
Understanding and Managing Propagation on Large
Networks—Theory, Algorithms, and Models

B. Aditya Prakash
CMU-CS-12-138

September 2012

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Christos Faloutsos, Chair

Roni Rosenfeld
David Andersen

Jon Kleinberg, Cornell University, Ithaca

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c� 2012 B. Aditya Prakash

This research was sponsored by ICAST, the National Science Foundation under grant numbers CNS-
0721736 and IIS-1017415, the Department of Energy/National Security Agency under grant number
DE-AC52-07NA27344, and the Army under grant number W911NF-08-R-0013.

The views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.

Keywords: data mining, graph mining, time series analysis, arbitrary networks, virus
propagation, cascades, viral marketing, contagion, memes, immunization, culprits, epi-
demic threshold, tipping-points, winner-takes-all, co-existence, eigen-drop, information
diffusion models, competing species, epidemiology, outliers, eigenvalues, NetShield,
NetSleuth, Smart-Alloc, SpikeM, CTM

:

n corhAy�m

^

n c rAjhAy�m

^

n B}At

⇥

BA>ym n c BArkArF.

&yy⇤ k

⇥

t⇤ vD�t ev En(ym

^

EvçADnm

^

sv�Dn˛DAnm

^

;

– A Sanskrit Verse

iii

iv

to
Mamma & Pappa

with love

vi

Abstract
How do contagions spread in population networks? What happens if the

networks change with time? Which hospitals should we give vaccines to, for
maximum effect? How to detect sources of rumors on Twitter/Facebook?
These questions and many others such as which group should we market
to, for maximizing product penetration, how quickly news travels in online
media and how the relative frequencies of competing tasks evolve are all
related to propagation/cascade-like phenomena on networks.

In this thesis, we present novel theory, algorithms and models for propa-
gation processes on large static and dynamic networks, focusing on:

1. Theory: We tackle several fundamental questions like determining if
there will be an epidemic, given the underlying networks and virus
propagation models and predicting who-wins when viruses (or memes
or products etc.) compete. We give a unifying answer for the threshold
based on eigenvalues, and prove the surprising winner-takes-all’ result
and other subtle phase-transitions for competition among viruses.

2. Algorithms: Based on our analysis, we give dramatically better algo-
rithms for important tasks like effective immunization and reliably de-
tecting culprits of epidemics. Thanks to our carefully designed algo-
rithms, we achieve 6x fewer infections on real hospital patient-transfer
graphs while also being significantly faster than other competitors (upto
30,000x).

3. Models: Finally using our insights, we study numerous datasets to de-
velop powerful general models for information diffusion and competing
species in a variety of situations. Our models unify earlier patterns
and results, yet being succinct and enable challenging tasks like trend
forecasting, spotting outliers and answering ‘what-if’ questions.

Our inter-disciplinary approach has led to many discoveries in this the-
sis, with broad applications spanning areas like public health, social media,
product marketing and networking. We are arguably the first to present a
systematic study of propagation and immunization of single as well as multiple
viruses on arbitrary, real and time-varying networks as the vast majority of the
literature focuses on structured topologies, cliques, and related un-realistic
models.

viii

Acknowledgements
First, I want to thank Christos Faloutsos, for being a terrific advisor, mentor and friend.
This thesis would not have been possible (or fun) without his generosity of time, keen
insights and encouragement. I am also grateful for the academic freedom he gave me to
explore challenging problems and the gentle nudges in the right direction when needed.
Before joining Carnegie Mellon University, I was told that Christos is one of the nicest
and most cheerful persons around—and over all these years, I have only been amazed at
his ability to remain effortlessly so.

I would also like to thank my thesis committee members Roni Rosenfeld, David
Andersen and Jon Kleinberg for their timely and valuable feedback and also advice
during my job-search. Getting suggestions from their different perspectives has greatly
improved the thesis.

In addition to Christos, I had an awesome set of collaborators and co-authors, each
of whom deserves my thanks: Lada Adamic, David Andersen, Alex Beutel, Deepayan
Chakrabarti, Tina Eliassi-Rad, Michalis Faloutsos, Varun Gupta, Theodore Iwashnya,
Danai Koutra, Lei Li, Sridhar Machiraju, Yasuko Matsubara, Iulian Neamtiu, Kunal
Punera, Roni Rosenfeld, Yasushi Sakurai, Mukund Seshadri, Ashwin Sridharan, Jack
Stokes, Hanghang Tong, Charalampos Tsourakakis, Nicholas Valler, Jilles Vreeken, Xue-
tao Wei and Alice Zheng. Thanks to Lada for hosting me at UMichigan, giving me
thoughtful viewpoints and thinking that I am ‘too young’ to graduate! Thanks to Roni,
for helping me get acquainted with the exciting world of epidemiology and ecology.
Thanks to Michalis for being so enthusiastic and supportive throughout my Ph.D. Thanks
to Lei and Hanghang, for many enjoyable sessions of brain-storming, when I was still a
junior student.

I would also like to thank all the members and visitors of the Database Group for
interesting discussions, fun trips and helpful feedback: Leman Akoglu, Alex Beutel,
Rishy Chandy, Polo Chau, Robson L. F. Cordeiro, Fan Guo, U Kang, Sang-Wook Kim,
Danai Koutra, Lei Li, Yasuko Matsubara, Mary McGlohon, Ippokratis Pandis, Evangelos
Papalexakis, Yasushi Sakurai, Hanghang Tong, Pedro Olmo Vaz de Melo and Jilles
Vreeken.

I learnt a lot during my various internships during the Ph.D.: thanks to Sridhar
Machiraju, Mukund Seshadri and Ashwin Sridharan (Sprint Research Labs-Burlingame),
Jack Stokes and Alice Zheng (Microsoft Research-Redmond), and Ravi Kumar, Deep-
ayan Chakrabarti and Kunal Punera (Yahoo! Research-Santa Clara) for hosting me and
collaborating on fun and interesting problems.

The Computer Science Department at Carnegie Mellon is an incredible place for
graduate students. Apart from the fantastic professors and peers, the collegial and
supportive atmosphere it provides to students is priceless. Thanks to Deborah Cavlovich,
Catherine Copetas, Karen Lindenfelser, Marilyn Walgora and Charlotte Yano, for being
so efficient and always ‘on top of things’ from countless travel re-imbursements to
important reminders, and making my Ph.D. experience all the more frictionless.

Thanks to all my friends at CMU, for all the help and memorable times we shared
in Pittsburgh. While there are too many to list everyone here (and apologies for not
attempting to do so), particular thanks to: Debabrata Dash for helping me with the
transition from India to the US; Debashis Kar, Kaushik Lakshminarayanan and Satyajeet
Ojha for being cool housemates; Vivek Seshadri for being my squash partner; Varun
Gupta, Ravishankar Krishnaswamy and Vyas Sekar for their advice especially during
my job-search; Hetunandan Kamisetty for teaching me how to drive a car; Srivatsan
Narayanan and Dafna Shahaf for helping review my papers and Pranjal Awasthi and
Ali Kemal Sinop for frequently joining me for Japanese desserts. Thanks also to all
my officemates throughout the years—especially Sumit Jha, Kanat Tangwongsan, and
Ekaterina Taralova—for making my hours at work enjoyable.

I would also like to thank all my professors and teachers from my undergraduate and
schooling days in India (at the Indian Institute of Technology-Bombay and Delhi Public
School-Bhilai), for providing me with an excellent foundational education. The summer
internships during my time as an undergraduate, with Jayant Haritsa (IISc.-Bangalore),
and Laks Lakshmanan and Raymond Ng (UBC-Vancouver), and my senior year thesis
with S. Sudarshan (IIT-Bombay) were instrumental in fostering my enthusiasm for
research. Additionally, thanks to Praveen Mone, for introducing me to the thrills and
mysterious rhythms of the Tabla.

Above all, I wish to thank my family for being there for me through both good and
difficult times: Thank you to my elder brother Kartik for setting me an example through
his efforts and his advice and also my sister-in-law Shilpa for her cheerful support. A
very special thanks to my four-legged furry friend, Munnu, for his affectionate woofs,
and agreeing to always jump in joy at seeing me. I owe my deepest gratitude to my
parents Prema and Sunder Ram Prakash, for their endless love, sacrifice, prayers and
encouragement and for giving me the strength and the belief to complete this Ph.D. They
were also the first to instill in me a respect for learning and led the way in nurturing a
motivation and curiosity to pursue science. This thesis is humbly dedicated to them.

x

Contents

1 Introduction 1

1.1 Motivation and Overview . 1
1.1.1 Thesis Statement . 2
1.1.2 [Part I] Theory: Chapters 2, 3, 4, 5 3
1.1.3 [Part II] Algorithms: Chapters 6, 7, 8, 9 5
1.1.4 [Part III] Models: Chapters 10, 11 6

1.2 Contributions and Impact . 7

I Theory 10

2 Epidemic Thresholds: Static Graphs and Arbitrary Models 12

2.1 Introduction . 12
2.2 Related Work . 14

2.2.1 Epidemic Thresholds . 14
2.2.2 Information Di↵usion . 15
2.2.3 Cyber-physical infrastructures . 15

2.3 Problem Formulation . 16
2.4 Results . 16
2.5 Proof Overview . 18

2.5.1 Our Terminology . 19
2.5.2 Our General Model . 19
2.5.3 Proof Sketch . 21

2.6 Experiments . 23
2.7 Implications . 26

2.7.1 Vulnerability of Networks–focus on eigenvalues 26
2.7.2 Counter-intuitive Results . 27

2.8 Impact . 27
2.8.1 E↵ective Immunization . 28
2.8.2 Evaluating ‘What-if’ Scenarios . 28
2.8.3 Accelerating Simulations . 28
2.8.4 Applications to Computer Networking 29

xi

2.9 Conclusion . 29
2.A Notation . 30
2.B System Equations . 30
2.C Fixed point . 32
2.D The Jacobian . 33
2.E Eigenvalues of the Jacobian . 34

2.E.1 Eigenvalues of B1 . 35
2.E.2 Eigenvalues of B3 . 36

2.F Stability . 37
2.F.1 Case C1 . 37
2.F.2 Case C2 . 37

3 Epidemic Thresholds: Time-varying Graphs 40

3.1 Introduction . 40
3.2 Related Work . 41
3.3 Problem Definitions . 41
3.4 Epidemic Threshold on Time-varying Graphs 43

3.4.1 The NLDS . 43
3.4.2 The Threshold . 44

3.5 Salient Points . 46
3.6 Experiments . 46
3.7 Discussion—Generality of our results . 48
3.8 Conclusion . 48

4 Competing Viruses: Winner Takes All 49

4.1 Introduction . 49
4.2 Related Work . 51
4.3 Problem Formulation . 51

4.3.1 The propagation model . 51
4.3.2 Problem Statement . 53

4.4 WTA: Results and Proofs . 53
4.4.1 Proof roadmap . 54
4.4.2 Special case: Clique Topology . 56
4.4.3 Special Case: Barbell Graph . 57
4.4.4 General Arbitrary Graph . 58

4.5 Experiments . 62
4.5.1 Setup . 63
4.5.2 Simulation Results . 64
4.5.3 Case-Studies using Real Data . 66

4.6 Discussion . 67
4.7 Conclusions . 68

xii

5 Competing Viruses: Co-existence 69

5.1 Introduction . 69
5.2 Related Work . 70
5.3 Problem Formulation . 71

5.3.1 The propagation model . 71
5.3.2 Problem Statement . 73
5.3.3 Model Formulation for a Clique . 73

5.4 Results and Proofs . 73
5.4.1 Formulating the problem . 73
5.4.2 Results . 74

5.5 Experiments . 78
5.5.1 Setup . 79
5.5.2 Simulation Results . 79
5.5.3 Case-Studies using Real Data . 80

5.6 Discussion . 81
5.6.1 A general upper bound . 81
5.6.2 Case-Study: Qualitative Analysis 82
5.6.3 Subtle Points . 83

5.7 Conclusions . 84

II Algorithms 86

6 Complete Node-Removal 88

6.1 Introduction . 88
6.2 Related Work . 90
6.3 Problem Definitions (Static Graphs) . 91
6.4 Background: Our Solution for Problem 1 92

6.4.1 ‘Vulnerability’ Score . 92
6.4.2 Justifications . 93

6.5 Our Solution for Problem 2 . 93
6.5.1 Proposed ‘Shield-value’ Score . 94
6.5.2 Justifications . 94

6.6 Our Solution for Problem 3 . 96
6.6.1 Preliminaries . 96
6.6.2 Proposed NetShield Algorithm 96
6.6.3 Analysis of NetShield . 97

6.7 Experimental Evaluations (Static Graphs) 99
6.7.1 Data sets . 99
6.7.2 E↵ectiveness . 100
6.7.3 E�ciency . 103

6.8 Immunization under time-varying graphs 105

xiii

6.8.1 Quality Metric . 106
6.8.2 Proposed immunization policies . 106
6.8.3 Experimental Setup . 107
6.8.4 Results . 108
6.8.5 Discussion . 109

6.9 Conclusion . 110

7 Fractional Immunization 111

7.1 Introduction . 111
7.2 Related Work . 114
7.3 Problem Formulation and Hardness result 115

7.3.1 Our proposed problem—MIN-CONN 116
7.3.2 MIN-CONN is NP-complete . 118

7.4 Proposed Method—Overview . 119
7.4.1 Algorithm Exhaustive . 119
7.4.2 Algorithm Smart-Alloc . 120

7.5 Proposed Method—Theorems and proofs 120
7.5.1 Best single allocation—Details . 120
7.5.2 Batched allocation—Details . 121

7.6 Experiments . 124
7.6.1 Setup . 124
7.6.2 E↵ectiveness for MIN-CONN problem 126
7.6.3 E↵ectiveness for MAX-HEALTH problem 126
7.6.4 Scalability . 128
7.6.5 Generality . 128

7.7 Conclusion . 129

8 General Edge Placement 130

8.1 Introduction . 130
8.2 Problem Definitions . 131
8.3 Proposed Algorithm for NetMelt . 134

8.3.1 Edge Deletion vs. Node Deletion 134
8.3.2 Proposed K-EdgeDeletion Algorithm 136
8.3.3 Proofs and Analysis . 137

8.4 Proposed Algorithm for NetGel . 138
8.4.1 Proposed K-EdgeAddition Algorithm 138
8.4.2 Proofs and Analysis . 139

8.5 Experimental Evaluations . 140
8.5.1 Experimental Setup . 141
8.5.2 E↵ectiveness of K-EdgeDeletion 141
8.5.3 E↵ectiveness of K-EdgeAddition 144
8.5.4 Scalability . 146

xiv

8.6 Related Work . 147
8.7 Conclusion . 147

9 Finding Culprits 150

9.1 Introduction . 150
9.2 Preliminaries . 152

9.2.1 Notation . 153
9.2.2 The Susceptible-Infected Model . 153
9.2.3 Minimum Description Length Principle 154

9.3 Our Problem Formulation . 154
9.3.1 Cost of the Model . 154
9.3.2 Cost of the Data given the Model 155
9.3.3 The Problem . 157

9.4 Proposed Method . 157
9.4.1 Best seed-set given number of seeds — ‘Exoneration’ 157
9.4.2 Finding best single seed—Our Main Idea 158
9.4.3 Finding the best single seed—Justification 158
9.4.4 Finding best k-seed set . 162
9.4.5 Finding a good ripple . 162

9.5 Experiments . 164
9.5.1 Experimental Setup . 164
9.5.2 E↵ectiveness of NetSleuth in identifying How Many 166
9.5.3 E↵ectiveness of NetSleuth in identifying Which Ones 166
9.5.4 Scalability . 167

9.6 Related Work . 168
9.7 Conclusions . 168

III Models 169

10 Rise and Fall in Information Di↵usion 171

10.1 Introduction . 171
10.2 Background . 174
10.3 Proposed Method . 175

10.3.1 Base model - SpikeM-BASE . 176
10.3.2 With periodicity - SpikeM . 178
10.3.3 Additional details . 179

10.4 Experiments . 179
10.4.1 Q1: Explaining K-SC clusters . 181
10.4.2 Q2: Matching MemeTracker patterns 182
10.4.3 Q3: Matching other data . 184
10.4.4 Q4: Tail-part forecasts . 185

xv

10.5 Discussion - SpikeM at work . 185
10.5.1 “What-if” forecasting . 185
10.5.2 Outlier detection . 187
10.5.3 Reverse engineering . 187

10.6 Related Work . 188
10.7 Conclusions . 189

11 Patterns amongst Competing Tasks 190

11.1 Introduction . 190
11.2 Competing Tasks Model (CTM) . 192

11.2.1 Justification . 193
11.3 Experiments . 194

11.3.1 CTM at Work . 194
11.4 Related Work . 196
11.5 Conclusions . 196

IV Conclusion 198

12 Conclusions and Future Directions 199

12.1 Summary of contributions . 199
12.2 Vision and Future directions . 201

12.2.1 Long Term Challenges . 201

xvi

Chapter 1

Introduction

This thesis involves the study of propagation processes on large graphs. Will a specific
YouTube video go viral? Given a who-contacts-whom network and a virus propagation
model, can we predict whether there will be an epidemic? Which are the best nodes
(people, computers etc.) to immunize, to slow down and prevent an epidemic as soon
as possible? Such problems are central in surprisingly diverse areas: from cyber security,
epidemiology and public health, product marketing to information dissemination. Answering
these questions involves the study of aggregated dynamics over complex connectivity
patterns. The proliferation of Internet and Web 2.0 and social networks like Facebook,
Twitter, Flickr etc. coupled with more biological data and simulations has afforded the
opportunity to study dynamical processes on a scale unimaginable before. Understand-
ing such processes will eventually enable us to manipulate them for our benefit e.g., a
better understanding of the dynamics of epidemic spreading over graphs allows us to
devise more robust policies for immunization. Social-network websites like Facebook
count more than 900 Million users and 1 Billion US Dollars in revenue. Hospital-acquired
infections take more than 99 thousand lives and cost more than 5 Billion US Dollars per
year. The societal impact of networked-collaboration during political events like ‘Arab
Spring’ have also been well-documented. Hence research in this area, helping us answer
questions like how information spreads through social media, and how to distribute a
given amount of resource like antibiotics across hospitals, holds great scientific, social as
well as commercial value.

This thesis gives new theory, better algorithms and improved models for propagation
processes on large real-world networks. The next section gives an overview of the thesis,
after which we present a summary of the major contributions.

