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ABSTRACT
The Border Gateway Protocol (BGP) is one of the funda-
mental computer communication protocols. Monitoring and
mining BGP update messages can directly reveal the health
and stability of Internet routing. Here we make two con-
tributions: firstly we find patterns in BGP updates, like
self-similarity, power-law and lognormal marginals; secondly
using these patterns, we find anomalies. Specifically, we de-
velop BGP-lens, an automated BGP updates analysis tool,
that has three desirable properties: (a) It is effective, able to
identify phenomena that would otherwise go unnoticed, such
as a peculiar ‘clothesline’ behavior or prolonged ‘spikes’ that
last as long as 8 hours; (b) It is scalable, using algorithms
that are all linear on the number of time-ticks; and (c) It is
admin-friendly, giving useful leads for phenomenon of inter-
est.

We showcase the capabilities of BGP-lens by identifying
surprising phenomena verified by syadmins, over a massive
trace of BGP updates spanning 2 years, from the publicly
available site datapository.net.
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1. INTRODUCTION
The ‘Border Gateway Protocol’ (BGP) is responsible for

keeping route information up-to-date. Thus, each router
sends BGP updates to its neighbors, to keep them current
with the path information that it has. Path information
changes, e.g., whenever a link goes down or whenever it
comes back up again. In an ideal setting, there should
be no BGP updates; in reality there are, due to link fail-
ures, node failures, router-maintenance shut-downs, miscon-
figured routers, bugs in the router software etc. Our goal
here is two-fold: (a) we want to find how normal BGP up-
dates look like and (b) how to automatically spot deviations
and anomalies, which ultimately helps system administra-
tors diagnose/repair undesirable network behaviors.

The volume and the complexity of BGP updates makes it
practically impossible for a human to process all the update
information at several different levels of granularity. For ex-
ample, we studied about 18 million BGP updates spanning
over 2 years from datapository.net.

In this paper, we present BGP-lens, a novel tool for auto-
matically detecting patterns and anomalies in BGP updates
at many different scales of observation. We also showcase
its capabilities on massive traces involving millions of mea-
surements. The key novelties of BGP-lens are:

a. It is effective: Applying it to real BGP data, we
identify several subtle phenomena that may otherwise go
unnoticed, such as a peculiar “clothesline” behavior, as well
as prolonged high-activity periods with high, near-constant
volume of updates for several hours. The tool builds on
a carefully chosen set of algorithms, avoiding methods like
FFT, auto-correlation, thresholding, which despite their pop-
ularity, would be unsuitable here due to the bursty and noisy
nature of the data. Instead, BGP-lens builds on top of more
sophisticated, lesser-known tools like wavelets and median
filtering (see §3 and §6.)

b. It is scalable: The algorithms are linear on the
number of time-ticks and thus BGP-lens can handle large
datasets: the runtimes were in the order of minutes (see §4).

Moreover, we carefully designed our tool so that it is
admin-friendly: BGP-lens works with zero user input. It
automates the definition of surprising phenomena, provides
reasonable defaults for all the required thresholds, and ranks



the phenomena according to their statistical significance. Fi-
nally, BGP-lens also provides the leads for an investigation
or troubleshooting, by identifying the network entities (ori-
gin ASes, prefixes) that participate 1.

For expert users, the tool offers the additional capability
to tune a few “knobs” that control the level of sensitivity.
These knobs are intuitive and require only simple tuning
(e.g. low, medium, high), without the need to understand
the intricate details of the underlying data mining methods
(see §5).

Finally, BGP-lens can help sysadmins identify surprising
phenomena that may otherwise go unnoticed, as was the case
in Section 6, with the Alabama Supercomputing Network,
whose sys-admin confirmed the anomaly.

The rest of the paper is organized as follows: We review
the related work in Section 2. The proposed strategies with
motivating observations are discussed in Section 3; the al-
gorithms of the tool with a discussion on user interface etc.
are presented in Section 4 and Section 5 respectively. The
experimental results and case studies are presented in Sec-
tion 6. We then conclude the paper in Section 7.

