends to prevail even-
tually in the composite networks;

(i) if Ay > 1 and A2 < 1, then M; tends to prevail even-
tually in the composite networks;

(iii) if A1 < 1 and A2 < 1, then both memes will die out
and none of them can be said to prevail.

Figures [2Ja)-(e) demonstrate the proposed rules on both
synthetic and real composite networks. The infection starts
by infecting 30 nodes for each meme in Figure Fig-
ure [2(b)| and Figure and 10 nodes for each meme in
both Figure and Figure The outcomes of below-
and above-threshold from these rules can be distinctly seen
in these figures. These results show that, though simple, our
proposed rules are very effective for predicting which meme
tends to prevail eventually in the composite networks.

This is the more interesting case in terms of competition:
each meme in isolation would not die-out, so it is a “fight
for dominance.” As shown in Figure we find again that
the system eigenvalues play a critical role: the meme whose
first eigenvalue is larger tends to prevail eventually in the
composite networks. No clear winner is the case where the
difference is less than 6, which here is 10%. Note that we
experimented with other 6 values (5%, 10%, and 15%) and
the results were qualitatively similar.

In addition, Figures [2g)-(i) show experimental results
of large scale epidemic simulations using aForestFire and
nearestNeighbor synthetic graph models. For brevity, we
only show the graphs for N = 40,000 nodes, but we found
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Figure 2:
Networks: A1 = 0.97, A2 = 0.96;

Simulation Results: Infection plot over time (log-log) in Figure(a)-(e). |
Real Composite Networks: A1 = 0.9, A2 = 0.94; |2(c); Synthetic Composite

2(a): Synthetic Composite

Networks: A\; = 0.91, A2 = 1.63; [2(d)f Real Composite Networks: \; = 0.99, A2 = 1.4; 2(e)k A1 = 4.5, A2 = 1.7; [2(f)]
The outcomes for different combinations of system eigenvalues: 1 < A1 < 10 and 1 < A2 < 10; black dotted
lines represent three lines \1=1, \o=1, and A\1=X2. When the eigenvalues are roughly equal there is no clear

winner.

similar experimental results for 10,000 to 50, 000 nodes. Un-
like smaller-scale experiments, these results show that the
weaker meme may retain some endemic population, yet the
meme with the larger eigenvalue clearly dominates the sim-
ulation.

S. DISCUSSION AND FUTURE WORK

In this section, we discuss the limitations of our work and
possible future directions.

Choice of epidemic model. The flu-like SIS (Susceptible-

Infected-Susceptible) epidemiological model is simple, yet
illustrative, and has been extensively studied in past litera-
ture in a single-virus setting. Therefore, we chose to extend
SIS in order to gain fundamental insights into the dynamics
of competing memes. We leave the investigation of other
epidemic models as future work.

Future exploration. Our paper is the first attempt to
study competing epidemic propagations on composite net-

works. We leave some tasks to further explorations: (a)
in this paper we focus on the case when the epidemics are
mutually exclusive, but other extensions are also possible
where the viruses interact and infect in more nuanced ways,
e.g., full competition, no competition and in-between mod-
els, of memes propagation on composite network, and cross-
contamination between the layers of the composite network;
(b) our analysis focuses on the long-time nature of the epi-
demics, i.e., “what happens in the end?”; analyze the exact
transient fluctuations, would also be interesting; (c) con-
structing more effective and accurate predictors based on
our findings as shown in Figureand immunization meth-
ods to control the outcome of this competition, and find-
ing the extent of foot-prints, proving performance bounds
for inoculation policies; and (d) running the simulation on
other real-world data sets @ besides our enterprise phone
call/SMS network.



6. RELATED WORK

Single-meme propagation.Compartmental models like
SIS, SIR, etc., have been well-studied in many epidemiolog-
ical texts |1]. Information cascades models are proposed to
study the meme propagation in word-of-mouth communica-
tions [8]. Numerous studies exist on virus propagation on
the Internet based on the basic epidemic models of infec-
tion [18]. A fundamental question in epidemiology is the
presence of a threshold, under which an epidemic is guar-
anteed not to happen. Pastor-Satorras et al. [14] proposed
an epidemic threshold condition for random power law net-
works, which uses the “mean-field” approach. Ganesh et
al. |7] provided epidemic threshold for the single-virus on
single topology. Prakash et al. |16] gave the epidemic thresh-
old condition for almost all single-virus epidemic models on
a single static network.

Multiple memes and interdependent networks. New-
man [13] studied multiple viruses on a single, special ran-
dom graph and provided the epidemic threshold for the case
when the second virus propagates over the residual network
after the propagation of the first virus has completed. This
scenario is close to the dynamics of propagation of a single
virus—one virus passed over the network, the second virus
starts to pass over the residual network. Models for mul-
tiple cascades have been studied as extensions of the inde-
pendent cascade model, where once a node is infected with
a cascade, it never change its state [4]. The effects of cas-
cades in inter-dependent networks (e.g., Internet router and
power electricity networks) were investigated by Buldyrev
et al. [5].

Game theory. Kostka et al. |[12] studied competing cam-
paigns as a game-theoretical problem and showed that being
the first player was not always advantageous. Goyal et al. [9)
proposed a game-theoretical framework to reveal the com-
petition among firms who try to maximize product adoption
by consumers.

7. CONCLUSION

In this paper, we have formulated the scenario of compet-
ing memes on composite networks as an SI;I2S model and
showed that the epidemic threshold depends on the largest
eigenvalues of the system matrices of both memes. Exten-
sive simulations on different datasets demonstrate that the
epidemic threshold and the largest eigenvalue are effective
predictors of the eventual outcome.
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