1.1 Motivation and Overview

Graphs—also known as networks—are powerful tools for modeling processes and situ-
ations of interest in real-life like social-systems, cyber-security, epidemiology, biology
etc. They are ubiquitous, from online social networks, gene-regulatory networks, to

1

router graphs. They effectively model a wide range of phenomena, as they expose
local-dependencies and capture large-scale structure at the same time. For example,
online social networks have become essential for marketing, collaborative action; gene-
regulatory networks help in understanding the inner workings of the cell; modeling
traffic on AS-router graphs helps us design a more efficient Internet. In addition, dynam-
ical processes1 over them can give rise to astonishing macroscopic behavior, leading to
challenging and exciting research problems. How do contagions spread in population
networks? Which group should we market to, for maximizing product penetration? How
stable is a predator-prey ecosystem, given intricate food webs? How do rumors spread
on Twitter/Facebook? Questions such as how blackouts can spread on a nationwide
scale, or how social systems evolve on the basis of individual interactions, are all also
related to dynamical phenomena on networks. ‘Big-Data’ is a natural and necessary part
of research in this sphere. Although the actions of a particular individual or component
may be too difficult to model, data mining, and machine learning can be applied to
large groups or ensembles, which can yield effective models with the ability to predict
future events. For example, modeling the behavior of every individual to a marketing
strategy might be too difficult, but modeling the behavior of large and groups of people
based on demographics and geography is feasible. Hence, we can try to answer even
more complex issues using these models e.g., How should we distribute resources to
control an epidemic? And these policies have to be designed in a way that they can be
implemented on an extremely large-scale.

This thesis tackle several natural and fundamental problems in epidemic-style propa-
gation (like, say ‘word-of-mouth’ viral marketing) on large real graphs. In addition, due
to the sheer reach of the problems, an inter-disciplinary approach is vital here—this thesis
involves work with collaborators spanning social media, medicine and public health,
mobile and internet networking and online services and operations. Our research has
been inherently multi-pronged combining:

I (Theory) Analyzing theoretical models of propagation processes
II (Algorithms) Developing scalable algorithms to manage the processes

III (Models) Using massive datasets to make better models
Thus this thesis essentially breaks down into three parts, each of which we summarize

in the next few subsections. We want to highlight that these parts are all symbiotic and
closely related. For example, once we collect and learn models of a disease from real-
data, we can predict its tipping point (through analysis) and subsequently leverage it for
immunization (increase the tipping point as much as possible).

1.1.1 Thesis Statement
Substantially better algorithms can be designed for cascade management and immu-
nization through careful and novel analysis of virus propagation models.

1Intuitively, where the state (or action) of an agent depends on the states (actions) of its neighbors.

2

More specifically, we systematically analyze fundamental epidemic models in a variety
of situations (static/dynamic graphs, single/multiple viruses) to better understand the
effect of graph topology on various propagation processes (like epidemic thresholds)
and subsequently leverage our results to carefully design better algorithms for many
tasks like immunization (like SMART-ALLOC). Finally, using our insights, we build better
models for describing propagation scenarios (like SPIKEM) to match real data.

1.1.2 [Part I] Theory: Chapters 2, 3, 4, 5

This part of the thesis is devoted to gaining a deeper understanding of abstract epidemic
models. Models help us abstract out the process and allow us to reason more generally
about them. In this part, we tackled important questions like understanding the tipping
point behavior of epidemics, predicting who-wins among competing viruses/products,
which have immediate and broad applications, like selecting targets for advertising
and marketing and selecting people to inoculate to stop an epidemic. In contrast to
previous work, our analysis focuses on arbitrary underlying graphs, leading to more
readily applicable results.

Chapter 2 (Epidemic thresholds for static graphs): The main question we answer is:
will there be an epidemic, given the graph and the virus propagation model? We
show (see Theorem 2.1) that the threshold condition is (�1 is the first eigenvalue of the
connectivity matrix, C is a virus-model dependent constant):

�1 · C < 1,

for (a) any graph; and (b) all propagation models in standard literature (more than 25
from canonical texts, including the AIDS virus H.I.V.). Our result de-couples the effect of
the topology and the virus model, and also unifies and subsumes older results, which
mostly focused on special graphs or virus models. We are the first to show the epidemic
threshold on arbitrary graphs and almost any virus propagation model. Our discovery
has broad implications and applications like faster epidemiological simulations and blog
cascades (like the award-winning Independent Cascade model is a special case of our
generalization).

Chapter 3 (Epidemic thresholds for dynamic graphs): Social-contacts are not constant,
and therefore it is more realistic to have graphs which change with time (say, day vs. night
connectivity). While static graphs have been studied for a long time, with numerous
analytical results, time-evolving networks are so hard to analyze, that most existing
works are simulation studies. Most existing works are simulation studies, as propagation
models on time-evolving networks are so hard to analyze. We show that the epidemic
threshold of the “flu-like” SIS model on any set of time-varying, arbitrary graphs depends
only on the largest eigenvalue of a so-called ‘system’ matrix (see Theorem 3.1).

3

(a) (b)

Figure 1.1: The tipping-point exactly matches our prediction: simulation results on a massive
social-contact graph PORTLAND (31 mil. edges, 1.5 mil. nodes) and the SIRS model (temporary
immunity like pertussis). (a) Plot of Infected Fraction of Population vs Time (log-log). Note the
qualitative difference in behavior- under (green) the threshold and above (red) the threshold. (b)
Footprint (expected final epidemic size) vs Effective Strength (lin-log). Notice our prediction is
exactly at the take-off point.

Chapter 4 (Mutually exclusive competing viruses): In this chapter, we shift our focus
to competing viruses spreading over networks. Given two competing products such as
iPhone/Android, and ‘word of mouth’ adoption of them, what will happen in the end?
Will they split the market, in proportion to their quality? i.e. which product will ’win’, in
terms of highest market share? This question is of interest in numerous other settings too,
e.g., the common flu versus avian flu, competing memes, theories and so on. One may
naïvely expect that the better product (stronger virus) will just have a larger footprint,
proportional to the quality ratio of the products (or strength ratio of the viruses). We
prove the surprising result (see Theorem 4.1) that, under realistic conditions, for any
graph, the stronger virus completely wipes-out the weaker virus (‘winner-takes-all’). We
demonstrate it through case-studies using real data too.

Chapter 5 (Co-existence with competing viruses): Following from the previous chap-
ter, a natural question is to understand what happens when the competing viruses are
not mutually exclusive? For example, using one web-browser (say I.E.) does not au-
tomatically imply not using the other (say Chrome). We show (see Theorem 5.1) that
there is a phase-transition: if the competition is harsher than a critical threshold, then
‘winner-takes-all’, otherwise, the weaker virus survives. Our contributions [BPRF12]
include the problem definition (which is unique even in epidemiological literature), and
experiments on real-data demonstrating our result.

4

1.1.3 [Part II] Algorithms: Chapters 6, 7, 8, 9

This part of the thesis is devoted to developing fast and effective algorithms for a variety
of tasks w.r.t. propagation: immunization, edge-placement and finding culprits of epi-
demics. Such problems naturally arise in epidemiology (‘vaccination programs’), social
media (‘detecting rumor sources’) and cyber security (‘designing worms’). Interestingly,
our previous work on thresholds in various settings above give a clear guideline for
controlling (harmful viruses) or speeding-up (product marketing) propagation via net-
work manipulation: minimize (or maximize) the leading eigenvalue of a suitable matrix
(adjacency matrix in case of static graphs; the so-called system matrix in case of dynamic
graphs). This is in contrast to previous work, where complex optimization functions
were used. Unfortunately, we also prove that our problems are computationally hard
(NP-complete). We exploit the task-specific structure to get fast (linear-time in edges and
the budget) and accurate algorithms, substantially improving the state-of-the-art.

Chapter 6 (Immunization as node-removal): Given a large network, like a computer
communication network, which k nodes should we remove (or monitor, or immunize),
to make it as robust as possible against a computer virus attack? Making careful approx-
imations, we exploit the submodular structure of the set of possible solutions, getting
a provably near-optimal algorithm NETSHIELD (see Algorithm 1), which outperforms
many methods by more than 7 orders of magnitude in running time, and competitors
like the well-known acquaintance immunization in quality of solutions. A similar ques-
tion arises in case of viral propagation over time-varying dynamic graphs. We develop
fast heuristics for complete immunization in case of time-varying graphs as well and
demonstrated their effectiveness (see Section 6.8).

Chapter 7 (Fractional Immunization): Given a fixed amount of medicines with partial
impact, how should they be distributed? Collaborating with domain experts at UMichi-
gan, we studied controlling the spread of bacteria between hospitals through patient
transfers, by distributing scarce infection-control resources (which only have partial
impact on any hospital). it is NP-complete, and develop SMART-ALLOC, a near-optimal
and fast algorithm. SMART-ALLOC runs in seconds on commodity hardware, as opposed
to weeks required for other approaches. Most importantly, when applied on real hospi-
tal patient-transfer networks like US-MEDICARE, it results in 6 times fewer infections.
Figure 1.2 illustrates our results (each resource roughly halved the susceptibility of a
hospital and the same amount (200) were distributed).

Chapter 8 (General Edge-placement): Which people should be introduced to each
other, to maximize the spread of a crucial piece of information? Which people should
be ‘un-friended’ to contain dissemination of malware over Facebook? We study the
edge-placement problem: which edges should we add or delete in order to speed-up
or contain a dissemination? For addition of edges, things are even more challenging

5

(a) US-MEDICARE Inter-
hospital Connections

(b) Infected Hospitals (in red)
under current practice

(c) Infected Hospitals (in red)
under our SMART-ALLOC

Figure 1.2: Our proposed SMART-ALLOC method has 6x fewer infections (red circles): (a) The
US-MEDICARE network of hospitals overlayed on a map (b) Infected hospitals after a year (365
days) under current practice. (c) Similarly, under SMART-ALLOC. The current practice allocates
equal amounts of resource to each hospital.

because of its intrinsic quadratic time complexity. We propose effective and near linear-time
algorithms to solve these problems. We also study the two problems and our methods
theoretically, the accuracy and complexity of our methods, and the equivalence between
different strategies (edge vs. node-deletion). To the best of our knowledge, we are the
first to study the edge-placement problem.

Chapter 9 (Finding culprits of epidemics): Can we identify sources of rumors on Twit-
ter? Or given a snapshot of a large graph, in which an infection has been spreading for
some time, can we reliably identify those nodes (both in number and identity) from which
the infection started to spread? In this chapter we answer this question affirmatively,
and give an efficient method called NETSLEUTH for the well-known Susceptible-Infected
virus propagation model, which automatically finds out both the number and identity of
the seeds which best-describe the epidemic. Experimentation on our method [PVF12]
shows high accuracy in the detection of seed nodes, in addition to the correct automatic
identification of their number. Moreover, we show NETSLEUTH scales linearly in the
number of nodes of the graph, in contrast to existing methods.

1.1.4 [Part III] Models: Chapters 10, 11

In this part, we study numerous real-datasets to build better models in domains such
as propagation of memes in online media and competing tasks in everyday life. We
also show, as a bonus, how to use such models for varied challenging applications like
forecasting trends activity and spotting outliers like telemarketers.

Chapter 10 (Rise and fall patterns): While models in epidemiology have been widely
studied and accepted, the models describing exactly how information diffuses in online

6

media is uncertain. Here we ask a very simple question: How quickly does a piece of
news spread over these media? How does its popularity diminish over time? Does the
rising and falling pattern follow a simple universal law? We propose SPIKEM [MSP+12], a
concise yet flexible model, which generalizes and unifies previous models and observations,
and excels at challenging tasks like forecasting, spotting anomalies etc. We show the power
of SPIKEM through the analysis of more than 7.2GB of real data.

150 200 250 300
0

20

40

60

80

Time (per week)

V
a
lu

e

July 15, 2009
"Harry Potter and

the Half−Blood Prince"

November 19 , 2010
"Deathly Hallows part 1" July 15, 2011

"Deathly Hallows part 2"

Figure 1.3: SPIKEM at work: Results of “what-if” forecasting for the Harry Potter series. We
trained parameters by using (a) the first spike around July 15, 2009 (black solid line), and (b)
access volume two months before the release (blue lines with double arrows around time n = 250,
280) and then, forecasted the following two spikes (red lines).

Chapter 11 (Competing Tasks): If Alice has double the friends of Bob, will she also
have double the phone-calls (or wall-postings, or tweets)? Analyzing data containing
millions of users, we show that the answer to the question is a power-law: sub-linear, or
super-linear, for a wide variety of diverse settings: tasks in a phone-call network, like
count of friends, count of phone-calls, total count of minutes; tasks in a twitter-like
network, like count of tweets, count of followees etc. Additionally, based on competing
species theories, we give a simple “competing tasks” model (CTM), that leads exactly
to power-law relationships between task-frequencies, and show how to use it to spot
telemarketers.

1.2 Contributions and Impact

We give the major contributions and impact of the work in this thesis next. We are
arguably the first to present a systematic study of propagation and immunization of
single as well as multiple viruses on arbitrary, real and time-varying networks as the vast

7

majority of the literature focuses on structured topologies, cliques, and related un-realistic
models.

Theory
• Eigenvalues for Epidemic Threshold: We are the first to show the epidemic thresh-

old on arbitrary graphs and almost any virus propagation model. Our eigenvalue
result generalizes and unifies previous results and has broad implications and
applications like faster epidemiological simulations. We also derive the first closed
formula for any set of arbitrary time-varying graphs. In contrast, most past work
has used simulations.

• Winner-Takes-All for Competing Viruses: We are the first to prove for arbitrary
graphs that winner-takes-all in competing viruses/products. Additionally, we
extend this problem to mutually-interacting viruses to show a phase-transition.

? Impact: Our paper on epidemic thresholds on static graphs [PCF+11] was selected
for one of the best papers of the conference. Our results have been used to enable
other important tasks like anomaly detection and graph modeling [AMF10], and
immunization (see Part II of this thesis). They are also being incorporated into
FRED, an epidemiological simulator developed by MIDAS.

Algorithms
• Dramatically better Immunization: Our algorithms such as NETSHIELD and

SMART-ALLOC solve the complete and fractional immunization problems respec-
tively, achieving significant savings. NETSHIELD outperformed many methods by
more than 7 orders of magnitude in running time, and competitors like the well-
known acquaintance immunization in quality of solutions. Additionally, on real
hospital patient-transfer networks like US-MEDICARE, SMART-ALLOC achieves
up to 6x fewer infections and 30,000x speed-up, over current practice and ad-hoc
heuristics. In contrast, the current practice in control of highly resistant organisms
via patient transfers has been largely focused within individual hospitals.

• Parameter-free Culprits detection: Our algorithm NETSLEUTH is the first linear-
time algorithm (in edges and nodes) for both identifying the set of culprits for which
best describes a given snapshot of the epidemic and for automatically selecting the
best number of seed nodes—in contrast to the state of the art (which are at least
quadratic, and require the number of seeds as input).

? Impact: Our results and algorithms have been incorporated into undergraduate
courses (UPitt Summer Program) and slides sought-after for graduate courses
(Xifeng Yan, UCSB) in universities, and have appeared in ACM Crossroads.

Models
• Unifying models for online diffusion: We develop SPIKEM, a powerful model

8

to explain the rise and fall patterns of information diffusion which unifies and
includes earlier patterns and models, is succint, matches behavior of numerous
real datasets and can be used to forecast, answer ‘what-if’ scenarios and even
reverse-engineer epidemics.

• Explaining power-laws in competing tasks: We develop CTM, an intuitive model
to explain the prevalence of super-linear relationships between the frequencies of
various competing tasks observed in real-datasets, and use it to spot outliers like
telemarketers.

9

Part I

Theory

10

Overview

This part deals with the analysis of epidemic-like models on networks. We answer two
main questions here:

• Epidemic Thresholds: Given a network of who-contacts-whom or who-links-
to-whom, will a contagious virus (or product or meme) spread and ‘take-over’
(cause an epidemic) or die-out quickly? What will change if nodes have partial,
temporary or permanent immunity? The epidemic threshold is the minimum level
of virulence to prevent a viral contagion from dying out quickly and determining it
is a fundamental question in epidemiology and related areas. For the static graphs,
we show that the threshold condition is (�1 is the first eigenvalue of the connectivity
matrix, C is a virus-model dependent constant): �1 · C < 1, for (a) any graph; and
(b) all propagation models in standard literature (more than 25 from canonical texts,
including the AIDS virus H.I.V.). Additionally, for any set of arbitrary time-varying
graphs, we show that the threshold depends only on the largest eigenvalue of a
so-called ‘system’ matrix.

• Competing Viruses: Given two competing products such as iPhone/Android, and
‘word of mouth’ adoption of them, what will happen in the end? Will they split
the market, in proportion to their quality? We prove the surprising result that,
under realistic conditions, for any graph, the stronger virus completely wipes-out
the weaker virus (winner-takes-all). Further, we extend this analysis for viruses
interacting more subtly and prove the existence of a phase transition for co-existence.
We demonstrate these results through case-studies using real data too.

These are natural and fundamental questions, and our results in this part have broad
applications, like faster epidemiological simulations, better immunization algorithms
and prediction (some of which we will see also in the subsequent parts of this thesis).

11

Chapter 2

Epidemic Thresholds: Static Graphs and
Arbitrary Models

Given a network of who-contacts-whom or who-links-to-whom, will a contagious virus
(or product or meme) spread and ‘take-over’ (cause an epidemic) or die-out quickly?
What will change if nodes have partial, temporary or permanent immunity? The epi-
demic threshold is the minimum level of virulence to prevent a viral contagion from
dying out quickly and determining it is a fundamental question in epidemiology and
related areas. Networks with lower thresholds are susceptible to weak contagions. Con-
versely, raising the threshold (e.g., through immunization), protects the network against
attacks. Most earlier work focuses either on special types of graphs or on specific epi-
demiological/cascade models. In this chapter, we are the first to show the G2-threshold
(twice generalized) theorem, which nicely de-couples the effect of the topology and the
virus model. Our result unifies and includes as special case older results and shows
that the threshold depends on the first eigenvalue of the connectivity matrix, (a) for any
graph and (b) for all propagation models in standard literature (more than 25, including
H.I.V.).

Our discovery has broad implications for the vulnerability of real, complex networks,
and numerous applications, including viral marketing, blog dynamics, influence prop-
agation, easy answers to ‘what-if’ questions, and simplified design and evaluation of
immunization policies. We also demonstrate our result using extensive simulations on
real networks, including on one of the biggest available social-contact graphs containing
more than 31 million interactions among more than 1 million people representing the city
of Portland, Oregon, USA.

2.1 Introduction

Given a social or computer network, where the links represent who has the potential to
infect whom, what can we say about its epidemic threshold? That is, can we determine

12

Figure 2.1: Qualitatively different infection time-series curves (Fraction of Infected population vs
Time) for the SIRS model (temporary immunity, like pertussis) on a large contact-network. What
is the condition that separates the two regimes - red (epidemic) vs green (extinction)?

whether a small infection can ‘take-off’ and create an epidemic? What will change if the
nodes have permanent, temporary or no immunity? Both the underlying contact-network
(or the population structure) and the particular cascade (propagation) model should
intuitively play an important role in the spread of contagions (viruses/memes/products).
Finding the epidemic threshold for an arbitrary network is an important and funda-
mental question in epidemiology and related areas. For instance, Figure 2.1 shows
the simulation output after running the SIRS model (Susceptible-Infectious-Recovered-
Susceptible which models diseases with temporary immunity like pertussis) on a large
contact-network for different values of the virulence of the virus (achieved by tuning
the parameters of the model). We can clearly see two different regimes - the fast die-out
green regime and the steady-state epidemic red regime. This chapter deals with finding
the condition which separates these two regimes in SIRS, as well as in all other virus
propagation models in standard literature [Het00, EK10], on arbitrary contact-networks.