2. RELATED WORK
In this section, we survey earlier BGP analysis, as well as

time series analysis tools.

2.1 BGP Measurements and Analysis
There has been significant work in studying BGP phenom-

ena, which can roughly be grouped into: (a) measurement
and modeling studies [9] [10]; (b) studies of network-wide
BGP dynamics [5]; and (c) attempts to troubleshoot and
improve BGP [21].

The characteristics of BGP updates have been studied in
detail by Labovitz, who presented canonical measurement
studies on BGP anomaly and route instability detection [9]
[10]. Modeling studies can be characterized by the work
of Maennel and Feldmanm [12], who presented a workload
model to capture the structure of BGP traffic. Furthermore,
Feldmann et al. [5] present methods to detect various BGP
anomalies that affect inter-domain routing.

Work closely related to our own is presented by Teoh et
al. [22] and employs statistical and visualization methods to
diagnose BGP anomalies. Our work differs in that they focus
on novel visualization methods to detect BGP anomalies
rather than data mining techniques. Additionally, Tseng et
al. [23] detect routing changes and management actions of an
AS by examining BGP related data, but do not necessarily
detect anomalies or other surprising BGP phenomena.

2.2 Time Series Analysis Tools
Typical tools for time series analysis and pattern discovery

include the Discrete Fourier Transform (DFT) (see, e.g., Op-
penheim and Schafer [14]) and the family of wavelet trans-
forms ([16] [3]), with the Haar, Daubechies-4, Morlet, and
Gabor, among the most famous. Wavelets have been exten-
sively used for analysis of real time series before, for e.g. see
[6] and [25].

For time series indexing, earlier works have used the Fourier
transform, wavelets, or piece-wise linear approximations [4]
[17] [8].
1This can be considered as a first step towards identifying
the source of an anomaly, which is a much harder problem
[5].

Table 1: BGP-updates snippet; Washington Router

time peerAS originAS prefix
2005-02-17 12:39:42 11317 1252 204.29.119.0/24
2005-02-17 12:39:43 10490 3464 204.29.80.0/24
2005-02-17 12:39:46 10490 3464 204.29.79.0/24
2005-02-17 12:39:49 10490 3464 204.29.118.0/22
2005-02-17 12:39:55 11317 776 204.29.78.0/24
2005-02-17 12:39:55 22388 7588 207.157.115.0/24
2005-02-17 12:39:56 1252 6677 192.211.42.0/24
2005-02-17 12:39:58 10764 2200 204.29.120.0/24
. . . . . . . . . . . .

For time series forecasting, the typical method is linear
forecasting, also known as autoregression (AR) methodology,
or Box-Jenkins [1], with its numerous variations (ARIMA,
seasonal ARIMA, Fractional Integration (ARFIMA) [15] etc.).
Non-linear forecasting includes the Delayed Coordinate Em-
bedding method [18] [2], as well as tools from chaos, fractals
and self-similarity.

With few exceptions, several of the above tools do not
work well for the bursty, self-similar sequences we have, be-
cause they assume ergodicity, smooth changes and Gaussian
errors. As we show later (Figure 6), BGP update messages,
are indeed self-similar and bursty. Typical tools for self-
similar analysis employ the Hurst exponent (see, eg., the
SELFIS tool [7]), and the entropy plots [26] (Figure 5).

Among the applicable tools from the list above, we pro-
pose to use the Haar wavelet transform. We describe it in
more detail in Section 3.4.

3. TOOL COMPONENTS AND
OBSERVATIONS

BGP-lens examines a given time-series of BGP updates to
discover interesting phenomena, such as periodicities, and
anomalies. Below we present a description of the data used
in this analysis and detail the two complementary compo-
nents of BGP-lens (temporal and frequency).

3.1 The Data
We examine BGP Monitor data containing 18 million BGP

update messages over a period of two years (09/2004 to
09/2006) from the Datapository project [13]. The primary
source of data is Abilene, an academic research network em-
ploying Juniper routers running a full-mesh of iBGP ses-
sions. Abilene uses one Zebra monitoring router per point
of presence (PoP) to collect BGP updates by establishing
an iBGP session as a client. As Figure 1(a) shows, there are
some significant gaps in the BGP update record, which the
tools handle seamlessly.

A snippet of the data is provided in Table 1. A BGP
update is basically an advertisement of path to some part
of the network from a router to another router. Concep-
tually, a BGP update is a row with many fields (columns)
each containing some piece of information of the update. For
example, time gives the time the update was sent, origi-
nAS is the AS (Autonomous System) which sent the update,
prefix is the network space for which the update is being
sent. Other data, primarily used for traffic engineering, is
not shown in the snippet. In this paper, we will focus on
time, originAS and prefix.



Problem Definition.
Although there are many aspects of this data, we look at

a time-series which gives us the number of updates received
by a router every b seconds (called the bin size). After iden-
tification of target time periods, the originAS and prefix

fields are used to find out which parties are involved in the
suspected updates. We now describe the problem we are
attacking precisely:

General Problem:

• Given: The raw data as before (e.g. Table 1)
• Problem: Find patterns and anomalies.

Specific Problem:

• Given: Time-series after converting the raw data using
appropriate bin size (as described above). Also some
associated auxiliary data (originAS, prefix fields).

• Problem: Find patterns and anomalies. Also report
suspicious entities (paths, IPs).

3.2 Shortcomings of standard techniques
Given the data, what can we discover? Regardless of bin

size b, a linear-linear plot of the BGP update time series em-
phasizes the very high values and obliterates the others (e.g.
Figure 1(a)). Therefore, a visual inspection of that plot pro-
vides minimal information: it shows several high spikes with
the vast majority of time-intervals having few BGP updates.
But, there can be lots of patterns hidden: e.g., consider el-
lipse E (Figure 1(a)) and its corresponding magnification
(Figure 1(b)); we clearly see a short duration spurt. Note
that these patterns can’t be obtained through simple thresh-
olding as choosing a threshold when there are such huge
variations in the data is near-impossible. For example, if we
choose 103 as the threshold, it will miss Ellipse E completely.
Other methods like FFT and auto-regression [1] (which as-
sumes Gaussian errors) also don’t work here because of the
burstiness (for example see Figure 1(c)). We analyze the
burstiness of the time-series later in Section 5.

3.3 Temporal Analysis - The “Clothesline”
Effect

As we saw above, the challenge of employing temporal
analysis on BGP updates stems from the burstiness of the
updates. To overcome this challenge, we propose using the
log-linear plot (we use the transformation log(x+1), to han-
dle bins with x=0 updates), (e.g. see Figure 2(b) (bottom)),
which emphasizes small values over high values. We refer to
it as the clotheslines plot, for reasons that we explain next.

3.3.1 Multi-scale Analysis
The log-linear (‘clotheslines’) plot shows no striking out-

liers in the BGP update activity, with the obvious exception
of the large gaps in the data due to missing values. But in
this plot, the bin size plays an important role. For example,
see Figure 2. The bottom figures show the clothesline plots
for bin sizes 10sec and 600sec. While the 10sec plot does
not show anything striking, the 600sec plot shows an unex-
pected phenomenon. The phenomenon is visually similar to
bed sheets hanging from a clothesline, thus we refer to it
as the “clothesline” phenomenon. Analysis of the clothesline
phenomenon leads directly to the following observation:

Observation 1. Depending on the bin size b, we may ob-
serve ‘clotheslines’, that is, near-consecutive bins with sim-
ilar count of updates per bin.

For example, for b=600sec, there are many, near-consecutive
updates in the range of 50 updates per bin (henceforth “50-
clothesline”). Similarly, there is another clothesline at ap-
proximately 100 updates per 600sec, (henceforth called the
“100-clothesline”).