Much of previous work focuses on either special types of graphs (typically cliques [KW93],
block-structure and hierarchical graphs [HY84] and random power-law graphs [PSV01])
or on specific epidemiological models [CWW+08]. We unify and include as special-case
older results in two orthogonal directions and show:

• De-coupling: the threshold condition separates the effect of topology and the virus
model,

• Arbitrary Topology: the threshold depends on the first eigenvalue of the connectivity
matrix,

• Arbitrary VPM: the threshold depends on one constant that completely characterizes
the virus propagation model (VPM)

Our result has numerous applications and immediate implications (see § 2.8) including
easy answers to ‘what-if’ questions and simplified design and evaluation of immu-
nization policies. Moreover, a variety of dynamic processes on graphs are modeled like
epidemic spreading and hence our result applies to many of them. For example, the linear-
cascade model [KKT03] is essentially the SIR model (Susceptible-Infected-Recovered,
models chicken pox, see Figure 2.2 (left inset) for state diagram); also, so-called threshold
models (like Granovetter’s model [Gra78]) in sociology are similar in reality to cascade

13

models [DW04]. In contrast to harmful viruses, the propagation of some contagions may
in fact be desirable e.g., dissemination of a product or an idea in a network of individuals.
For example, the Bass model [Bas69] fits product adoption data using parameters for
pricing and marketing effects. However it ignores topology; it simply assumes that all
adopters have equal probability of influencing non-adopters. Instead, using our result, a
more refined picture can be constructed of when a product gains massive adoption on a
social network (equivalent to an “epidemic”).

Several VPMs have direct applications in modeling computer and email viruses [Kle07,
HMM03]. In these cases, more so than the biological ones, it is easier to get the entire
underlying network. Hence our threshold results can be used to make the network more
robust by “immunizing" a few carefully chosen computers in the network (like installing
a firewall on them). Another application is the efficient spreading of software patches
over a computer network. The patches behave like computer worms [VGKG08] and can
help defend against other malicious worms. Given full knowledge of the router-network
involved, we can then estimate how “infectious” the patch-worm has to be (say by
increasing the number of probes for possible hosts before dying out) to at least initiate an
“epidemic” w.r.t. the patch. Additionally, we can help determine the vulnerability and
consequently the cost of not patching parts of the network. Various epidemic models
have also been used to model blog cascades which can now be applied to arbitrary
graphs e.g., to study the propagation of memes through blogs [LBK09].

The rest of the chapter is organized as follows: we first give the related work in § 2.2,
then formulate the problem (§ 2.3) and state our main result (§ 2.4), give a proof roadmap
and example (§ 2.5) and then show simulation experiments (§ 2.6) to demonstrate the
result. We discuss the broad implications and many applications of the result in § 2.7
and § 2.8. We then conclude (§ 2.9) and finally give a detailed proof in the Appendix.

2.2 Related Work

We review related work here, which can be categorized into three parts: epidemic
thresholds, information diffusion and cyber-physical infrastructures. None of these
works generalize in two directions: for arbitrary propagation models and arbitrary
networks.

2.2.1 Epidemic Thresholds

Canonical texts for epidemiology include [AM91, Het00]. The most widely-studied
epidemiological models include the so-called homogeneous models (for example, the SIR
model was introduced by McKendrick in the 1920’s [McK25]), which assume that every
individual has equal contact to others in the population and that the rate of infection
is determined by the density of the infected population. Kephart and White [KW93]
were among the first to propose epidemiology-based models (the KW model) to analyze

14

the propagation of computer viruses on homogeneous networks. However, there is
overwhelming evidence that real networks including social networks, router and AS
networks [FFF99] etc. follow a power law structure instead. Pastor-Satorras and Vespig-
nani [PSV01] studied viral propagation for random power-law networks, and showed
low or non-existent epidemic thresholds, meaning that even an agent with extremely
low infectivity could propagate and persist in the network. They use the “mean-field”
approach, where all graphs with a given degree distribution are considered equal. There
is no particular reason why all such graphs should behave similarly in terms of viral
propagation. In a recent work, Castellano and Pastor-Satorras [CPS10] empirically argue
that some special family of random power-law graphs have a non-vanishing threshold
under the SIR model in the limit of infinite size, but provide no theoretical justification.

Newman [New05a, New02] mapped the SIR model to a percolation problem on a net-
work and studied thresholds for multiple competing viruses on special random graphs.
Finally, Chakrabarti et.al. [CWW+08] and Ganesh et.al [GMT05] gave the threshold for
the SIS model on arbitrary undirected networks. Hence, none of the earlier work focuses
on epidemic thresholds for arbitrary virus propagation models on arbitrary, real graphs.

2.2.2 Information Diffusion

There is a lot of research interest in studying dynamic processes on large graphs,
(a) blogs and propagations [GGLNT04, KNRT03, KKT03, RD02], (b) information cas-
cades [BHW92, GLM01, Gra78, GRLK10, ZWF+11] and (c) marketing and product pen-
etration [Rog03, LAH06]. Competitive cascades have been studied in [PBS10, PBRF12].
Various optimization problems have also been studied on such processes like influ-
ence maximization [KKT03, CWW10, SKOM12] and finding effectors [LTGM10]. These
dynamic processes are all closely related to virus propagation, with many directly
based on epidemiological models [Bas69, KKT03] e.g., the award-winning linear-cascade
model [KKT03] is a special case of our model : specifically it is essentially a SIR model
with � = 1 and all our results carry through.

2.2.3 Cyber-physical infrastructures

Cascade models have also been applied to real-world networks to understand network
robustness in cyber-physical infrastructures, i.e., the ability of a network to continue
it’s function in light of failures. The exact nature of a network’s “function” varies from
network-to-network and is typically determined during their design phase. Models
related to the spread of disease–similar to those modeled herein–have been used to
analyze the robustness of networks against node failures, for instance, see Chakrabarti et
al. [CLF+07]. Another such work is Buldyrev et al. [BPP+10], which explores cascading
failures in coupled power and data networks. Their model is based on a percolation
model common in statistical physics, and can be shown equivalent to the SIR model we
describe later in the chapter.

15

Table 2.1: Common Terminology

Term Definition

VPM virus-propagation model
NLDS non-linear discrete-time dynamical system

� attack/transmission probability over a contact-link
� healing probability once infected
� immunization-loss probability once recovered (in SIRS) or vigilant (in

SIV, SEIV)
✏ virus-maturation probability once exposed hence, 1 - ✏ is the virus-

incubation probability
✓ direct-immunization probability when susceptible
A adjacency matrix of the underlying undirected contact-network
N number of nodes in the network
�1 largest (in magnitude) eigenvalue of A
s effective strength of a epidemic model on a graph with adjacency matrix

A

2.3 Problem Formulation

Table 2.1 and Table 2.2 list common terminology and describe some of the epidemic
models we will be using in the work. We use the term ‘cascade model’ and ‘virus
propagation model’ interchangeably. We next state formally the problem we address in
this chapter:
Problem 2.1. Epidemic Threshold
Given: A undirected unweighted graph G, and a virus propagation model (VPM) and its

parameters (e.g., � and � for SIR).
Find: A condition under which will an infection will die out and not cause an epidemic on the

graph.

2.4 Results

The epidemic threshold is usually defined as the minimum level of virulence to prevent
a viral contagion from dying out quickly [AM91, Het00, BBV10, Kle07]. In order to
standardize the discussion of threshold results, we express the threshold in terms of the
normalized effective strength, s, of a virus which is a function of the particular propagation
model and the particular underlying contact-network. So we are ‘above threshold’ when
s > 1, ‘under threshold’ when s < 1 and the threshold or the tipping point is reached
when s = 1. The effective strength s can be thought of as the basic reproduction number
R0 frequently used in epidemiology [Het00, AM91]. It (s) is then very roughly, the “net"

16

Table 2.2: Some Virus Propagation Models (VPMs)

Model Description

SIS ‘susceptible, infected, susceptible’ VPM - no immunity, like flu
SIR ‘susceptible, infected, recovered’ VPM - life-time immunity, like mumps

SIRS VPM with temporary immunity
SIV ‘susceptible, infected, vigilant’ VPM - immunization/vigilance with

temporary immunity
SEIR ‘susceptible, exposed, infected, recovered’ VPM - life-time immunity

and virus incubation
SEIV VPM with vigilance/immunization with temporary immunity and

virus incubation

generalized R0 for the virus model and an arbitrary graph and is the quantity which
determines the tipping point of an infection over a contact-network. Our main result is:

Theorem 2.1 (G2-threshold theorem). For any virus propagation model (satisfying our general
initial assumptions; see Section 2.5 for details) operating on an arbitrary undirected graph with
adjacency matrix A and largest eigenvalue �1, the virus will get wiped out if:

s < 1 (2.1)

where, s (the effective strength) is:
s = �1 · CVPM (2.2)

and CVPM is an explicit constant dependent on the virus propagation model. Hence, the tipping
point is reached when s = 1.

Proof. We give a roadmap in the next section and a detailed proof in the Appendix.

Firstly, note that our result separates out the effect of the network and the VPM.
Secondly, our result subsumes older results on (a) contact-networks, and (b) VPMs as
special cases. Results on contact-networks like cliques (everybody contacts everybody
else: �1 = N- 1, N is the number of nodes in the graph), random Erdős-Rényi graphs
with expected degree d (�1 = d), ‘homogeneous’ graphs [KW93], power-law/scale-
free graphs [PSV01], structured hierarchical (near-block-diagonal) topologies [HY84]
(people within a community contact all others in this community, with a few cross-
community contacts) etc. are special cases. Likewise, all standard virus propagation
models [Het00, EK10] are specific instantiations of the generalized model used in our
theorem (see Figure 2.2; more later).

Table 2.3 lists a few of our threshold expressions after applying our result on some
standard epidemic models. The popular models listed include SIS (no immunity, like flu,

17

Table 2.3: Threshold Results for Some Models.

Models Effective Strength (s) Threshold (tipping point)

SIS, SIR, SIRS, SEIR s = �1·
⇣
�
�

⌘

s = 1SIV, SEIV s = �1·
⇣

��
�(�+✓)

⌘

SI1I2V1V2 (⇠ H.I.V.) s = �1·
⇣
�1v2+�2✏
v2(✏+v1)

⌘

SIS (susceptible/infected/susceptible) has no immunity (like flu), SIR (susceptible/infected/recovered)
has permanent immunity (like mumps), SIRS has temporary immunity (like pertussis) while
SEIR (susceptible/exposed/infected/recovered) has additional virus incubation and SI1I2V1V2 has
been used to model some H.I.V. infections [2]. SEIV and SIV are two useful generalizations. �
is the attack/transmission probability over a contact link, � is the healing probability, � is the
immunization-loss probability, (1 - ✏) is the virus incubation probability and ✓ is the direct-
immunization probability when susceptible (see Figure 2). Our result is a general one and these
models just highlight its ready applicability to standard VPMs in use.

Susceptible-Infected-Susceptible), SIR (permanent immunity, like mumps, Susceptible-
Infected-Recovered), SIRS (temporary immunity, like pertussis), SEIR (virus incubation
in addition to permanent immunity) etc. (note that models like SI inherently don’t have
an epidemic threshold as all nodes will eventually get infected on any graph - hence our
work doesn’t apply to them).

Table 2.3 also lists our SEIV model (Susceptible-Exposed-Infected-Vigilant) which
itself generalizes almost all models from [Het00] (SIS with ✏ = 1,� = 1, ✓ = 0; SIR with
✏ = 1,� = 0, ✓ = 0; SIRS with ✏ = 1, ✓ = 0 and so on). Using our proof, we get that
the effective strength for SEIV is s = �1 · ��

�(✓+�) (as before the virus dies out if s < 1).
Note that this implies that increasing � (the attack probability) strengthens the virus. At
the same time, decreasing the healing probability � also strengthens the virus. Finally,
decreasing ✓ (the direct immunization probability) and increasing � (the immunization
loss probability) also makes the virus stronger. All of these fit with intuition - in fact,
the usefulness of our result is partly in enabling us to see these complex effects on the
virus strength very clearly. We discuss some subtler implications later in Section 2.7. We
discuss our terminology, general model and proof sketch next.

2.5 Proof Overview

We first construct a generalized model (S*I2V*- arbitrary number of susceptible and
vigilant states, two infectious states) that is powerful enough to generalize all the prac-
tical VPMs (and more) and satisfies our very general assumptions, while still being

18

mathematically tractable (Figure 2.2). We then approximate our general model using a
discrete time non-linear dynamical system and transform the tipping point question into
a stability problem of the dynamical system at an appropriate equilibrium point. We
give the overview and roadmap here. As mentioned before, the full proof can be found
in the Appendix.

2.5.1 Our Terminology

Note that any VPM has some states and the choice of which states to include in a model
depends on the particular contagion characteristics. Yet, we can think of every model as
having states essentially in any of the following fundamental broad classes:

1. Susceptible Class: Nodes in such a state can get infected by any neighboring node
(in the contact-network) who is infectious.

2. Infected Class: In a state of this class, the node is infectious in the sense that it is
capable of transmitting the infection to its neighbors. Note that each such state will
have a transmissibility parameter (e.g., � in the SIR model for the infectious state
I). Thus this can include models with transmissibility parameter = 0 i.e. they are
‘exposed’ but not infectious (e.g., the E state in the SEIR model is a state which is in
the Infected class in the sense that it can potentially cause infections but is not by
itself infectious).

3. Vigilant/Vaccinated Class: Nodes in any of the states in this class cannot get infected
nor can they potentially cause infections. States like R in SIR (the recovered/died
state where the node gets permanent immunity/dies and hence does not partic-
ipate in the epidemic further), M in MSIR (the passive immune state), etc. are
conceptually of the Vigilant type.

2.5.2 Our General Model

Using our terminology above, we can now describe the generalized model we used in
Theorem 2.1: S*I2V* (arbitrary number of susceptible and vigilant states, two infectious
states). As our general characterization, S*I2V*is powerful enough to seamlessly capture
all the practical models (and more) like SIS, SIR, SIRS, SEIR, SERIS, MSIR, MSEIR
etc. [Het00, EK10], including H.I.V. [AM91], while being tractable enough to yield simple
threshold equations. Figure 2.2 shows the state diagram under S*I2V*for a node in
the contact-network together with the assumptions on the transitions. The red-curvy
arrow indicates exogenous (graph-based) transition caused by infectious neighboring
nodes while all other transitions are endogenous, caused by the node itself with some
probability. We have shown only cross-class transitions and their types. We make two
assumptions:

19

S1 S2 . . .

‘Susceptible’

I1 I2

‘Infected’

V1 V2 . . .

‘Vigilant’
S E

I

V

�

✓�

✏

�

S I

R

�

�

Endogenous
Transitions

Exogenous Transitions
(depends on neighbors)

Endogenous
Transitions

Endogenous
Transitions

Figure 2.2: State Diagram for a node in the graph in our generalized model S*I2V*- it is not a
simple Markov chain. There are three classes (types) of states - Susceptible (healthy but can
get infected), Infected (capable of transmission) and Vigilant (healthy and can’t get infected).
Within-class transitions not shown for clarity. Red-curvy arrow indicates exogenous i.e. graph-
based transition affected only by the neighbors of the node, all other transitions are endogenous
(caused by the node itself with some probability at every time step). (Left Inset) Special case:
Transition diagram for the SIR (Susceptible-Infected-Recovered) model. (Right Inset) Another
special case: Transition diagram for the SEIV (E stands for exposed but not infectious) model.
SEIV itself generalizes almost all models from [Het00] (SIS with ✏ = 1,� = 1, ✓ = 0; SIR with
✏ = 1,� = 0, ✓ = 0; SIRS with ✏ = 1, ✓ = 0 and so on).

20

1. Infection through Neighbors: The only way to get infected is through your neighbors
i.e. there is no path to a state in the Infected class from a state in the Susceptible
class composed solely of endogenous transitions.

2. Starting Infected State: For the few models that have more than one infectious state,
any exogenous (graph-based) transition always results in a transition from a state
in the Susceptible class to the I1 state. Note that this assumption is trivially obeyed
for a vast majority of models (with only one infected state).

Figure 2.2 (Left Inset) shows the popular SIR model as an instantiation of our general
model S*I2V*. Also, Figure 2.2 (Right Inset) shows an instantiation in the form of our
SEIV model (Susceptible-Exposed-Infected-Vigilant).Figure 2.3 shows the generalization
hierarchy for some common epidemic models and our main generalization S*I2V*. The
brown colored nodes denote standard VPMs found in literature while the blue colored
nodes denote our generalizations. Each VPM is a generalization of all the models below
it e.g., SIV is a generalization of SIRS, SIR and SIS.

2.5.3 Proof Sketch

We define the vector P̃
t

such that it specifies the state of the system at time t; the exact
definition will differ from model to model but it effectively encodes the probability
of each node in the graph of being in any given state at time t. Suppose the virus-
propagation model has m (s1, s2, . . . , s

m

) states (e.g., m = 3 for the SIR model with states
s1 = S, s2 = I and s3 = R) and it operates on a graph of N nodes. Consider then a column
vector P̃

t

2 <m·N⇥1, which captures the probability of each node being in any of m states
at a given time t. Specifically:

P̃
t

= [P
s1,1,t,P

s1,2,t, . . . ,P
s1,N,t,P

s2,1,t, . . . ,P
s

m

,N,t]
T (2.3)

where, P
s

i

,j,t is the probability that node j is in state s
i

at time t. A Non-Linear Dynamical
System (NLDS) can be represented by P̃

t+1 = g(P̃
t

) where g is some non-linear function
operating on a vector. The function g in our case is large and complicated. The NLDS
equation essentially tracks the evolution of the vector P̃

t

over time. An equilibrium point
(also called a fixed point) of the system is the state vector (i.e. some particular P̃) which
does not change. Thus at the equilibrium point P̃

t+1 = P̃
t

= x̃. Intuitively, the tipping
point for any model then deals with analyzing the stability of the corresponding NLDS
at the point when none of the nodes in the graph are infected, because otherwise the
infection can still spread. If the equilibrium is unstable, a small “perturbation” (physically
in the form of a few initial nodes getting infected) will push the system further away
(which physically means more and more nodes will get infected leading to an epidemic).
But if the equilibrium is stable, the system will try to come back to the fixed point without
going “too-far” away, in effect, “controlling the damage”. At threshold, the tendencies
to go further away and come-back will be the same. In other words, the equilibrium is
stable below the threshold and is neutral at the tipping point. From dynamical-system

21

S*I2V*

.

MSEIV

MSEIR

SEIV

SEIR

SIV

SIRS

SIR SIS

SEIS

MSEIS

.