An intuitive explanation of the clothesline phenomenon
is simply a periodic stream of BGP update messages (both
update and withdraw) over a prolonged time period. A likely
explanation may be Route Flapping, as suggested by the
sys-admins of the related networks (see Section 6).

Up to this point in our analysis, we have described the
clothesline phenomenon and how to identify it through vi-
sual inspection. The logical follow-up question is, rather
than visual inspection of clothesline plots, how can BGP-lens
spot clotheslines automatically? To answer this, we leverage
the power of the “marginal” distribution; it turns out that
outliers in the “marginal” distribution usually correspond to
clotheslines.

3.3.2 Marginals
Figure 2 (top figures) show the PDF (probability density

function) of the volume of updates, i.e. it plots the number
of times we see bins with volume v (within a given time
period) versus the volume v. Here, we use log-log scales,
expecting a power law. Indeed, the distribution of updates
is skewed, with a power-law-like tail. However, the marginal
plot for b=600sec has a very pronounced tilt and several
smaller spikes. Thus, we have the observation w.r.t. this
plot:

Observation 2. The PDF of the update volume seems
to be a mixture of lognormals. The dominating one spikes
at volume v=50, which is also the mode of the distribution
(most common value)

Closer inspection, e.g., of Figure 2(b) (top) shows that
there is a spike at number of updates v=100 in addition
to the one at around v=50; compared to the ‘clothesline’
plot (Figure 2(b) (bottom)), these are exactly the heights
of the ‘hanging bed sheets’. Thus, extremes in the marginal
distribution helps us spot clotheslines.

3.4 Frequency Analysis - “Tornado” Plots
The challenge of frequency analysis of the BGP update

message signal stems from the self-similar nature of the sig-
nal (see Section 5). To overcome this challenge, we chose a
multi-resolution analysis tool, and specifically the Discrete
Wavelet Transform (DWT), with Haar wavelets.

The wavelet analysis is similar to the Fourier analysis, in
a multi-resolution way. In order to visually interpret the
wavelet transform, we employ the scalogram (see Figure 3),
which plots the (absolute) values of the wavelet coefficients
in the scale-space domain. The horizontal axis is time; the
vertical axis is scale (coarser scales correspond to lower fre-
quencies, and are at the top); dark color indicates high ab-
solute value of the corresponding wavelet coefficient. Thus,
dark colors at a coarse scale indicate long, slow-moving peri-
odicities. Dark colors at fine scales indicate short duration,
fast-moving cycles.

Figure 3 shows scalograms (top) and the corresponding
time-signals. We have marked the areas of interest with



(a) Time-plot (b) Magnification of (c) Log-Log FFT
ellipse E in (a) of time plot

Figure 1: Plots for Washington Router (WASH) (Bin Size = b=600sec), 09/2004-09/2006. (a) Time-plot. (b)
Magnification of a prolonged spike: ellipse E in (a) automatically discovered by BGP-lens , but otherwise
invisible! (c) Log-Log FFT plot of WASH (b=600sec): conveys no information.

ellipses. The general idea is to look for high-energy (dark
color) areas on the scalogram, and try to interpret the phe-
nomenon. We refer to these observations as the “tornado”
effects, and the corresponding scalogram as the “tornado”
plot. Below we give specific observations that appeared in
practice and their interpretation.

Because the signal consists of several spikes of varying
power, the scalogram looks like a collection of tornadoes
touching down. Figure 3(a) illustrates these concepts us-
ing a synthetic time-series. As demonstrated, a huge spike
will have a tornado that will ‘touch-down’ i.e. there will
be dark areas in all scales. Specifically in the data, see E1
in Figure 3(b) which corresponds to 11th February 2005.
The respective high energy wavelet coefficients are marked.
Hence, we have:

Observation 3 (Tornados/spikes). Pronounced spikes
in the updates time series correspond to ‘tornadoes’ that
touch down.

Also, a larger spike will have a darker tornado (larger co-
efficients) than a smaller spike (compare the two spikes in
the Figure 3(a)). However, the data scalogram has several
tornado-like shapes, that do not touch-down. What is their
interpretation? As exemplified in Figure 3(a), these are peri-
ods of near-constant sudden increased activity or “prolonged
spikes” and show up as tornadoes which do not touch-down,

Observation 4 (Prolonged spikes). On the scalogram,
a tornado-like shape that does not reach the highest frequen-
cies, corresponds to a “prolonged spike”.

Notice that prolonged spikes are easily detectable on the
scalogram (see, e.g., the high energy region indicated by
ellipses E2 and E3 in Figure 3), while they can be invisible
both in the time series plot, as well as the FFT. Specifically,
a tornado that is not touching down, but stops at level i,
corresponds to a prolonged spike of duration roughly 2i time-
ticks.

For example, BGP-lens helped us detect a period of sus-
tained activity on 18th January, 2006 that lasted about 8
hrs (ellipse E2). The tornado plot shows a dark tornado
and detail plots show consistent spikes at coarser scales. A
magnification of the time series (see Figure 1(b)) for this
period also clearly shows consistent high traffic (> 104). We
discuss more of such observations in Section 6.

3.5 Prolonged Spikes vs. Clotheslines
Prolonged spikes are high-intensity short (duration of hours)

bursts while clotheslines are more sustained (duration of
months) low-intensity activities. For example, Figure 2(b)
(bottom) shows the 100-clothesline and 50-clothesline in bold
red lines, while Figure 1(b) shows a 8 hour burst of approx-
imately 15000 updates per 600sec. Hence we need to apply
different methods for them. In addition, the probable net-
working reasons for these two phenomena can also be very
different (ranging from router restarts to malicious behav-
ior).

4. AUTOMATING THE DISCOVERY
How could we automate the discovery of clotheslines and

prolonged spikes? How could we also identify leads on poten-
tial sources of instability? This is exactly what we describe
below.

4.1 Clothesline Detection
There are three parts to this problem - first, finding pos-

sible clothesline values; second, identifying the time periods
of such behavior and third, locating the most common origin
ASes and prefixes in such time periods. Note that this has
to be done across multiple bin sizes b (aggregation times)
as we do not a priori know where a clothesline would exist.
(Compare Figures 2(a) and (b)).

For a given bin size, we use the median filtering approach [24]
for identifying unusually frequent update values. This in-
volves using a sliding window over the marginals plot and
plotting the median value over this window. In the resulting
plot we choose those points that are over a relative thresh-
old from the window-median line. Figure 2(b) (top) shows
the two updates found using this approach, marked by red
arrows.

Next we try to find the longest time-interval where the
number of updates are consistently above the found values
(hence, the clothesline). After a simple linear pass to do this,
we pick out those origin ASes and prefixes in such time pe-
riods who are most persistent. Hence, we first create a time
series (for only the intervals found before) corresponding
to each entity which represents the number of updates sent
for/by the entity in each time bin. The most consistent enti-
ties and therefore most likely contributing to the clothesline



(a) Bin Size 10s: Marginal Plot (top) (b) Bin Size 600s: Marginal Plot (top)
and Clotheslines Plot and Clotheslines Plot

Figure 2: Clotheslines and aggregation bin sizes (a) Bin Size 10sec (b) Bin Size 600sec. Clotheslines marked
with bold red lines (automatically discovered by BGP-lens )

would be the ones whose time series’ have the least variance.
These can now serve as an initial lead for the sysadmin. In
short the procedure is:

1. For each time bin size b=2i, derive the corresponding
marginals plot.

2. For each marginals plot use the median filtering ap-
proach to determine ‘outliers’; Rank them according
to their deviations, and pick the top N .

3. For each of the previous outliers, find the longest time-
interval from the corresponding clothesline plot.

4. For each time interval found, report the most consis-
tent IPs/ASes etc.

4.2 Prolonged Spike Detection
The problem of finding a prolonged spike can be stated as

one to find tornadoes in the scalogram which don’t ‘touch-
down’. The suspected time-period would be the scale of the
level at which the tornado stops. The entire algorithm is
shown in Algorithm 1. It outputs a set of smallest time
intervals containing the prolonged spikes.