Figure 2.3: Virus Propagation model hierarchy (actually, lattice) for some standard models
including SIRS (temporary immunity), SIV (vigilance, i.e., pro-active vaccination); SEIV (includes
the ‘exposed but not infectious’ state, and temporary vigilance); MSEIR (with the passive immune
state M); and our main generalization S*I2V*. The brown colored nodes denote standard VPMs
found in literature while the blue colored nodes denote our generalizations. Each VPM is a
generalization of all the models below it.

22

literature, we know how to relate the stability of the system at the equilibrium point to
the spectrum of the Jacobian matrix at that point (i.e. 5g(x̃)). We eventually reduced the
requirement on the eigenvalues of5g(x̃) for any virus propagation model to a simple
condition on the eigenvalue of the adjacency matrix. This condition translates into the
effective strength of the virus under the model. The reason we can reduce the condition
to one on the adjacency matrix is due to the special structure of the virus models, which
was captured by the S*I2V*model described before. See the Appendix for the full proof.

2.6 Experiments

We performed computer simulation experiments on two large networks topologies, to
demonstrate our result. All the different virus propagation models were implemented as
a discrete event simulation in C++. We ran each simulation for 1000 time ticks and took
the average of 100 runs. Initially, 10 nodes were infected with the virus and we then let
the propagation take over according to the particular model. The datasets we used were:

1. AS-OREGON: This network represents the Internet’s Autonomous System (AS)
connectivity derived from public data sets collected by the Oregon Route Views
project1. It contains 15,420 links among 3,995 AS peers. The Oregon graph is
relevant to studying the robustness of router networks to worm attacks [LZZ+03].
More information can be found from http://topology.eecs.umich.edu/
data.html.

2. PORTLAND: It is one of the biggest available physical contact graphs, representing
a synthetic population of the city of Portland, Oregon, USA [NDS07].It is a social-
contact graph containing more than 31 mil. links (interactions) among about 1.6 mil.
nodes (people). The data set is based on detailed microscopic simulation-based
modeling and integration techniques and has been used in modeling studies on
smallpox outbreaks as well as policy making at the national level [EGAK+04].

Figures 2.4 and 2.5 illustrate our result via simulation experiments on PORTLAND and
AS-OREGON respectively. Above threshold, note the steady-state behavior in SEIV and
the initial explosive phase and eventual decay in SIR and SEIR (because the number of
susceptible nodes decrease monotonically). Also note the initial ‘flat’ period in the time
plots for above threshold for the models having the exposed (E) state, SEIR and SEIV.
This is due to the virus incubation period because of which there is an initial delay in
number of infected nodes. This then results in an initial ‘silent’ period after which the
epidemic takes-off. As there is no such incubation period in SIR and SIRS, their plots do
not show such silent periods.

In contrast, under threshold, the number of infections aggressively goes down to
zero in all the models. In addition, as our result predicts, the precise point when the
footprint of infection suddenly jumps in all models is at s = 1. The footprint measures the

1The University of Oregon Route Views Project. http://www.routeviews.org

23

http://topology.eecs.umich.edu/data.html
http://topology.eecs.umich.edu/data.html

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.4: Simulation Results on the PORTLAND graph, all values averages over 100 runs.
(a),(c),(e),(g) Plot of Infective Fraction of Population vs Time (log-log) for SIR, SEIR, SIRS and
SEIV models. Note the qualitative difference in behavior- two curves under (green) the threshold
and two curves above (red) the threshold. (b),(d),(f),(h) “Take-off" plots, Footprint (see Section 2.6)
vs Effective Strength (lin-log) for SIR, SEIR, SIRS and SEIV models. The tipping point exactly
matches our prediction (s = 1) in all cases.

24

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.5: Simulation Results on the AS-OREGON graph, all values averages over 100 runs.
(a),(c),(e),(g) Plot of Infective Fraction of Population vs Time (log-log) for SIR, SEIR, SIRS and
SEIV models. Note the qualitative difference in behavior- two curves under (green) the threshold
and two curves above (red) the threshold. (b),(d),(f),(h) “Take-off" plots, Footprint (see Section 2.6)
vs Effective Strength (lin-log) for SIR, SEIR, SIRS and SEIV models. The tipping point exactly
matches our prediction (s = 1) in all cases.

25

(a)Chain(�1 = 1.73) (b)Star(�1 = 2) (c)Clique(�1 = 4)

Increasing �1

Figure 2.6: Why �1 matters more than number of edges E: changing connectivity and vulnerability
of graphs with changing �1. The clique (largest �1) is the most vulnerable. Note that E is not
enough: star and chain have the same number of edges (E = 4) but the star is intuitively more
vulnerable, as our result also says (it has a higher �1).

extent of infection: For models with a steady-state behavior (SIS/SIRS), it is defined as
the maximum number of infections at any instant till we reach steady state. For models
with monotonous decrease of susceptibles (and hence without a steady state, SIR/SEIR),
footprint is the final number of cured/removed nodes from the network at the end of the
infection. Figures 2.4 b, d, f, h and 2.5 b, d, f, h also demonstrate the simplicity and power
of our result.the only variable we need for determining the epidemic threshold of the
whole system consisting of multiple parameters is the effective strength (s = �1 · CVPM

),
nothing else.

2.7 Implications

We first discuss some direct implications of the G2-threshold theorem: the vulnerability
of graphs to epidemics and some unexpected results in specific models.

2.7.1 Vulnerability of Networks–focus on eigenvalues

What exactly does the result mean w.r.t. the graph? Intuitively, �1 (also known as the
spectral radius) of a graph captures the connectivity of the graph. More connected the
graph is, more vulnerable it is to an epidemic by a virus (see Figure 2.6). Our threshold
results suggest that an arbitrary graph behaves in the same way to a �1-regular graph
(both will have the same �1). The entire dynamics of the epidemic may not be captured
by �1 completely, but the threshold is solely dependent on �1 (apart from parameters of the
VPM). By making the relation between the graph and threshold explicit, our result has
many consequences for the vulnerability of real, complex networks as well. For example,
our result explains the observed vulnerability of ‘small-world’ networks [WS98]: their
�1 is relatively high compared to a regular graph with the same number of nodes and
edges, due to the presence of shortcuts. Also, previous results have shown that the
epidemic threshold for the SIS model in case of random scale-free networks like the

26

(a) (b)

Figure 2.7: Counter-intuitive results - neither Incubation rate ✏ or Immunity-loss rate affects the
threshold. (a) ‘Take-off’ plot for the SEIR model (a special case of SEIV) on the PORTLAND graph
(lin-log scale). All three curves are on top of each other. (b) ‘Take-off’ plot for the SIRS model
(a special case of SEIV) on the PORTLAND graph (lin-log scale) - higher means more infections
(increasing with the loss of immunization �). Note that in both the cases it does not affect the
threshold (the tipping point is still at effective strength s = 1). All values are averages over 100
runs.

Internet is vanishingly small as the size N of the network increases [PSV01, AJB00].
This is a corollary of our result: When a power-law graph grows (N!1), the largest
eigenvalue grows with the maximum degree [CLV03], which also grows to infinity, and
thus the threshold approaches zero.

2.7.2 Counter-intuitive Results

Apart from the dependence of the threshold on �1, it is instructive to note unexpected re-
sults in some specific models. The SEIR, SIRS and SEIV models serve well to demonstrate
the effect of virus-incubation and direct-immunization. See Figure 2.7. The threshold in
SEIR surprisingly does not depend on the virus-incubation probability: the parameter ✏,
in effect, only delays/speeds-up the achievement of the threshold, not what the threshold
itself is. Similarly, the threshold in SIRS does not depend on �. Also, from the threshold
equation of SEIV (Table 2.3), we can infer that lowering the rate of loss of immunity i.e.
having a smaller � (say due to better hygiene) decreases the effective strength s (and
makes it harder for the virus to cause an epidemic) only so long as there is a mechanism
to give a node direct immunity i.e. having a non-zero ✓ (say by using a vaccine) before an
infection (in the Susceptible state) instead of after (in the Recovered state). Satisfyingly,
this fits well with the old adage ‘Prevention is better than Cure’.

2.8 Impact

Our results can be fundamental to a wide-range of applications. We mentioned broader
impact in § 2.1 before. Here we briefly discuss some immediate applications in epidemi-

27

ology and cyber-physical infrastructures.

2.8.1 Effective Immunization

Given the linear dependence on �1 of our threshold, we can propose a simple immuniza-
tion goal. For any virus, remove (immunize) those nodes whose removal will decrease
the �1 value the most (so that the resultant infection falls below threshold and dies out)
e.g., immunize teachers and kindergarten children first to control the epidemic. A lot
of work targets immunizing high-degree nodes in scale-free networks [CHbA03] which,
while a good idea, is not optimal: just concentrating on high-degree nodes will miss
those low-degree nodes which are good “bridges” and can have an important influence
on decreasing �1 when immunized. For example, intuitively, the sole common friend
between two disparate yet internally well-connected groups (like say between scientists
and movie celebrities) can have a huge impact in the outbreak of a disease even if (s)he
knows only a few people in each community.

2.8.2 Evaluating ‘What-if’ Scenarios

Our result can also help quickly determine the result of plausible situations e.g., is there
a danger of an epidemic if the virus is twice (or half) as infectious (virulent)? This can
then feed into policy decisions for controlling epidemics, like imposing restrictions on
travel so as to not increase the �1. Policy makers can assume any graph model which
best captures the contact behavior of the population and still use our threshold result to
guide immunization policies.

2.8.3 Accelerating Simulations

Similarly, we can considerably simplify expensive epidemiological simulations as well.
For example, running a typical simulation with one set of parameters of a flu epidemic
on a population of size 33 million (⇠ size of the state of California) takes about 2 days on
a cluster of 50 machines [BBE+08]. Using our result, we can eliminate parameters which
do not affect the effective strength of the contagion and also quickly identify parameter
spaces where simulations would be useful (i.e. above threshold). Clearly, the main task
of such a testing will be eigenvalue computations. For this purpose, there are already
very efficient algorithms like Lanczos for sparse graphs which take 2-5 mins for networks
of millions. Moreover, structured topologies like cliques, block-diagonal matrices lend
themselves to even faster eigenvalue computations, making it very easy to apply our
result to real world simulations.

28

2.8.4 Applications to Computer Networking

As mentioned in Section 2.2, the epidemic threshold can be applied to a number of
network robustness scenarios in cyber-physical infrastructures. For example, the Kadem-
lia DHT [MM02] is used in a number of P2P networks–such as BitTorrent–to form a
decentralized P2P overlay and lookup table. In particular, Mainline BitTorrent [(We11] im-
plements a version of Kademlia as an alternative to the typical centralized tracker.When
a BitTorrent user queries the system for a particular torrent file, it is the DHT’s respon-
sibility to return the torrent file (i.e., BitTorrent swarm bootstrap information). Hence,
using our result, the network overlay structure of the DHT–in particular, it’s eigenvalue–
may be used to evaluate the data replication necessary to guarantee the torrent file is
reachable.

2.9 Conclusion

In summary, we studied the problem of determining the epidemic threshold given the
virus propagation model and an underlying arbitrary undirected unweighted graph.
Intuitively, the answer should depend both on the graph and the propagation model.
Earlier results have focused on either special cases of graphs or special models. In this
chapter, we give a formula for the epidemic threshold which shows:

1. De-coupling: The effect of the topology and the propagation model on the threshold
is clearly de-coupled,

2. Arbitrary Topology: The effect of the undirected underlying topology is determined
only by �1 (the largest eigenvalue of the adjacency matrix),

3. Arbitrary VPM: The effect of the virus propagation model is determined by a model
dependent constant.

Thus, all previous epidemic threshold results are specific instantiations of our G2-
threshold theorem. Our results can be used for forecasting and estimations in ‘what-if’
scenarios, for control and manipulation of propagation and related dynamical processes
(immunization, marketing policies etc.). Moreover, our result can be easily extended to
handle even more elaborate settings such as (a) time-varying topologies (extending the
SIS-only results of [BBE+08, PTV+10]), and (b) multiple competing diseases (extending
the random power-law-graphs-only results of [New05a]).

APPENDIX

We give the full proof of Theorem 2.1 here.

29

2.A Notation

Recall that we are dealing with the S*I2V* generalized model - it has two states I1 and I2

in the Infected class. To simplify notation, we refer to state I1 as E (the ‘infection entrance
state’) and I2 as the I state in the proofs. The state E has a transmission probability of
�1 and the state I has a transmission probability of �2. The states E and I here should
be thought as to mean general infected states of our model and not in the sense of the
specific E and I states in epidemic models like SEIR, SEIV etc. We also refer to the exoge-
nous transitions as graph-based and endogenous transitions as internal interchangeably.
Table 2.4 gives some of the additional notation we will be using in our description of the
proof.

Table 2.4: Additional Notation and Symbols used in the proofs

Symbol Definition

m total number of states in the model
q total number of states in the Susceptible and Vigilant classes of the model;

hence m = q+ 2
w total number of states in the Susceptible class of the model
S1,S2, . . . ,S

w

general states in the Susceptible class
E, I general states in the Infected class
↵
KU

probability (constant and given) of transition from state K to state U

�1 transmission probability for state E

�2 transmission probability for state I

⇣
i,t(E, I) probability that a node i does not receive any infections from E and I at time t

x̃ the fixed point vector our NLDS corresponding to when no node is in any of
the Infected class states

p⇤
S

y

(same for each node) probability of being present in the S
y

state at x̃
J Jacobian matrix of the NLDS computed at x̃

2.B System Equations

We can develop the system equations i.e. explicitly specify the non-linear function g for
the NLDS based on the transition diagram of the model. As stated earlier in Section 2.5.2
we assume that infections are received only from infected neighbors i.e. those in states
E and I the Infected class of states. Firstly, let’s calculate the probability that a node i
does not receive any infections in the next time step (call it ⇣

i,t(E, I), E, I denotes that an
infection is passed only from a neighbor in the E or I states). No infections are transmitted
if:

• Either a neighbor is not any of the infected states E and I

30

• Or it is in state E and the transmission fails with probability 1 - �1
• Or it is in state I and the transmission fails with probability 1 - �2

Since we assume infinitesimally small time steps (�t! 0), multiple events can be ignored
for first-order effects in the time step. Also, assuming the neighbors are independent, we
get:

⇣
i,t(E, I) =

Y

j2NE(i)

(P
E,j,t(1 - �1) + P

I,j,t(1 - �2) + (1 - P
E,j,t - P

I,j,t))

=
Y

j2{1..N}

(1 - A
i,j(�1PE,j,t + �2PI,j,t)) (2.4)

where NE(i) is the set of neighbors of node i in the graph.
Also, the sum of probabilities of being in all the possible states for each node i should

equal 1. Hence,
8
i,t

X

K

P
K,i,t = 1 (2.5)

We can now write down the system equations as follows. A node i will be in any
particular state S

y

of the Susceptible class at time t+ 1 if:

• Either it was in S
y

at time t and stayed in state S
y

i.e. it did not receive any
infections from its neighbors and it did not change state internally from S

y

to any
other state

• Or it was in some other state U and changed state internally from U to S
y

Hence, the probability of node i being in S
y

where S
y

is any state in the Susceptible
class at time t+ 1 is:

8y = 1, 2, . . . ,w P
S

y

,i,t+1 =
X

K 6=S

y

↵
KS

y

P
K,i,t + P

S

y

,i,t

0

@⇣
i,t(E, I)-

X

K 6=E,S
y

,I

↵
S

y

K

1

A (2.6)

Similarly, for the E state:

P
E,i,t+1 =

X

K6=S1,S2,...,S
w

↵
KE

P
K,i,t +

wX

y=1

P
S

y

,i,t (1 - ⇣
i,t(E, I)) (2.7)

and for any other state U 6= {S1,S2, . . . ,S
w

,E}:

P
U,i,t+1 =

X

K

↵
KU

P
K,i,t (2.8)

As discussed earlier (Equation 2.3), we can now define a probability vector P̃
t

by
“stacking” all these probabilities which will completely describe the system at any time
t and evolve according to the above equations. Note that the above equations are
non-linear and naturally define the function g for the NLDS P̃

t+1 = g(P̃
t

).
We have the following theorem about NLDS stability at a fixed point:

31

Theorem 2.2 (Asymptotic Stability, e.g., see [HS74]). The system given by P̃
t+1 = g(P̃

t

) is
asymptotically stable at an equilibrium point P̃ = x̃, if the eigenvalues of J = 5g(x̃) are less than
1 in absolute value, where,

J
i,j = [5g(x̃)]

i,j =
@g

i

@g
j

|P̃=x̃

Hence, next we compute the fixed point we are interested in and the Jacobian of our
NLDS at that point.

2.C Fixed point

Figure 2.8: State Diagram for any node in the graph at the fixed point when no node is present
in a state in the Infected class. Only cross-class edges are shown. Note that it is now a simple
Markov chain with a unique steady state probability.

We are interested in the stability of the equilibrium point (i.e. where P̃
t+1 = P̃

t

(= x̃))
of the NLDS which corresponds to when no one is infected. Only the transition from
the Susceptible class states towards the Infected class states are graph-based (and can
happen only when at least one of the nodes is in any of the Infected states), so the
state-diagram for each node will be a simple Markov chain (call it MC

SV

) consisting of
the Susceptible and Vigilant states (see Figure 2.8). Note now there are no graph-based
effects, hence each node is independent of others and will converge to steady state
probabilities corresponding to the Markov chain. The steady state vector ⇡⇤ (size q⇥ 1,
where q is the number of states in the Susceptible and Vigilant classes) which will be

32

the same for each node can be computed from the following equations from standard
Markov chain analysis:

⇡⇤T Tran
MC

SV

= ⇡⇤ &
qX

i=1

⇡⇤
i

= 1 (2.9)

Hence ⇡⇤ is a probability vector and is the left eigenvector corresponding to eigen-
value 1 of the stochastic matrix Tran

MC

SV

of the Markov chain MC
SV

. The full (m⇥ 1)
probability vector p̃⇤ for each node at this steady state will have the entries in ⇡⇤ for
states in the Susceptible and Vigilant classes and 0 for all states in the Infected class. The
fixed point of the global original NLDS x̃ can be finally represented as:

x̃ =

2

6664

p̃⇤

p̃⇤

...
p̃⇤

3

7775 (2.10)

where p̃⇤ is repeated N times (once for each node in the graph). Let p⇤
S

y

be the steady
state probability value in the vector p̃⇤ corresponding to the S

y

state. In other words,
each node will have a probability of p⇤

S

of being present in the S
y

state at the fixed point.
Also define,

p⇤
S

=
wX

y=1

p⇤
S

y

(2.11)

i.e. p⇤
S

is the total probability of each node at the fixed point of being present in any of
the states of the Susceptible class.

2.D The Jacobian

We know from Theorem 2.2 that x̃ is stable if the eigenvalues of J = 5g(x̃) are less than 1
in absolute value. From the definition of J we can see that it is a m ·N⇥m ·N matrix
with m (for each state) square blocks of size N⇥N each (corresponding to every node in
the graph). We can calculate J to be (states have been mentioned on the top and side for
ease of exposition and I is the identity matrix of size N⇥N):

33

S
y

K . . . E I

S
y

(1 -
P

K 6=S

y

,E ↵S

y

K

)I ↵
KS

y

I . . . ↵
ES

y

I - p⇤
S

y

�1A ↵
IS

y

I - p⇤
S

�2A
... . . .

U ↵
S

y

U

I ↵
KU

I . . . ↵
EU

I ↵
IU

I
... . . .

E ↵
S

y

E

I ↵
KE

I . . . ↵
EE

I + p⇤
S

�1A ↵
IE

I + p⇤
S

�2A

I ↵
S

y

I

I ↵
KI

I . . . ↵
EI

I ↵
II

I

where K is any state 6= {E, I} and U is any state 6= {S1,S2, . . . ,S
w

,E, I}.
Recall the properties we are assuming for the epidemic models discussed in Sec-

tion 2.5.2 (also see Figure 2.2). Crucially, they imply 8
K 6=E,I ↵KE

= 0 and 8
K 6=E,I ↵KI

= 0.
Hence J reduces to:

S
y

K . . . E I

S
y

(1 -
P

K 6=S

y

,E ↵S

y

K

)I ↵
KS

y

I . . . ↵
ES

y

I - p⇤
S

y

�1A ↵
IS

y

I - p⇤
S

�2A
... . . .

U ↵
S

y

U

I ↵
KU

I . . . ↵
EU

I ↵
IU

I
... . . .

E 0
N,N 0

N,N . . . ↵
EE

I + p⇤
S

�1A ↵
IE

I + p⇤
S

�2A

I 0
N,N 0

N,N . . . ↵
EI

I ↵
II

I

where 0
N,N is a N⇥N matrix with all zeros.

2.E Eigenvalues of the Jacobian

Note that J is very structured and can be written as:

J =

B1 B2

02N,(m-2)N B3

�
(2.12)

where B1, B2 and B3 are matrices of size (m - 2)N ⇥ (m - 2)N, (m - 2)N ⇥ 2N and
2N⇥ 2N respectively. B3 corresponds to the E and I rows and columns of J i.e.:

B3 =

↵
EE

I + p⇤
S

�1A ↵
IE

I + p⇤
S

�2A
↵
EI

I ↵
II

I

�
(2.13)

34

B1 and B2 are defined similarly. Consider any eigenvector ṽ (size mN ⇥ 1) and corre-
sponding eigenvalue �J of J. We can write ṽ as being composed of vector ṽ1 of size
(m- 2)N⇥ 1 and vector ṽ2 of size 2N⇥ 1 i.e:

ṽ =

ṽ1

ṽ2

�
(2.14)

Also x̃ and �J satisfy the eigenvalue equation:

Jṽ = �Jṽ (2.15)

Substituting from Equations 2.12 and 2.14 we get:

B1 B2

0 B3

�
ṽ1

ṽ2

�
= �J

ṽ1

ṽ2

�
(2.16)

Equation 2.16 implies the following the two relations:

B1ṽ1 + B2ṽ2 = �Jṽ1 (2.17)
B3ṽ2 = �Jṽ2 (2.18)

From Equation 2.18 we can infer that precisely one of the following holds:

1. ṽ2 = 0̃
2. ṽ2 is the eigenvector of B3 (and consequently �J is the matching eigenvalue of B3)

If ṽ2 = 0̃, Equation 2.17 reduces to

B1ṽ1 = �Jṽ1

wherein again, either ṽ1 = 0̃ or �J is an eigenvalue of B1. The condition ṽ1 = 0̃ is not
meaningful as then ṽ = 0̃ (ṽ is an eigenvector of J implies ṽ is non-zero). Therefore the
eigenvalues of J are given by the eigenvalues of B1 (with ṽ2 = 0̃) and the eigenvalues of
B3.

2.E.1 Eigenvalues of B1

From the expression for J derived in Section 2.D, note that:

B1 = T⌦ I (2.19)

where ⌦ is the Kronecker product of two matrices and

T =

2

66664

(1 -
P

K 6=S

y

,E ↵S

y

K

) ↵
KS

y

. . .
...

...
...

↵
S

y

U

↵
KU

. . .
...

3

77775
(2.20)

We know from matrix algebra [HJ91] that if C = D ⌦ E then C
�

= D
�

⌦ E
�

, where
C

�

denotes a diagonal matrix with eigenvalues of the matrix C on the diagonal. But
I
�

= I, hence the eigenvalues of B1 are the same as the eigenvalues of T (although with
repetition). In other words, eigenvalues of T are eigenvalues of J as well.

35

2.E.2 Eigenvalues of B3

Let ũ =

ũ1

ũ2

�
be a corresponding eigenvector of B3 (ũ1 and ũ2 are of size N⇥ 1 each and

as the eigenvalues of B3 are also eigenvalues of J, we use �J for an eigenvalue of B3).
Hence, the standard eigenvalue relation B3ũ = �Jũ requires the following equations to
be satisfied:

(↵
EE

I + p⇤
S

�1A)ũ1 + (↵
IE

I + p⇤
S

�2A)ũ2 = �Jũ1 (2.21)
↵
EI

ũ1 + ↵
II

ũ2 = �Jũ2 (2.22)

Using Equation 2.22, we can compute ũ1 in terms of ũ2 as:

ũ1 =

✓
�J - ↵

II

↵
EI

◆
ũ2 (2.23)

Substituting it back into Equation 2.21 we get:
✓
(↵

EE

I + p⇤
S

�1A)

✓
�J - ↵

II

↵
EI

◆
+ ↵

IE

I + p⇤
S

�2A
◆

ũ2 = �J

✓
�J - ↵

II

↵
EI

◆
ũ2

) (↵
EE

(�J - ↵
II

)I + ↵
IE

↵
EI

I + (p⇤
S

�1(�J - ↵
II

) + p⇤
S

�2↵EI

)A) ũ2 = �J(�J - ↵
II

)ũ2

which finally gives,

Aũ2 =

✓
�2
J - (↵

II

+ ↵
EE

)�J + ↵
II

↵
EE

- ↵
IE

↵
EI

p⇤
S

�1(�J - ↵
II

) + p⇤
S

�2↵EI

◆
ũ2 (2.24)

Again, Equation 2.24 tells us that either ũ2 = 0̃ or it is an eigenvector for A. But
ũ2 = 0̃) ũ1 = 0̃) ũ = 0̃ which is not possible. Thus Equation 2.24 is an eigenvalue
equation for the adjacency matrix A and we are looking for solutions �J and ũ2 such that
they satisfy it. Hence,

�A =
�2
J - (↵

II

+ ↵
EE

)�J + ↵
II

↵
EE

- ↵
IE

↵
EI

p⇤
S

�1(�J - ↵
II

) + p⇤
S

�2↵EI

where �A is an eigenvalue of A. This finally gives

�2
J - �J(↵EE

+ ↵
II

+ p⇤
S

�1�A) + (↵
II

↵
EE

- ↵
IE

↵
EI

+ p⇤
S

�A(�1↵II

- �2↵EI

)) = 0 (2.25)

Thus we have a different quadratic equation (Q.E.) for each eigenvalue �A of A. Each
Q.E. gives us two eigenvalues (possibly repeated) of J.

So, finally, we can conclude the following lemma:

Lemma 2.1 (Eigenvalues of J). Eigenvalues of J are given by the eigenvalues of T (Equa-
tions 2.19 and 2.20) and the roots of the Q.Es given by Equation 2.25 for each eigenvalue �A of
A.

36

2.F Stability

We require that all the eigenvalues of J to be less than 1 in absolute value (according to
Theorem 2.2). From Lemma 2.1, we have two cases to handle in enforcing this:

(C1) All the eigenvalues of T should be less than 1 in absolute value
(C2) All the roots of the Q.Es given by Equation 2.25 for each eigenvalue �A of A should

be less than 1 in absolute value

2.F.1 Case C1

Note that this case depends only on the model as the matrix T is independent of the
adjacency matrix A. But T is a stochastic matrix i.e. all the column sums are equal to 1 -
consequently all its eigenvalues are less than 1 in absolute value.

Lemma 2.2 (Stability C1). All eigenvalues of the matrix T (given by Equation 2.20) are less
than 1 in absolute value.

2.F.2 Case C2

As C1 is always true, we need to only ensure case C2. We can prove here the following:

Lemma 2.3 (Stability C2). All the roots of the Q.Es given by Equation 2.25 for each eigenvalue
�A of A are less than 1 in absolute value if:

�1p
⇤
S

✓
�1(1 - ↵

II

) + �2↵EI

(1 - ↵
II

)(1 - ↵
EE

)- ↵
IE

↵
EI

◆
< 1

Proof Let r1 and r2 be the roots of Equation 2.25 (r1 and r2 can be real or complex
depending on �A). Then we want

|r1| < 1 and |r2| < 1

r1 and r2 are real As the roots are real, �A is such that the discriminant D of the
quadratic equation is greater than zero. In this situation:

|r1| < 1 and |r2| < 1) r1 2 (-1, 1) and r2 2 (-1, 1) (2.26)

From the theory of quadratic equations, it is well known (see e.g., [Mil63]) that for
real roots x1 and x2 of a Q.E. f(x) = ax2 + bx+ c (with a > 0) to lie in the interval (-1, 1)
the following conditions must be true:

a- c > 0,
a- b+ c > 0,
a+ b+ c > 0.

37

Intuitively, the first condition forces the product of the roots to be less than 1 while the
last two conditions state that value of f(x) at -1 and 1 should not be “too small”. In our
case, these then translate into:

↵
II

↵
EE

- ↵
IE

↵
EI

+ p⇤
S

�A(�1↵II

- �2↵EI

) < 1 (2.27a)
1 + ↵

EE

+ ↵
II

+ p⇤
S

�1�A + ↵
II

↵
EE

- ↵
IE

↵
EI

+ p⇤
S

�A(�1↵II

- �2↵EI

) > 0 (2.27b)
1 - ↵

EE

- ↵
II

- p⇤
S

�1�A + ↵
II

↵
EE

- ↵
IE

↵
EI

+ p⇤
S

�A(�1↵II

- �2↵EI

) > 0 (2.27c)

Equations 2.27b and 2.27c can be written as:

�Ap
⇤
S

✓
-�1(1 + ↵

II

) + �2↵EI

(1 + ↵
II

)(1 + ↵
EE

)- ↵
IE

↵
EI

◆
< 1 (2.28a)

�Ap
⇤
S

✓
�1(1 - ↵

II

) + �2↵EI

(1 - ↵
II

)(1 - ↵
EE

)- ↵
IE

↵
EI

◆
< 1 (2.28b)

respectively. The above equations should be true for any eigenvalue �A of A which
makes D > 0. Recall that we are considering only undirected graphs, hence A is a
symmetric binary (0/1) square irreducible matrix. As a result firstly, all its eigenvalues
are real. Secondly, from the Perron-Frobenius theorem [McC00] the algebraically largest
eigenvalue �1 of A is a positive real number and also has the largest magnitude among
all eigenvalues. Hence if the above equations are true for �A = �1 we are done. Now
note that

(1 + ↵
II

)(1 + ↵
EE

)- ↵
IE

↵
EI

> (1 - ↵
II

)(1 - ↵
EE

)- ↵
IE

↵
EI

and that
�1(1 - ↵

II

) + �2↵EI

> -�1(1 + ↵
II

) + �2↵EI

In addition the L.H.S in both equations is positive under �A = �1. So Equation 2.28a is
always true if Equation 2.28b holds (under �A = �1) i.e.

�1p
⇤
S

✓
�1(1 - ↵

II

) + �2↵EI

(1 - ↵
II

)(1 - ↵
EE

)- ↵
IE

↵
EI

◆
< 1 (2.29)

As �1 is the largest eigenvalue both algebraically and in magnitude, under Equa-
tion 2.29,

1 - ↵
II

↵
EE

+ ↵
IE

↵
EI

- p⇤
S

�A(�1↵II

- �2↵EI

)

> 1 - ↵
II

↵
EE

+ ↵
IE

↵
EI

-

✓
(1 - ↵

II

)(1 - ↵
EE

)- ↵
IE

↵
EI

�1(1 - ↵
II

) + �2↵EI

◆
(�1↵II

- �2↵EI

)

=

�
(1 - ↵

II

)2 + ↵
IE

↵
EI

�
�1 + ↵

EI

(2 - ↵
II

- ↵
EE

)�2

(1 - ↵
II

)�1 + ↵
EI

�2

> 0

) Equation 2.27a is also true if Equation 2.29 holds. Thus the condition for the roots to be
in (-1, 1) when they are real is given simply by Equation 2.29.

38

r1 and r2 are complex In this case �A is such that D < 0. Also as Equation 2.25 has real
co-efficients, r1 and r2 are complex conjugate of each other and so |r1| = |r2| =

p
r1 · r2.

But the product of roots x1 and x2 of the equation ax2 + bx+ c = 0 is equal to c/a. Hence
we want to enforce c/a < 1. In our case it is

↵
II

↵
EE

- ↵
IE

↵
EI

+ p⇤
S

�A(�1↵II

- �2↵EI

) < 1

which is exactly Equation 2.27a. From the above analysis, we already know that it is
true if Equation 2.29 holds. So, for any eigenvalue �A for which D < 0, the roots have
magnitude less than 1 given Equation 2.29 is true.

Thus in both cases, whether roots are real or complex, Equation 2.29 is a sufficient
condition for the roots to have magnitude less than 1.

To re-cap we state our result and then give its proof:

Theorem 2.3 (G2 theorem). For virus propagation models which satisfy our general initial as-
sumptions and for any arbitrary undirected graph with adjacency matrix A and largest eigenvalue
�1, the sufficient condition for stability is given by:

s < 1

where, s (the effective strength) is:
s = �1 · C

and C is a constant dependent on the model (given by Equation 2.30). Hence, the tipping point is
reached when s = 1.

Proof Lemma 2.2 and Lemma 2.3 ensure cases C1 and C2 and hence together with
Lemma 2.1 imply that the eigenvalues of the Jacobian J of our general NLDS computed
at the fixed point x̃ are less than 1 in magnitude if Equation 2.29 is true.

) using Theorem 2.2, our general NLDS is stable at its fixed point x̃ if Equation 2.29
holds. Recall that x̃ is the point when there no infected nodes in the system (Appendix 2.C)
and that this is the fixed point whose stability conditions determine the epidemic thresh-
old (Section 2.5).

) finally we can conclude the theorem with

CVPM = p⇤
S

✓
�1(1 - ↵

II

) + �2↵EI

(1 - ↵
II

)(1 - ↵
EE

)- ↵
IE

↵
EI

◆
(2.30)

and the effective strength s = �1 · CVPM. The parameter CVPM is a constant for a given
propagation model while the only parameter involved from the underlying contact-
network is �1, the first eigenvalue of the adjacency matrix.

39

Chapter 3

Epidemic Thresholds: Time-varying
Graphs

In this chapter, we focus on contact networks that change over time (say, day vs night
connectivity), and the SIS (susceptible/infected/susceptible, flu like) virus propagation
model. Given such a configuration, we want to ask the same question as in the chapter
before: what can we say about the epidemic threshold? That is, can we determine when a
small infection will “take-off” and create an epidemic? This is a very real problem, since,
for example, people have different connections during the day at work, and during the
night at home. As we saw before, static graphs have been studied for a long time, with
numerous analytical results. Time-evolving networks are so hard to analyze, that most
existing works are simulation studies [BBE+08].

Specifically, our contributions in this chapter are: (a) we formulate the problem by
approximating it by a Non-linear Dynamical system (NLDS), and (b) we derive the first
closed formula for the epidemic threshold of time-varying graphs under the SIS model.

3.1 Introduction

The goal of this work is to analytically study the epidemic spread on time-varying graphs.
We focus on time-varying graphs that follow an alternating connectivity behavior, which
is motivated by the day-night pattern of human behavior. Note that our analysis is
not restricted to two graphs: we can have an arbitrary number of alternating graphs.
Furthermore, we focus on the SIS model [Het00], which resembles a flu-like virus, where
healthy nodes get the virus stochastically from their infected neighbors, and infected
nodes get cured with some probability and become susceptible again. The SIS model
can be also used in modeling many different types of dynamical processes as well, for
example, modeling product penetration in marketing [Rog03].

More specifically, the inputs to our problem are: (a) a set of T alternating graphs, and
(b) the infectivity of the virus and the recovery rate (�, � for the SIS model). We want to

40

answer the following question (rigorously defined in Section 3.3):

Q1. Can we say whether a small infection can “take-off" and create an epidemic under
the SIS model (i.e. determine the so-called epidemic threshold)?

While epidemic spreading on static graphs has been studied extensively (e.g., see [Het00,
AM91, PSV02, CWW+08]), virus propagation on time-varying graphs has received little
attention. Moreover, most previous studies on time-varying graphs use only simula-
tions [BBE+08]. We review in more detail the previous efforts in Section 3.2.

We are arguably the first to study virus propagation analytically on arbitrary, and
time-varying graphs. In more detail, the contributions of our work can be summarized in
the following points:

1. We formulate the problem, and show that it can be approximated with a Non-Linear
Dynamical System (NLDS).

2. We give the first closed-formula for the epidemic threshold, involving the first
eigenvalue of the so-called system-matrix (see Theorem 3.1). The system-matrix
combines the connectivity information (the alternating adjacency matrices) and the
characteristics of the virus (infectivity and recovery rate).

The rest of the Chapter is organized as follows: We review related work in Section 3.2,
explain the formal problem definitions in Section 3.3, and describe the proofs for the
threshold and illustrate the theorem in Section 3.4. We discuss the generality of the
result in Section 3.7 and finally conclude in Section 3.8.

3.2 Related Work

We have already reviewed the related work cocerning epidemic thresholds in the previ-
ous chapter. To summarize, none of the earlier related work focus on epidemic thresholds
for arbitrary, real graphs, with only exceptions of [WCWF03, CWW+08], and its follow-
up paper by Ganesh et al. [GMT05]. However, even these works [WCWF03, CWW+08,
GMT05] assume that the underlying graph is fixed, which is unrealistic in many applica-
tions. Hence, to the best of our knowledge, including comprehensive epidemiological
texts [AM91, Bai75] and well-cited surveys [Het00], we are the first to analytically study
virus propagation on arbitrary, real and time-varying graphs.