Note that it takes in two parameters, τsens and τduration

corresponding to user sensitivity for a spike’s strength and
duration. BGP-lens, by default, is set it to 60% and 8 re-
spectively - this means that BGP-lens will report spikes

Algorithm 1 Prolonged Spike

Require: Timeseries T , τsens, τduration

1: M = Wavelet transform of T
2: len = maximum wavelet level in M
3: for l = τduration to len do
4: cmax = max(M(l, :))
5: for all coefficients c in M(l, :), c > τsens ∗ cmax do
6: intrc = time interval corresponding to c
7: best interval = find tornado(intrc, intrc, l)
8: print “Prolonged spike found in” best interval
9: end for

10: end for

– find tornado(intr, intrbest, l)

1: if l > len then
2: return intrbest

3: end if
4: cmax = max(M(l, :))
5: if ∃ only 1 coefficient c in M(l, :), c > τsens ∗ cmax then
6: intrc = time interval corresponding to c
7: return find tornado(intr, intrc, l + 1)
8: else
9: return intrbest

10: end if



(a) Synthetic: scalogram (top) (b) Real: scalogram (top)
and time-plot and time-plot

Figure 3: Time-series and their wavelet scalograms: (a) Synthetic series (b) Real series (WASH)

whose corresponding wavelet coefficients are within 60% of
the maximum and whose duration is at least 2len−8+1 (where
2len is the duration of our time series). Having spotted the
time-intervals of interest, BGP-lens must acquire all rele-
vant updates for each time interval and find the associated
heavy hitters with respect to origin ASes, prefixes etc. These
are the initial leads for a sysadmin to follow, to determine
the cause of the events.

4.3 Scalability
How scalable are our algorithms? This is a natural ques-

tion as the BGP-lens has been designed to run on large
body of updates. We have given a running time vs. number
of months of updates plot in Figure 4. It plots the running
time of our tool for discovering the top-5 anomalies versus
updates gathered in 1, 3, 6, 12, 24 months for the Washing-
ton router. The experiments were performed on commodity
hardware having two AMD Opteron dual-core 2.4GHz CPUs
(4 cores), 48G memory and the OS as Fedora Core 5. The
running time are averages over 3 runs. Clearly, we grow lin-
early - in addition, even for running over 2 years worth of
data (> 18 million updates) we take less than 4 mins. This
makes BGP-lens attractive to be deployed actively on real
networks.

5. DISCUSSION
In this section, we discuss the self-similarity of BGP-updates

and expand on our human interface design principle.

5.1 Burstiness Analysis
As we mentioned before in Section 3, tools like DFT etc.

are ill-suited to such time-series due to the inherent bursti-
ness. While analyzing this, we discovered that our time-

Figure 4: Scalability Results: Plot of Running Time
vs. Number of months of updates. Detecting top-5
anomalies.

series, is in fact, self-similar. We first give a little background
on entropy and self-similarity and then note our findings.

Entropy. There are several ways to measure self-similarity
(Hurst exponent, variance plot etc). Among them, we choose
the so-called entropy plot which is more robust and leads to
an intuitive interpretation with the b-model [26].

In more detail, the entropy plot Hs(P ) of a sequence P
is defined as the entropy Hs as a function of scale s. We
elaborate next: Let pt be the fraction of packets at time-tick
t (so that they sum up to 1). We divide the time sequence



into 2s disjoint, equal intervals, and we define s as the scale.
Let pt,s be the fraction of packets at interval t and scale s.

The entropy Hs(P ) of the time sequence P = p1, . . . , pt, . . .
at scale s is defined by Shannon’s entropy formula [20]:

Hs(P ) = −
2sX

t=0

pt,s log2 pt,s

and it clearly increases with the scale s. If our traffic is
self-similar for some range of scales (s1, s2), then the entropy
plot is linear for this range, and the slope is by definition the
information fractal dimension D1 [19].