3.3 Problem Definitions

Table 3.1 lists the main symbols used in this work. Following standard notation, we use
capital bold letters for matrices (e.g. A), lower-case bold letters for vectors (e.g. a), and
calligraphic fonts for sets (e.g. S) and we denote the transpose with a prime (i.e., A 0 is
the transpose of A). In this chapter, we focus on un-directed un-weighted graphs which

41

Table 3.1: Symbols

Symbol Definition and Description
A, B, . . . matrices (bold upper case)
A(i, j) element at the ith row and jth column of A
A(i, :) ith row of matrix A
A(:, j) jth column of matrix A
I standard n⇥ n identity matrix
a, b, . . . column vectors
I, J, . . . sets (calligraphic)
n number of nodes in the graphs
T number of different alternating behaviors
A1, A2, . . . , A

T

T corresponding size n⇥ n symmetric
alternating adjacency matrices

� virus transmission probability in the SIS model
� virus death probability in the SIS model
�M first eigen-value (in absolute value) of a matrix M
uM corresponing first eigen-vector (for �M) of a matrix M
p
i,t probability that node i is infected at time t

p
t

p
t

= (p1,t,p2,t, . . . ,p
n,t) 0

p2t+1 probability of infection vector for odd days
p2t probability of infection vector for even days
⌘
t

the expected number of infected nodes at time t

we represent by the adjacency matrix and only the SIS virus propagation model. The
SIS model is the susceptible/infected/susceptible virus model where � is the probability
that an infected node will transmit the infection over a link connected to a neighbor and
� is the probability with which an infected node cures itself and becomes susceptible
again. Please see [Het00] for a detailed discussion on SIS and other virus models.

Consider a setting with clearly different behaviors say, day/night, each characterized
by a corresponding adjacency matrix (A1 for day, A2 for night), then what is the epidemic
threshold under a SIS virus model? More generally, the problem we are tackling can be
formally stated as follows:

Problem 3.1. Epidemic Threshold

Given: (1) T alternating behaviors, characterized by a set of T graphs A = {A1, A2 . . . A
T

}; and
(2) the SIS model [CWW+08] with virus parameters � and �;

Find: A condition, under which the infection will die out exponentially quickly (regardless of
initial condition).

42

3.4 Epidemic Threshold on Time-varying Graphs

To simplify discussion, we consider T = 2 in Problem 3.1 with A to consist of only two
graphs: G1 with the adjacency matrix A1 for the odd time-stamps (the ‘days’) and G2

with the adjacency matrix A2 for the even time-stamps (the ‘nights’). Our proofs and
results can be naturally extended to handle any arbitrary sequence of T graphs.

3.4.1 The NLDS

We first propose to approximate the infection dynamics by a Non-linear dynamical
system (NLDS) representing the evolution of the probability of infection vector (p

t

) over
time. We can compute the probability ⇣

t

(i) that node i does not receive any infections at
time t. A node i won’t receive any infection if either any given neighbor is not infected
or it is infected but fails to transmit the infection with probability 1 - �. Assuming that
the neighbors are independent, we get:

⇣2t+1(i) =
Y

j2NE1(i)

(p
j,2t+1(1 - �) + (1 - p

j,2t+1))

=
Y

j2{1..n}

(1 - �A1(i, j)pj,2t+1)) (3.1)

where NE1(i) is the set of neighbors of node i in the graph G1 with adjacency matrix A1.
Similarly, we can write ⇣2t+2(i) as:

⇣2t(i) =
Y

j2NE2(i)

(p
j,2t(1 - �) + (1 - p

j,2t))

=
Y

j2{1..n}

(1 - �A2(i, j)pj,2t)) (3.2)

So, p
i,2t+1 and p

i,2t+2 are:

1 - p
i,2t+1 = �p

i,2t + (1 - p
i,2t)⇣2t(i)

) p
i,2t+1 = 1 - �p

i,2t - (1 - p
i,2t)⇣2t(i) (3.3)

and

1 - p
i,2t+2 = �p

i,2t+1 + (1 - p
i,2t+1)⇣2t+1(i)

) p
i,2t+2 = 1 - �p

i,2t+1 - (1 - p
i,2t+1)⇣2t+1(i) (3.4)

Note that we can write our NLDS as:

p2t+1 = g2(p2t) (3.5)
p2t+2 = g1(p2t+1) (3.6)

43

where g1 and g2 are corresponding non-linear functions as defined by Equations 3.3 and
3.4 (g1 depends only on A1 and g2 on A2).

We have the following theorem about the asymptotic stability of a NLDS at a fixed
point:

Theorem 3.1. (Asymptotic Stability, e.g. see [HS74]) The system given by p
t+1 = g(p

t

) is
asymptotically stable at an equilibrium point p⇤, if the eigenvalues of the Jacobian J = 5g(p⇤)
are less than 1 in absolute value, where,

J
k,l = [5g(p⇤)]

k,l =
@p

k,t+1

@p
l,t

|p
t

=p⇤

The fixed point of our interest is the 0 vector which is the state when all nodes are
susceptible and not infected. We want to then analyze the stability of our NLDS at
p2t = p2t+1 = 0. From Equations 3.5 and 3.6, we get:

@p2t+2

@p2t+1
|p2t+1=0 = (1 - �)I + �A1 = S1 (3.7)

@p2t+1

@p2t
|p2t=0 = (1 - �)I + �A2 = S2 (3.8)

Any eigenvalue �i

S1
of S1 and �i

S2
of S2 (i = 1, 2, ...) is related to the corresponding

eigenvalue �i

A1
of A1 and �i

A2
of A2 as:

�i

S1
= (1 - �) + ��iA1

(3.9)
�i

S2
= (1 - �) + ��iA2

(3.10)

Recall that as A1 and A2 are symmetric real matrices (the graphs are undirected),
from the Perron-Frobenius theorem [McC00], �A1 and �A2 are real and positive. So, from
Equations 3.9 and 3.10 �S1 and �S2 are also real and positive.

3.4.2 The Threshold

We are now in a position to derive the epidemic threshold. First, we have the following
lemma:

Lemma 3.1. If �S < 1, then p2t dies out exponentially quickly; and 0 is asymptotically stable
for p2t, where S1 = (1 - �)I + �A1, S2 = (1 - �)I + �A2 and S = S1 ⇥ S2.

Proof. Since p2t+2 = g1(g2(p2t)) (from Equations 3.5 and 3.6), we have

@p2t+2

@p2t
|p2t=0 = (

@p2t+2

@p2t+1
⇥ @p2t+1

@p2t
)|p2t=0

= (
@p2t+2

@p2t+1
|p2t+1=0)⇥ (

@p2t+1

@p2t
|p2t=0)

= S1S2 = S (3.11)

44

The first equation is due to chain-rule, second equation is because p2t = 0 implies
p2t+1 = 0; and the final step is due to Equations 3.7 and 3.8.

Therefore, using Theorem 3.1, we get that if �S < 1, we have that 0 is asymptotically
stable for p2t.

We now prove that p2t in fact goes down exponentially to 0 if �S < 1. To see this, after
linearizing both g1 and g2 at p2t = p2t+1 = 0, we have

p2t+2 6 S1p2t+1

p2t+1 6 S2p2t (3.12)

Doing the above recursively, we have

p2t 6 (S1S2)
tp0 = (S)tp0 (3.13)

Let ⌘
t

be the expected number of infected nodes at time t. Then,

⌘2t = |p2t|1 6 |(S)tp0|1

6 |(S)t|1|p0|1 = |(S)t|1⌘0

6
p
n|(S)t|2⌘0 =

p
n�tS⌘0 (3.14)

Therefore, if �S < 1, we have that ⌘2t goes to zero exponentially fast.
The above lemma provides the condition for the even time-stamp probability vector

to go down exponentially. But, the next lemma shows that this condition is enough to
ensure that even the odd time-stamp probability vector to go down exponentially.

Lemma 3.2. If �S < 1, then p2t+1 dies out exponentially quickly; and 0 is asymptotically stable
for p2t+1, where S1 = (1 - �)I + �A1, S2 = (1 - �)I + �A2 and S = S1 ⇥ S2.

Proof. Doing the same analysis as in Lemma 3.1, we can see that the condition for p2t+1

to be asympotically stable and die exponentially quickly is:

�S2⇥S1 < 1 (3.15)

Now note that as S1 and S2 are invertible: S1 ⇥ S2 = S1 ⇥ S2 ⇥ S1 ⇥ S-1
1 . But this implies

that S2⇥S1 is similar to S1⇥S2 (matrix P is similar to Q if P = BQB-1, for some invertible
B). We know that similar matrices have the same spectrum [GVL89], thus S2 ⇥ S1 and
S1 ⇥ S2 have the same eigenvalues. Hence, the condition for exponential die out of p2t+1

and asymptotic stability is the same as that for p2t which is �S < 1.
Lemma 3.1 and Lemma 3.2 imply that this threshold is well-defined in the sense that

the probability vector for both the odd and even time-stamps go down exponentially.
Thus we can finally conclude the following theorem:

Theorem 3.1. (Epidemic Threshold) If �S < 1, then p2t and p2t+1 die out exponentially
quickly; and 0 is asymptotically stable for both p2t and p2t+1, where S1 = (1 - �)I + �A1,
S2 = (1 - �)I + �A2 and S = S1 ⇥ S2. Similarly for any general T , the condition is:

�Q
i

S
i

< 1 (3.16)

where 8i 2 {1, 2, .., T } S
i

= (1 - �)I + �A
i

.

45

We call S as the system-matrix of the system; thus, the first eigenvalue of the system-
matrix determines whether a given system is below threshold or not.

3.5 Salient Points

Sanity check: Clearly, when T = 1, the system is equivalent to a static graph system
with A1 and virus parameters �, �. In this case the threshold is (from Theorem 3.1)
�(1-�)I+�A1 < 1) ��A1/� < 1 i.e. we recover the known threshold in the static
case [CWW+08].
A conservative condition: Notice that from Equations 3.7 and 3.8 and Theorem 3.1, for
our NLDS to be fully asymptotically stable at 0 (i.e. p

t

decays monotonically), we need
the eigenvalues of both S1 and S2 be less than 1 in absolute value. Hence, ��/� < 1
where � = max(�A1 , �A2) is sufficient for full stability. Intuitively, this argument says
that the alternating sequence of graphs can not be worse than static case of having
the best-connected graph of the two repeated indefinitely. Let �A1 > �A2 . Consider
a sequence of graphs S = {A1, A1 . . .} repeating indefinitely instead of our alternating
{A1, A2, A1, A2, . . .} sequence. Clearly, if an infection dies exponentially in S, then it will
die exponentially in our original alternating sequence as well because �A1 > �A2 . The
set S is essentially just the static graph case: hence, if ��A1/� = ��/� < 1, then 0 is
asymptotically stable for p

t

. The case when �A1 < �A2 is similar. But this notion of a
threshold is too stringent and conservative: it can happen that a stronger virus can still
lead to a general exponential decrease instead of a strict monotonous decrease. This is
because we forced the eigenvalues of both S1 and S2 to be less than 1 in absolute value
here, when we can probably get away with less. Theorem 3.1 precisely formalizes this
idea and gives us a more practical condition for a general decreasing trend of every
corresponding alternating time-stamp values decaying. We illustrate this further in the
experiments.

3.6 Experiments

We will demonstrate our result in this section using simulation experiments. We con-
ducted a series of experiments using the MIT Reality Mining data set [EPL09]. The
Reality Mining data consists of 104 mobile devices (cellular phones) monitored over a
period of nine months (September 2004 - June 2005). If another participating Bluetooth
device was within a range of approximately 5-10 meters, the date and time of the con-
tact and the device’s MAC address were recorded. Bluetooth scans were conducted at
5-minute intervals and aggregated into two 12-hour period adjacency matrices (day and
night). The epidemic simulations were accomplished by alternating the day and night
matrices over the period of simulation. All experiments were run on a 64-bit, quad-core
(2.5Ghz each) server running a CentOS linux distribution with shared 72 GB of RAM.

46

(A) Infected Fraction Time Plot (lin-log) (B) Max. Infections till steady
state vs �S (lin-log)

Figure 3.1: SIS simulations on our synthetic example (all values averages over 20 runs) (A)
Fraction of nodes infected vs Time-stamp (lin-log scale). Note the qualitative difference in
behavior under (green) and above (red) the threshold. Also, note that the green line is below the
threshold but is actually above the conservative threshold (��/� = 1.100 here). Hence while both
p2t and p2t+1 decrease exponentially separately, but p

t

itself does not monotonously go down.
(B) Plot of Max. number of infected nodes till steady state vs �S (by varying �) (lin-log). As
predicted by our results, notice that there is a sudden ‘take-off’ and a change of behavior of the
curve exactly when �S = 1.

Simulations were conducted using a combination of Matlab 7.9 and Python 2.6.
Figures 3.1 and 3.2 demonstrate our result on a synthetic example and graphs from

MIT reality data. In the synthetic example, we have 100 nodes, such that G1 is a full
clique (without self loops) whereas G2 is a chain. All values are average over several
runs of the simulations and the infection is started by infecting 5 nodes. In short, as
expected from the theorem, the difference in behavior above, below and at threshold can
be distinctly seen in the figures.

Figures 3.1(A) and 3.2(A) show the time-plot of number of infections for �S values
above and below the threshold. While above threshold the infection reaches a steady
state way above the starting point, below threshold it decays fast and dies out. In case of
Figure 3.1(A), also note the the difference between the conservative threshold and our
threshold. The green curve is below our threshold but above the conservative threshold.
But again, as predicted from our theorems, clearly while there are dampening oscillations
and the infection decays but p

t

itself does not monotonously go down (and hence the
“bumpy” nature of the curve). This exemplifies the practical nature of our threshold
and its usefulness as we are more concerned with the general trend of the number
of infections curve and not every small ‘bump’ because of the presence of alternating
graphs.

Figures 3.1(B) and 3.2(B) show a ‘take-off’ plot showing max. number of infections
till steady state (intuitively the ’footprint’) for different values of �S (by varying �). As
predicted by our theorem, note the sudden steep change and spike in the size of the
footprint when �S = 1 in both the plots.

47

(A) Infected Fraction Time Plot (lin-log) (B) Max. Infections till steady
state vs �S (lin-log)

Figure 3.2: SIS simulations on the MIT reality mining graphs (all values averages over 20 runs)
(A) Fraction of nodes infected vs Time-stamp (lin-log scale). Note the qualitative difference in
behavior under (green) and above (red) the threshold. (B) Plot of Max. number of infected nodes
till steady state vs �S (by varying �) (lin-log). As predicted by our results, notice that there is a
sudden ‘take-off’ and a change of behavior of the curve when �S = 1.

3.7 Discussion—Generality of our results

How can we model more complex situations like ‘unequal duration’ behaviors etc.? Note
that the alternation period T can be longer than 2 and we can have repetitions in the set A
as well e.g., to represent a weekly-style (work day-weekend) alternation we can have
T = 7 and A = {A1, A1, . . . , A1, A2, A2}. Similarly, we can model situations like unequal
duration of ‘day’ and ‘night’ i.e. unequal duration of matrices A1 and A2. Say, A1 is
present for only 8 hours at work, while A2 is present for the remaining 16 hours at home.
Then, thinking of an hour as our time-step i.e. T = 24, the set A = {A1, . . . , A1, A2, A2, . . .},
where A1 occurs 8 times in A while A2 occurs 16 times. All the threshold results carry
forward seamlessly in all the above cases.

3.8 Conclusion

In this chapter, we analytically studied virus-spreading (specifically the SIS model) on
arbitrary, time-varying graphs. Given a set of T alternating graphs, modeling e.g. the
day/night pattern of human behavior, we ask: what is the epidemic threshold? Our
main contributions are:

1. We show how to formulate the problem, namely by approximating it with a Non-
Linear Dynamical System (NLDS).

2. We give the first closed-formula for the threshold, involving the first eigenvalue of
the system-matrix (see Theorem 3.1).

48

Chapter 4

Competing Viruses: Winner Takes All

We have assumed till now that a single virus is spreading in isolation, without any
competition. Instead, in this chapter we look into understanding the spread of multiple
competing viruses. Given two competing products (or memes, or viruses etc.) spreading
over a given network, can we predict what will happen at the end, that is, which product
will ’win’, in terms of highest market share? One may naïvely expect that the better
product (stronger virus) will just have a larger footprint, proportional to the quality ratio
of the products (or strength ratio of the viruses). However, we prove the surprising result
that, under realistic conditions, for any graph topology, the stronger virus completely
wipes-out the weaker one, thus not merely ‘winning’ but ‘taking it all’. In addition to
the proofs, we also demonstrate our result with simulations over diverse, real graph
topologies, including the social-contact graph of the city of Portland OR (about 31 million
edges and 1 million nodes) and internet AS router graphs. Finally, we also provide real
data about competing products from Google-Insights, like Facebook-Myspace, and we
show again that they agree with our analysis.

4.1 Introduction

Given two competing products like iPhone/Android or Blu-ray/HD-DVD, and ‘word of
mouth’ adoption of them, what will happen in the end? This question is of interest in
numerous settings. For example, in a biological virus setting, we have the common flu
versus avian flu. In a computer virus setting, clever virus authors make sure that their
code eliminates most other computer viruses from the victim’s disk. The list continues,
with competing scientific theories, competing memes (‘coke’ vs ‘soda’ vs ‘pop’), and
many more.

Our main result is that we answer the above question analytically, and we show that
‘winner takes all’ (WTA), or, more accurately, the weaker product/virus will soon become
extinct. The fate of the stronger virus depends on its strength: below the epidemic
threshold (more details, later), it will also become extinct, but above that it has good
chances of lingering practically for ever. In more detail, we assume

49

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50

In
fe

c
ti

o
n
 c

o
u
n
t

Time

(a) Simulations

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350

S
ea

rc
h
 P

er
ce

n
ta

g
e

Time

Facebook
MySpace

(b) Facebook vs Myspace

Figure 4.1: (a) Number of infected vs time for simulations on the AS-OREGON network for a virus
propagating in isolation (brown square) - note that it is above the epidemic threshold and hence
doesn’t die out, and the same virus competing with an even stronger virus (green) - note that it
now dies-out completely (red). (b) Winner takes all in search interest data from Google-Insights
for Facebook (green) and Myspace (red). Even though Myspace got a head-start, Facebook wiped
it out.

(a) an SIS-like model (no immunity, like flu),
(b) perfect mutual immunity (a node can have at most one of the viruses/products, at

any given time),
(c) the underlying network is connected (every node can reach every other node)
(d) the network is ‘fair-play’, in the sense that all nodes have the same behavior towards

the two competing products/viruses: everybody has the same probability �1 of
getting infected with virus-1 by a sick neighbor, and similarly for virus-2, and for
the recovery times.

One of the main contributions is that our theoretical analysis holds for any graph
topology, while earlier work focuses only on specific-topology graphs (cliques, random,
etc).

Figure 4.1(a) gives an illustration of our result: it shows the number of infected nodes
vs time for computer simulations on the AS-OREGON network (see Section 4.5 for details)
for a ‘above-threshold’ virus propagating in isolation (brown square) in one case and
the virus competing with an even stronger virus (green) in another case. Clearly it is
wiped out during the competition, although it gave a fight (red, note the bump). Note
that though both the viruses are above the threshold, the weaker virus is wiped out. We
prove this result for arbitrary underlying networks in this chapter.

Figure 4.1(b) shows the time evolution of search-interest for a pair of competing
products Facebook-Myspace. The data came from Google-Insights. Notice that again,
the weaker competitor is extinct (or close to that). We will give more case-studies later in
Section 4.5.

The outline of the chapter is as follows: we review related work in § 4.2 and formulate
the problem giving details of our model in § 4.3. We give the analysis and proof of our
WTA result in § 4.4 while we demonstrate it using simulations and real case-studies in
§ 4.5. Finally, we discuss some subtle issues in § 4.6 and conclude in § 4.7.

50

4.2 Related Work

We present the related work in this section, which can be categorized into three parts:
epidemic thresholds, information diffusion and ecology. We have already summarized
prior work in epidemic thresholds for single viruses before. Here we give the rest of the
related work. Most of these works either consider only single virus models or typically
use only simulation or analyze on very restricted underlying networks.

Information Diffusion Broadly two classes of information cascade models have been
proposed (a) independent cascade (IC) [KKT03] (essentially a ‘SIR’ model) and (b) linear
threshold (LT) [Gra78]. Research work in multiple cascades has looked into extensions
of the IC model with the restriction that nodes can’t switch from one competitor to
the other [BKS07, KOW08]. One of the few works to consider switching between the
competitors is Pathak et. al. [PBS10]. However, their work differs from ours in several
important aspects, as they: (a) use the LT model, as opposed to the ‘flu-like’ SIS model
(a cascade style model) we use; (b) assume that nodes may randomly switch between
products; (c) do not find WTA phenomena; and (d) give no closed-form results - only an
algorithm to compute the steady state.

Ecology In ecology, the principle of ‘competitive exclusion’ espouses that two species can
not occupy the same ecological niche in the long term. Research has gone into studying
this using various propagation models like SIS, SIR, Lotka-Volterra [CCHL96, CCHL99,
AA05, AM82]. They typically did simulations, or only studied homogenous or structured
topologies like cliques.

Distinguishing features of current work: In short, none of the previous work fulfills
all the conditions of this current work: (a) analytical proof of ’WTA’ (b) in arbitrary
topologies (c) under a SIS-like model.

4.3 Problem Formulation

In this section, we formulate our problem, giving details about the model used and the
assumptions. Table 4.1 explains the terminology we have used in the chapter. Bold letters
typically denote matrices (A, C etc.) or vectors (P̃, ũ etc.).

4.3.1 The propagation model

We assume that the competing viruses are spreading on the network according to a
propagation model, which we describe next. We call our propagation model SI1I2S,
based on the popular “flu-like” SIS (Susceptible-Infected-Susceptible) model [Het00].
SI1I2S denotes Susceptible - Infected1 - Infected2 - Susceptible. Each node in the graph

51

Table 4.1: Terms and Symbols

Symbol Definition and Description
WTA Winner-Takes-All
SI1I2S our competing viruses model
�1(or �2) attack rate of virus 1 (or virus 2)
�1(or �2) cure rate of virus 1 (or virus 2)
A adjacency matrix of the underlying graph
�M set of eigenvalues of the matrix M
�1(M) largest eigenvalue of matrix M
� �1(A)
�1 ��1/�1 (strength of virus 1)
�2 ��2/�2 (strength of virus 2)
MT transpose of M
NE(i) set of neighbors of node i in the graph
I identity matrix of appropriate size
0 all-zeros matrix of appropriate size
diag(P̃) the diagonal matrix with elements of vector P̃ in the diago-

nal

can be in one of three states: Susceptible (healthy), I1 (infected by virus 1), or I2 (infected
by virus 2). The state transition diagram as seen from a node in the network is shown in
Figure 4.2. We could have extended other single virus models as well, but we believe
that our model is a reasonable starting point, and we leave the analysis of other models
as future work.

Healing (virus death) rate: �. If a node is in state I1 (or I2), it recovers on its own
with rate �1 (or �2). This implies that the time taken for each infected node to heal
is exponentially distributed with parameter �1 (or �2). This parameter captures the
persistence of the virus in an inverse way: a high � means low persistence. For example,

Figure 4.2: State Diagram for a node in the graph under our SI1I2S competing viruses model.
The node is in the S state if it doesn’t have either competitor (say iPhone or Android). It is in I1 if
it gets the iPhone (virus 1) and is in I2 if it gets the Android (virus 2). The transitions from S to I1
or I2 (red-curvy arrows) depend on the infected neighbors of the node. The remaining transitions,
in contrast, are self-transitions, without the aid of any neighbor.

52

a very convincing rumor that sticks to one’s mind will be modeled with a low � value.
Attack (virus transmission) rate: �. A healthy node gets infected by infected neigh-

bors, and the virus transmissability is captured by �1 and �2. Specifically, an infected
node transmits its infection to each of its neighbors independently at rate �1 (or �2). Hence,
the time taken for each infected node to transmit the virus to a neighbor over a link is
exponentially distributed with parameter �1 (or �2).

This is a novel generalization of the single-virus SIS model to a competing-viruses
scenario. Note the competition between the viruses: each virus has to compete with the
other for healthy victims. Moreover, note that we assume full mutual immunity: while a
node is infected by one virus, it cannot be infected by the other.

Fair-play: We assume that the competitors are playing a ‘fair game’: All nodes in
the network have the same model parameters (�’s and �’s) for each of the viruses and
behave according to the state-diagram in Figure 4.2.

4.3.2 Problem Statement

We are now in a position to state the problem formally. We assume the underlying
network is connected - otherwise we just have separate disconnected problems.
Competing viruses problem
Given: A undirected connected graph G, and the propagation model (SI1I2S) parameters
(�1, �1 for virus 1, �2, �2 for virus 2)
Find: What will happen at the end i.e. what are the steady-state populations of the two
viruses.

4.4 WTA: Results and Proofs

We prove our winner-takes-all (WTA) result on an arbitrary undirected graph in this
section. Our main result can be formally stated as follows:

Theorem 4.1 (Winner takes all). Given an arbitrary undirected, connected graph with adjacency
matrix A and the SI1I2S model parameters (�1,�2, �1, �2), then virus 1 will dominate and virus
2 will completely die-out in the steady state if virus 1 is above threshold1 and the strength of virus
1 is greater than the strength of virus 2 i.e. if �1 > 1 and �1 > �2.

The proof is involved, and we present it in the next few pages. We will first prove it
for simpler cases of the underlying network - namely a clique and a barbell before we
move on to arbitrary graphs.

1As it follows from Chatper 2, for the single-virus SIS model, a virus dies-out unless it is above the
epidemic threshold i.e. unless ��/� > 1, where � is the largest eigenvalue of the adjacency matrix of the
underlying graph.

53

4.4.1 Proof roadmap

In short, the proof has the following steps:

1. Dynamical System: construct a suitable dynamical system of differential equations
for the propagation process,

2. Fixed Points: prove that there are only three fixed points and at least one of the
viruses has to die out at any fixed point, and

3. Stability Conditions: give the precise conditions for each fixed point to be stable
(attracting).

Intuitively, the dynamical system generates a field on which we show that only 3
possible fixed points can exist. Moreover the field makes only one of the possible fixed
points stable under any given scenario. Figures 4.3(a-c) shows the field-plots in a simple
case - when the underlying graph is a clique2 of size N = 1000. Specifically we show
three scenarios (wlog, we assume the first virus is the stronger virus):

BELOW : 1 > �1N/�1 = 0.6 > �2N/�2 = 0.2
(both viruses below the threshold)

MIXED : �1N/�1 = 6 > 1 > �2N/�2 = 0.2
(one above and one below the threshold)

ABOVE : �1N/�1 = 6 > �2N/�2 = 4 > 1
(both above the threshold)

The field plots illustrate the fixed points in this setting and their stability. In this case,
we have a 2-dimensional field, but for an arbitrary graph it will depend on the number
of nodes in the graph. At any point on the field, the direction of the field-arrow tells us
where the system will go next. Stable fixed points are marked by bold circles, unstable
fixed points by hollow circles, x-axis denotes the # of infected nodes by virus 2 and the
y-axis denotes the # infected by virus 1 (the stronger virus). For example, in Figure 4.3(c),
both viruses are above threshold, yet the FP1 and FP3 points are unstable while the other
fixed point corresponding to the stronger virus winning (FP2) is stable. The trajectory
of the simulation is overlaid on the field plots - we can see that the system follows the
field lines and is attracted towards and ends up at the stable fixed point in the steady
state. We also show the time-evolution separately in Figures 4.3(d-f) - especially note
part (f) (ABOVE), virus 2 tries to take over, but is over-powered by virus 1 which goes on
to dominate. We can similarly observe the BELOW and MIXED scenarios as well.

We elaborate a bit more on the steps next. Consider a dynamical system (set of
differential equations) of the form x 0 = F(x), where x 0 is the (component-wise) time
derivative of x, and F : Rn ! Rn is continuous and differentiable. If F(x0) = 0, then
x0 is a stationary point (also called a fixed point). The proof begins by setting up the
propagation as a dynamical system of non-linear differential equations and then analyzes
the possible fixed points and their stability conditions. In principle, one might expect that

2every node is connected to every other node.

54

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

C
o
u
n
t

fo
r

V
ir

u
s

1

Count for Virus 2

Trajectory from Simulation
Stable Fixed Points

fp1

Unstable Fixed Points

(a) BELOW (Field-plot)

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

C
o
u
n
t

fo
r

V
ir

u
s

1

Count for Virus 2

Trajectory from Simulation
Stable Fixed Pointsfp2

Unstable Fixed Points

fp1

(b) MIXED (Field-plot)

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

C
o
u
n
t

fo
r

V
ir

u
s

1

Count for Virus 2

Trajectory from Simulation
Stable Fixed Pointsfp2

Unstable Fixed Points

fp1 fp3

(c) ABOVE (Field-plot)

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50

In
fe

c
ti

o
n
 c

o
u
n
t

Time

Virus 1

Virus 2

(d) BELOW (Time-plot)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50

In
fe

c
ti

o
n
 c

o
u
n
t

Time

Virus 1

Virus 2

(e) MIXED (Time-plot)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50

In
fe

c
ti

o
n
 c

o
u
n
t

Time

Virus 1

Virus 2

(f) ABOVE (Time-plot)

Figure 4.3: (a-c) Field plots for clique of size 1000 for various cases. Stable fixed points are marked
by bold circles, unstable fixed points by hollow circles, while the y-axis denotes the number of
infected nodes by virus 1 and the x-axis denotes the number infected by virus 2. The simulation
trajectory is overlaid. The field plots illustrate the fixed points in this setting and their stability.
(d-f) Corresponding Time evolution plots of the competition. Note that virus 2 (red curve) in (f)
could have won in isolation, but lost to virus 1.

there might be several fixed points of the system corresponding to different proportions
of the populations of the two virus. But we prove that in fact there are always only three
fixed points possible and in each at least one virus gets wiped-out.

Further, intuitively, if a fixed point is not stable then the system would be repelled
whenever it tries to approach that fixed point. Hence, to fully characterize the fixed
points, we need to derive the stability conditions, which give us the conditions for each
of these fixed points to be stable and attracting.

For characterizing the stability of the fixed points, we use a well-known result from
dynamical system theory (c.f. [HS74]). The fixed points will be a hyperbolic fixed point
(i.e. where the linearized stability analysis can be performed) only when none of the
eigenvalues of the corresponding Jacobian3 has a zero real part. Further, the system will
be stable at a hyperbolic fixed point (attractor) only if the real part of the eigenvalues
of the Jacobian is negative. So to make a fixed point a hyperbolic stable attractor we
need to impose the condition that the real parts of all the eigenvalues of the corresponding
Jacobian should be negative. We next show this proof scheme for the special case of a clique

3The Jacobian is the matrix of all component-wise first-order partial derivatives of x 0 with respect to x
evaluated at the fixed point.

55

topology.

4.4.2 Special case: Clique Topology

In a clique, all nodes are connected to each other with undirected and unweighted edges.
Each node is identical to the other and hence our system is a simple continuous time
markov chain, due to which we can write down the system equations directly. Let N be
the size of the clique and I1 be the number of nodes infected by virus 1 at some time t.
Similarly define I2.

Dynamical System: Clearly, under our SI1I2S model, we have the following system
equations:

dI1

dt
= �1(N- I1 - I2)I1 - �1I1

dI2

dt
= �2(N- I1 - I2)I2 - �2I2

Fixed Points There are three fixed points of the system of differential equations above
(when the rates of change in I1 and I2 are zero):

1. {I1 ! 0, I2 ! 0} (i.e. the viruses die-out)
2.

⌦
I1 ! N- �1

�1
, I2 ! 0

↵
(i.e. only virus 1 survives)

3.
⌦
I2 ! N- �2

�2
, I1 ! 0

↵
(i.e. only virus 2 survives)

Stability Conditions The corresponding Jacobians at the fixed points are:

1. J1 =

N�1 - �1 0

0 N�2 - �2

�

2. J2 =

"
-�1 + �1

⇣
N- 2

⇣
N- �1

�1

⌘⌘
-�1

⇣
N- �1

�1

⌘

0 �2�1
�1

- �2

#

3. J3 =

"
-�1 +

�1�2
�2

0

-�2

⇣
N- �2

�2

⌘
-�2 + �2

⇣
N- 2

⇣
N- �2

�2

⌘⌘
#

The eigenvalues of the Jacobians can be seen to be:

1. �J1 ⌘
⌦
�1(N- �1

�1
),�2(N- �2

�2
)
↵

2. �J2 ⌘
⌦
�1(

�1
�1

-N),�2(
�1
�1

- �2
�2
)
↵

3. �J3 ⌘
⌦
�1(

�2
�2

-N),�2(
�2
�2

- �1
�1
)
↵

From our preceding discussion we know that to have stable fixed points we require
that the real part of the eigenvalues of the Jacobians should be negative. Clearly the
corresponding conditions for the fixed point to be (a) hyperbolic and (b) stable attractor
are:

56

1. �1N
�1

< 1 and �2N
�2

< 1
(i.e. both are below threshold)

2. �1N
�1

> 1 and �1N
�1

> �2N
�2

(i.e. virus 1 is above threshold and virus 1 strength is greater than virus 2)
3. �2N

�2
> 1 and �2N

�2
> �1N

�1
(i.e. virus 2 is above threshold and virus 2 strength is greater than virus 1)

Firstly note that we recover a result similar to the single-virus SIS model case - that if the
viruses are below the epidemic threshold, they both die-out. Secondly, we can conclude
that in case of a clique, the stronger virus wipes-out the weaker virus if it is above the
epidemic threshold.

Non-hyperbolic fixed points: We can see that the fixed points will be non-hyperbolic if the
virus strengths are equal. Hence, in this case, no conclusions can be drawn from the
linearized analysis and we take a different route. Note that we always have:

Z
I1

I

0
1

dI1

�1I1
+

Z
t

0

�1

�1
dt =

Z
I2

I

0
2

dI2

�2I2
+

Z
t

0

�2

�2
dt (4.1)

) I�2
1

I�1
2

⇥ (I0
2)

�1

(I0
1)

�2
= e

�1�2(
�2
�2

-
�1
�1

)t (4.2)

where I0
1 and I0

2 are the initial values of I1 and I2. The R.H.S. will evaluate to one in our
case (the virus strengths are equal). Hence now, the ratio of virus populations at any
given time t will be directly proportional to the initial ratio (up to some exponents). Also,
clearly, the maximal ratios are attained at one of the last two fixed points.

4.4.3 Special Case: Barbell Graph

A barbell graph G has two cliques (say clique C1 and C2 of size N each) connected
through weak edges. Specifically, we assume that all nodes in C1 are connected to all
nodes in C2 (and vice versa) with edges of weight ✏, whereas they are connected with
nodes within the same clique with edges of weight 1. In this case, by symmetry we can
see that the virus populations in both the cliques should remain the same at the steady
state. If we follow the steps in the case of a single clique, we get at steady state:

�1(N- I1 - I2)I1(1 + ✏) = �1I1

�2(N- I1 - I2)I2(1 + ✏) = �2I2

Hence, the only possible fixed points are:

1. {I1 ! 0, I2 ! 0} (i.e. the viruses die-out)
2.

⌦
I1 ! N- �1

�1⇤(1+✏) , I2 ! 0
↵

(i.e. only virus 1 survives)

3.
⌦
I2 ! N- �2

�2⇤(1+✏) , I1 ! 0
↵

(i.e. only virus 2 survives)

57

Moreover, continuing similarly as the single clique case, we can see that the stronger
virus again wipes-out the weaker virus as long as it is above the epidemic threshold
(note that in this case � = (1 + ✏)N, hence the threshold condition for a single virus is
(1 + ✏)�N/� > 1).

4.4.4 General Arbitrary Graph

Let A be the adjacency matrix of the arbitrary graph of N nodes. Let p
i,1 be the probability

of node i to be in the I1 state. Similarly define p
i,2 and s

i

is the probability of node i being
in the susceptible state. Clearly, s

i

+ p
i,1 + p

i,2 = 1.

Dynamical System: As we have a continuous time process, the following system equa-
tions hold for each node i:

dp
i,1

dt
= -�1pi,1 + �1(1 - p

i,1 - p
i,2)

X

j

(A
ij

1
j,1)

dp
i,2

dt
= -�2pi,2 + �2(1 - p

i,1 - p
i,2)

X

j

(A
ij

1
j,2)

where 1
j,k (for k = 1, 2) is the indicator random variable denoting if node j is infected

with virus k. Our system is not a markov chain due to the presence of random variables
1
j,k in the rate equations. But after making a mean-field approximation (1

j,1 ⇡ E[1
j,1] =

p
j,1 and 1

j,2 ⇡ p
j,2, where E[X] is the expected value of the random variable X), we get

the following dynamical system:

dp
i,1

dt
= -�1pi,1 + �1(1 - p

i,1 - p
i,2)

X

j

(A
ij

p
j,1) (4.3)

dp
i,2

dt
= -�2pi,2 + �2(1 - p

i,1 - p
i,2)

X

j

(A
ij

p
j,2) (4.4)

(for each node i).

Fixed Points: At the steady state i.e. at fixed points where the change in probabilities
will be zero, we get (for each node i):

�1pi,1 = �1(1 - p
i,1 - p

i,2)
X

j

(A
ij

p
j,1) (4.5)

�2pi,2 = �2(1 - p
i,1 - p

i,2)
X

j

(A
ij

p
j,2) (4.6)

which can be written in vector-form as:

�1SAP̃1 = �1P̃1 (4.7)
�2SAP̃2 = �2P̃2 (4.8)

58

where P̃1 = [p1,1,p2,1, . . . ,p
N,1]T , P̃2 = [p1,2,p2,2, . . . ,p

N,2]T and S = diag(s
i

) = I -
diag(P̃1 + P̃2).

In all of the following analysis, we assume we are operating at fixed point unless
stated otherwise, i.e. Equations 4.5 and 4.6 or equivalently Equations 4.7 and 4.8 hold.
Additionally, we assume that A is connected. First we have the following series of
lemmas.

Lemma 4.1. 8 i we have that s
i

6= 0.