A generator that gives self-similar sequences and linear en-
tropy plots is the so-called b-model [26]. A “b”-model with
bias parameter b generates activity recursively: If the total
number of packets is, say, N , during the full interval of ob-
servation, and b=0.8 (80-20 law), then the first half of the
time interval receives b=80% fraction of the activity, and the
second half receives the remaining 20%; and so on, recur-
sively, for the quarters, eighths, etc. Figure 5(a) illustrates
the first few steps of the recursive generation of such bursty
traffic. Figure 5(b) plots the generated traffic, with bias fac-
tor b=0.8, after 210 subdivisions. For traffic generated by a
b-model, the slope s of the entropy plot, and the bias factor
b obey the equation s = − b log2 b − (1 − b) log2(1 − b)
(see [26] for the proof).

Findings in our Data. Several network-related traffic se-
quences exhibit self-similar behavior [11]. Is this the case
here? Figure 6 repeats the time-plot and also gives the en-
tropy plot for the full sequence (Washington router, 2 years
duration, b = 600sec). We use the entropy plot that we de-
scribed earlier, and indeed we see that the plot is a straight
line with slope 0.83 (Figure 6(b)). This approximately cor-
responds to a b-model of 75-25. This motivates the need
to use a multi-resolution technique like wavelets rather than
DFT.

5.2 User Interface
As developed, BGP-lens was a series of command line

tools. In order to improve usability, we spent time designing
an admin-friendly graphical user interface. We describe the
details next and show an example screenshot (Figure 7).

BGP-lens is ready to be used without any manual config-
uration: it will scan the data at multiple thresholds using
default values, identify and rank statistical deviations, and
report them to the user in order of statistical significance.

To increase the usefulness of the tool, we also provide “ba-
sic” and “advanced” modes of operation. In more detail, our
components for identifying prolonged spikes and clotheslines
contain user knobs for better control over the exploration.
Broadly, they can be classified into ‘sensitivity’ knobs and
‘duration’ knobs. The sensitivity knobs control the num-
ber of ‘suspicious’ events that the sys-admin is willing to
look into: the higher the sensitivity, the more events we re-
turn. The duration knobs control the length of the events
that BGP-lens will check (e.g., daily versus monthly, ver-
sus yearly disturbances). The important point is that these
knobs are (a) optional and (b) they have settings like ‘low’,
‘medium’, ‘high’, thus hiding all the details of the underly-
ing algorithms.

Figure 7: BGP-lens GUI Example

6. BGP-LENS AT WORK
In this section, we demonstrate the impact that BGP-lens

can have when used as a network administration tool. First,
BGP-lens identifies phenomena that may escape the radar
of sys-admins or other monitoring tools. Second, it provide
leads as to where to look for the origin of the observed phe-
nomena.

6.1 Clotheslines
As mentioned earlier, BGP-lens detected two distinct clothes-

line phenomena, the 50-clothesline and the 100-clothesline,
both at bin size b=10 minutes. The former was observed
from approximately late-August to late-September 2005. The
latter clothesline lasted approximately 1 month, from Febru-
ary to March 2005.

Digging deeper: a success story. While simply identify-
ing an anomaly is interesting, BGP-lens goes further and
presents potential leads in the form of the origin AS(es) and
prefixes most commonly observed contributing to clothesline
effects. Table 2 indicates the AS origin and prefixes that
contributed to the periodic 50-clothesline. Note that our in-
terest is not to claim that all BGP routers see this clothesline
behavior, but the capability of the tool to identify such pe-
culiar behaviors automatically within a very large dataset.

BGP-lens pointed to the education network of the state
of Alabama (AL Supercomputer Net) as a potential source
of this phenomenon. We contacted the administrators of
the network who attributed the anomaly to changes while
transitioning address space causing IGP route flapping, so
that “the route for 207.157.115.0/24 was appearing and dis-
appearing in [the] IGP routing table ... [which] may have
caused BGP to flap.” We contacted other network adminis-
trators, but in many cases we did not get a response.

Note that this particularly anomaly shows up so strongly
using BGP-lens, but it went undetected and unresolved, de-
spite its 30 day duration, in a professionally managed net-
work. We believe that this incident highlights the need for
automated, parameter-free anomaly detection for routing
events.



(a) generation (b) synthetic data (c) entropy plot

Figure 5: Illustration of the b-model: (a) the recursive 80-20 procedure in its first three iterations (b) the
generated synthetic activity (eg., number of updates, over time) (c) its entropy plot (entropy versus scale - see
text) Because the synthetic input traffic is self-similar, the entropy plot is linear, that is, scale free. Its slope
is 0.881, much different than 1.0, which would be the uniform distribution (50-50)

(a) Time plot (b) Entropy Plot

Figure 6: Time plots are bursty. Number of updates over time for an Abilene node (WASHINGTON),
09/2004-09/2006. (a) time plot in linear-linear axes (b) entropy plot. Notice that the time-plot is bursty,
and that the entropy plot is linear, with slope 0.83, which implies self-similarity - no characteristic scales.

6.2 Prolonged Spikes
BGP-lens detects prolonged spikes in the number of BGP

update messages across multiple different time-scales as we
explained earlier. Spikes are directly related to route insta-
bility and the overall health of inter-domain routing.

We detected three examples of prolonged BGP update
spikes that would go unnoticed with most previous tech-
niques. The first spike was observed on May 12, 2006 with
a duration of approximately 5 hours. Table 3 shows the
observed number of updates and leads as to the origin AS
and prefix contributing the most update messages to the
spike. In fact, our analysis of this spike attributes the pri-
mary sources of BGP update to primary and middle schools
in the city of Guangzhou, China. Unfortunately, despite nu-
merous attempts, we did not receive a response from the the
Guangzhou network administrators.

Two more spikes were observed on January 18-19, 2006
lasting approximately 8 hours, and on August 1, 2005 last-
ing approximately 3 hours. BGP-lens provides again the
starting points of where to look for the cause of these spikes,
but the results are omitted due to space limitations.

7. CONCLUSIONS
In this paper, we develop BGP-lens, a novel, admin-friendly

tool for automatically detecting surprising patterns and anoma-
lies of BGP updates at many different scales of observation.
The key characteristics of our approach are:

1. It is effective, spotting subtle phenomena like the ‘clothes-
lines’ and ‘prolonged spikes’.

2. It is admin-friendly, requiring no parameters and pro-
viding leads to network administrators, like most fre-
quent IP addresses and paths, in the phenomenon of
interest.

3. It is scalable: All its algorithms are linear on the num-
ber of time-ticks, and thus BGP-lens can handle huge
datasets.

In addition we discover surprising aspects of the data:

• Marginals that are mixture of log-normals with a power-
law tail.

• Self-similarity corresponding to a 75-25 b-model (=
slope of 0.83 in the entropy plot).



Table 2: 50-Clothesline Results, 22-Aug to 25-Sept-
2005

Median
Origin AS #Updates Comments

4788 235 TM Net, Malaysia
3464 21 AL Supercomp. Net, US
10036 134 C&M Comm., Korea
9768 109 KT, Korea

Median
Prefixes #Updates Comments

207.157.115.0/24 14 AL Supercomp Net, US
192.211.42.0/24 14 AL Ind. Dev. Training, US
216.109.38.0/24 14 AL Supercomp. Net, US
192.94.104.0/22 14 U. of NE Medical Center

Table 3: Prolonged Spike Results, 12-May-2005

Origin AS #Updates Comments

4538 229960 CERNET, China
9406 4976 CERNET, China
23911 1516 CERNET, China

Prefixes #Updates Comments

222.200.236.0/23 1314 CERNET, China
222.203.64.0/24 1311 CERNET, China
222.202.96.0/24 1311 CERNET, China

Future work will focus on making the algorithms incremen-
tal and “any-time”, so that we can deploy it as a non-stop
monitoring tool.
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