Proof. If s
i

= 0 for any i, then Equations 4.5 and 4.6 immediately imply that p
i,1 = p

i,2 = 0
which contradicts s

i

+ p
i,1 + p

i,2 = 1.

Lemma 4.2. If 9 i p
i,1 = 0) 8 i p

i,1 = 0. Similarly 9 i p
i,2 = 0) 8 i p

i,2 = 0.

Proof. If 9 i p
i,1 = 0, then from Equation 4.5 we have

P
j

(A
ij

p
j,1) = 0 (as s

i

6= 0 from
Lemma 4.1). Clearly, A

ij

’s are positive only for those nodes j which are neighbors of
node i, i.e. for j 2 NE(i) (and there is at least one such j as the graph is connected). For
these j, as p

j,1 can not be negative (they are probabilities), they have to be zero so that
the above is true. Now we can apply the same argument we applied for node i in turn
for all the neighbors j 2 NE(i) and so on. Finally we get that 8 i p

i,1 = 0 as the graph is
connected. We can prove similarly for p

i,2.

Lemma 4.3. The matrix SA is non-negative and irreducible.

Proof. A is symmetric and irreducible as it is connected. From Lemma 4.1 we have that S
is a diagonal positive matrix. Clearly, it follows that S · A maybe asymmetric but it is a
non-negative and irreducible matrix (intuitively, multiplying by S preserves the original
edges in A).

Lemma 4.4. The matrix SA has a unique positive real number (say �) as its largest eigenvalue
(in magnitude). Further the algebraic multiplicity of � is 1 and it has a positive eigenvector (say
ṽ: then all components of ṽ are positive).

Proof. As SA is non-negative and irreducible (Lemma 4.3), we can apply the Perron-
Frobenius theorem [McC00]. The lemma follows directly then.

Lemma 4.5. There are no positive eigenvectors of SA other than ṽ (the Perron eigenvector of
SA corresponding to the largest eigenvalue).

Proof. From Lemma 4.3, it follows that (SA)T is non-negative and irreducible as well.
Moreover, note that the eigenvalues of any matrix M and MT are the same. Hence, again
applying the Perron-Forbenius theorem to (SA)T , we have the largest eigenvalue as �
and the corresponding positive eigenvector as say ũ. From the eigenvalue equation, we
know that ũTSA = �ũT .

59

Now suppose we have another positive eigenvector, say w̃, corresponding to eigen-
value t of SA (so, SAw̃ = tw̃). Then:

�ũT w̃ = ũTSAw̃ = tũTw̃

Hence (� - t)ũT w̃ = 0. But ũT w̃ 6= 0 as both ũ and w̃ are positive. Hence t = �. But �
has multiplicity 1 (Lemma 4.4) and hence w̃ = ṽ.

Lemma 4.6. At fixed point, P̃1 > 0 and P̃2 > 0 both can not hold unless �1
�1

= �2
�2

.

Proof. Together with Lemma 4.2, Equation 4.7 implies that either P̃1 = 0 or it is a positive
eigenvector of SA with eigenvalue �1/�1. Similarly from Equation 4.8 (and Lemma 4.2)
we get that either P̃2 = 0 or it is a positive eigenvector of SA with eigenvalue �2/�2. From
Lemma 4.5, the only positive eigenvector of SA is the one corresponding to the largest
eigenvalue. Hence both P̃1 > 0 and P̃2 > 0 can hold only if �1

�1
= �2

�2
. Otherwise at least

one of them is zero.

Assuming the virus strengths are not equal, Lemma 4.6 implies the following theorem:

Theorem 4.2. Assuming the virus strengths are not equal, the system has only the following
possible fixed points:

1.
�

P̃1 ! 0, P̃2 ! 0

(i.e. the viruses die-out)
2.

�
P̃1 ! perron eigenvector of SA, P̃2 ! 0

(i.e. only virus 1 survives)

3.
�

P̃2 ! perron eigenvector of SA, P̃1 ! 0

(i.e. only virus 2 survives)

We can assert the next lemma immediately:

Lemma 4.7. The second and third fixed points in Theorem 4.2 require �1 > 1 and �2 > 1
respectively.

Proof. In the second fixed point, virus 2 dies-out and only virus 1 survives. Hence the sys-
tem now is equivalent to a single virus operating on the whole graph under the standard
flu-like SIS model. For this we already know that the virus should be above the ‘epidemic
threshold’ if it has to survive (and not die-out exponentially quickly) [CWW+08, PCF+11].
Hence ��1/�1 = �1 > 1 is necessary for the second fixed point. Similarly we can prove
the case for when virus 2 survives.

Stability Conditions: We first compute the Jacobian at each of the fixed points.

Lemma 4.8. The Jacobians at the three fixed points can be written as below. (each Jacobian is a
2N⇥ 2N matrix, each sub-matrix block below is a matrix of size N⇥N).

1. J1 =

�1A - �1I 0

0 �2A - �2I

�

2. J2 =

�1SA - �1I - �1diag(AP̃1) -�1diag(AP̃1)

0 �2SA - �2I

�

60

3. J3 =

�1SA - �1I 0

-�2diag(AP̃2) �2SA - �2I - �2diag(AP̃2)

�

Here, in J2, P̃1 is the Perron eigenvector of SA with eigenvalue �1/�1 (i.e. it satisfies Equation 4.7
and is non-zero). Similarly P̃2 in J3.

Proof. Can be computed using standard differentiation. Details omitted for brevity.

Given the discussion before, we can analyze the corresponding conditions for the
fixed point to be hyperbolic stable attractor.

Lemma 4.9. The conditions for the fixed points to be hyperbolic and stable attractor are:

1. �1 < 1 and �1 < 1
2. �1 > �2

3. �2 > �1

Proof. We prove the conditions for each fixed point separately below (we omit some
details for brevity):

1. The eigenvalues of matrix J1 are simply the eigenvalues of the matrices M1 =
�1A- �1I and M2 = �2A- �2I. The real part of all the eigenvalues of these matrices
will be negative if the real part of the largest eigenvalue is negative (as M1 and M2

are real and symmetric, all their eigenvalues are real). Hence the conditions for this
are �1�/�1 < 1 and �2�/�2 < 1, where � is the largest eigenvalue of A.

2. We can see that the eigenvalues of the matrix J2 are either the eigenvalues of matrix
M1 = �1SA - �1I -�1diag(AP̃1) or the eigenvalues of the matrix M2 = �2SA - �2I.
The eigenvalues of M2 are just the eigenvalues of �2SA subtracted by �2. From
Lemma 4.4 and Equation 4.7 we know that under this fixed point, the largest
eigenvalue of SA is �1/�1. This implies that R(�SA) < �1/�1 for any eigenvalue �SA

of SA4. Thus,
R(�M2) = �2R(�SA)- �2 < �2�1/�1 - �2 < 0

where the last step follows if �2/�2 < �1/�1. Hence, if �2 < �1, the real part of all
the eigenvalues of M2 are negative.
Consider the matrix D = M1+MT

1 = �1(SA+AS)-2�1I-2�1diag(AP̃1). Matrix D is
clearly real and symmetric and so has all real eigenvalues. Due to Lemma 4.4 we can
apply the Perron-Frobenius theorem to SA + AS as well and deduce that its largest
eigenvalue �1(SA + AS) is positive. Further, from matrix theory [HJ91, HW97],
we know that for any real non-negative matrix C, �1(C + CT) 6 2�1(C). Hence
0 < �1(SA + AS) 6 2�1(SA) = 2�1/�1. Again we know from standard linear

4R(x) denotes the real part of x

61

algebra [HJ91], that �1(X + Y) 6 �1(X) + �1(Y) if X and Y are symmetric. Hence,

�1(D) 6 �1�1(SA + AS)- 2�1 - 2�1�1(diag(AP̃1))

6 2�1�1/�1 - 2�1 - 2�1�1(diag(AP̃1))

6 -2�1�1(diag(AP̃1))

< 0

as under this fixed point, diag(AP̃1) is a diagonal matrix with positive entries and
hence has all positive eigenvalues. As D has all real eigenvalues, �1(D) < 0 implies
that it has all negative eigenvalues. The Lyapunov theorem [HS74] states that a
matrix C is stable (has R(�C) < 0) if CT + C has all negative eigenvalues. Applying
it to our case, we can see that matrix D having all negative eigenvalues implies that
M1 is stable unconditionally under this fixed point.
Finally, as M1 and M2 both (and so J2 as well) have the real part of their eigenvalues
negative under the condition �2 < �1, the fixed point is a hyperbolic stable attractor
if �2 < �1.

3. Analogous to the case of the fixed point above.

Proved.

Lemma 4.9 combined with Lemma 4.7 allows us to conclude the following:

Theorem 4.3. The corresponding conditions for each of the fixed points to (a) exist, and (b) have
stability (i.e. be a hyperbolic and stable attractor) are:

1. �1 < 1 and �2 < 1
(i.e. both are below threshold)

2. �1 > 1 and �1 > �2

(i.e. virus 1 is above threshold and virus 1 strength is greater than virus 2)
3. �2 > 1 and �2 > �1

(i.e. virus 2 is above threshold and virus 2 strength is greater than virus 1)

Combining Theorem 4.2 and Theorem 4.3, we again have a result similar to the single
virus epidemic threshold - that viruses die-out if they are below the individual epidemic
threshold (i.e. if ��/� < 1). Finally, they also imply our WTA result (Theorem 4.1).

4.5 Experiments

We demonstrate our result using (a) simulation experiments on varied datasets; and (b)
case studies using real data in this section.

62

4.5.1 Setup

We first briefly describe our experimental setup for the simulations as well as the case
studies.

Simulations: WLOG, in our experiments, we assumed that the first virus is the stronger
virus. We then considered the following three cases:

BELOW : 1 > �1�/�1 = 0.6 > �2�/�2 = 0.2
(both viruses below the threshold)

MIXED : �1�/�1 = 6 > 1 > �2�/�2 = 0.2
(one above and one below the threshold)

ABOVE : �1�/�1 = 6 > �2�/�2 = 4 > 1
(both above the threshold)

We used the following real-world and synthetic network datasets for the simulations:

1. AS-OREGON: The Oregon AS router graph which is a network graph collected from
the Oregon router views. It contains 15,420 links among 3,995 AS peers. More
information can be found from http://topology.eecs.umich.edu/data.
html.

2. PORTLAND: One of the biggest available physical contact graphs, representing
a synthetic population of the city of Portland, Oregon, USA [NDS07], and has
been used in smallpox modeling studies [EGAK+04]. It is a social-contact graph
containing more than 31 million links (interactions) among about 1.6 million nodes
(people).

3. Clique: A fully connected clique of 1000 nodes.
4. Barbell: Two cliques of 500 nodes joined together by weak edges of weight ✏ = 0.01

(see Section 4.4.3 for a description).

We implemented our competing viruses model SI1I2S as an event based discrete simu-
lation in C++. We randomly infect 30 nodes for each of the viruses at the start of any
simulation. All simulations were run over 1000 time steps and the plots show averaged
results from 100 runs.

Case-studies: We collected historical data for ’web-search interest’ for various competing
products from the Google-Insights website5 which aims to ‘provide insights into broad
search patterns’. This allows us to use the data as a proxy for product sales/adoption for
each product. We used the following pairs of rival products:

1. Reddit and Digg: Two social news websites, where users post links to interesting
memes/news articles.6

5www.google.com/insights/search/
6www.reddit.com, www.digg.com

63

http://topology.eecs.umich.edu/data.html
http://topology.eecs.umich.edu/data.html
www.google.com/insights/search/
www.reddit.com
www.digg.com

2. Facebook and Myspace: Two social network websites, where users add their friends
and share posts, pictures etc.7

3. Blu-ray and HD-DVD: Two rival competing standards of high-density optical
media.

The full mutual immunity model doesn’t describe all the above situations perfectly, but
it is a very good approximation. We understand that not all of the pairs are mutually
exclusive in the strict sense e.g., people can go and put links on both Digg and Reddit,
however, people are unlikely to be part of both communities as they have to choose a
site while sharing content.

4.5.2 Simulation Results

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50

In
fe

c
ti

o
n
 c

o
u
n
t

Time

Virus 1

Virus 2

(a) BELOW (Time-plot)

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50

In
fe

c
ti

o
n
 c

o
u
n
t

Time

Virus 1

Virus 2

(b) MIXED (Time-plot)

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50

In
fe

c
ti

o
n
 c

o
u
n
t

Time

Virus 1

Virus 2

(c) ABOVE (Time-plot)

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

V
ir

u
s

1
 C

o
u
n
t

Virus 2 Count

Stable Fixed Pt

fp1

(d) BELOW (Phase-plot)

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35

V
ir

u
s

1
 C

o
u
n
t

Virus 2 Count

Stable Fixed Ptfp2
Unstable Fixed Pts

fp1

(e) MIXED (Phase-plot)

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500

V
ir

u
s

1
 C

o
u
n
t

Virus 2 Count

Stable Fixed Ptfp2

Unstable Fixed Pts

fp1 fp3

(f) ABOVE (Phase-plot)

Figure 4.4: (a-c) Number of infected vs time plots for simulations on the AS-OREGON network
for different scenarios. (d-f) Corresponding Phase plots (scatter plot of number of infected nodes
by virus 1 (y-axis) and number of infected nodes by virus 2). Stable fixed points are marked by
bold circles, unstable by hollow circles. Clearly, the stronger virus wins (as long as it is above
threshold) and the weaker dies-out completely as our result predicted.

Figures 4.4 and 4.5 demonstrate our results. In short, the plots agree exactly with our
result, as expected.

Figure 4.4 shows the Time-plots and Phase-plots for simulations on the AS-OREGON
graph for our three scenarios as discussed before in the setup. The time-plots show the

7www.facebook.com, www.myspace.com

64

www.facebook.com
www.myspace.com

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 2000 4000 6000 8000 10000 12000

V
ir

u
s

1
 C

o
u
n
t

Virus 2 Count

Stable Fixed Pt

fp2

Unstable Fixed Pts

fp1

(a) PORTLAND

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 100 200 300 400 500 600 700 800

V
ir

u
s

1
 C

o
u
n
t

Virus 2 Count

Stable Fixed Ptfp2

Unstable Fixed Pts

fp1 fp3

(b) Clique

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800

V
ir

u
s

1
 C

o
u
n
t

Virus 2 Count

Stable Fixed Pt

fp2

Unstable Fixed Pts

fp1 fp3

(c) Barbell

Figure 4.5: Phase plots (scatter plot of number of infected nodes by virus 2 and number of
infected nodes by virus 1) plots for simulations on (a) the PORTLAND network, (b) a clique and (c)
a barbell graph for scenario ABOVE. Again, stable fixed points are marked by bold circles and
unstable fixed points by hollow circles (FP3 not shown in (a) for sake of clarity of the trajectory).
The weaker virus tries to dominate (note the bulge), but it dies-out completely and the stronger
virus wins, as our result predicted.

Number of nodes Infected vs Time for each of the viruses (red for the weaker virus, green
for the stronger one). The phase plot is the scatter plot of number of infected nodes by
the stronger virus on the y-axis and number of infected nodes by the weaker virus on
the x-axis. Thus a phase plot shows the trajectory of the simulation in the 2-d plane. The
stable points in each scenario are marked with solid circles.

In the BELOW case, we expect that both of them die-out. This is borne out by both
the time and phase plots (Figures 4.4(a) and (d)). Point FP1(0, 0) is the only stable fixed
point in this case and hence the system converges to it very quickly (see the phase plot).
On the other hand, when the stronger virus is above threshold (MIXED) we can see that
it takes-over and the other virus dies-out (Figures 4.4(b) and (e)). In this case, point FP2 is
stable and attracting while FP1 becomes unstable. As a result, we converge to the steady
state where only the stronger survives. Finally, in case ABOVE, when each could have
dominated in isolation, the stronger virus clearly wins and wipes-out the weaker virus
(Figures 4.4(c) and (f)). Here, FP2 is again stable while the other fixed points are unstable.
Moreover, note that the stronger virus reaches the same steady-state as in MIXED. This
agrees with our analysis as well (see Lemma 4.7): in both scenarios, the stronger virus
will reach the same fixed-point as it would have if operating in isolation, without the
presence of a competitor.

Similarly, Figure 4.5 shows the phase-plots for simulations on the other graph datasets
- PORTLAND, Clique and Barbell. For lack of space, we just show the plots for case ABOVE.
As before, the stronger virus wins and the weaker virus dies-out completely, no matter
the network, in perfect agreement with our result (Theorem 4.1).

65

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450

S
ea

rc
h
 P

er
ce

n
ta

g
e

Time

Reddit
Digg

(a) Reddit vs Digg (Time plot)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350

S
ea

rc
h
 P

er
ce

n
ta

g
e

Time

Facebook
MySpace

(b) Facebook vs Myspace (Time
plot)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450

S
ea

rc
h
 P

er
ce

n
ta

g
e

Time

BluRay
HD-DVD Christmas Sales

(c) Blu-ray vs HD-DVD (Time plot)

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

R
ed

d
it

 S
ea

rc
h
 P

er
ce

n
ta

g
e

Digg Search Percentage

Final Value

(d) Reddit vs Digg (Phase plot)

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10F
ac

eb
o
o

k
 S

ea
rc

h
 P

er
ce

n
ta

g
e

MySpace Search Percentage

Final Value

(e) Facebook vs Myspace (Phase
plot)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35

B
lu

R
ay

 S
ea

rc
h
 P

er
ce

n
ta

g
e

HD-DVD Search Percentage

Final Value

(f) Blu-ray vs HD-DVD (Phase
plot)

Figure 4.6: (a-c) Real web-search interest vs time plots for pair of competitors (see Section 4.5.1
for more details) (d-f) Corresponding Phase plots. As expected from our WTA result, note that
the stronger rival dominates and weaker product almost dies-out.

4.5.3 Case-Studies using Real Data

Figure 4.6 shows the historical data we collected from Google-Insights. In short, they
provide corroboration to the WTA phenomenon in real-world as well.

Figures 4.6(a-c) show the web-search interest vs time for the three pairs of competitors
we discussed before in the setup. Figures 4.6(d-f) show the corresponding phase-plots
(the final data-point is marked by a diamond). Firstly, as it is real data, due to various
reasons they do show significant deviations over the smooth steady states observed
from our models (e.g., the spikes in Figure 4.6(c) denote Christmas shopping sales).
Nevertheless, they broadly give positive evidence for the WTA result e.g., in (a-b) and
(d-e), even though Digg and MySpace had a head-start and even dominate for a while,
the stronger product (Reddit and Facebook) eventually takes-over. The phase plots
also show the trajectories in effect similar to the ones found in our simulations. Clearly,
in all the plots we can see that the eventual winner and dominant competitor (Reddit,
Facebook, Blu-ray) almost completely wipes-out the weaker competitor, just as our result
predicts.

66

4.6 Discussion

There are several subtle points, that we deferred until now, for clarity of exposition.
Specifically, here we discuss the following issues:
Question: Explain the counter-examples, of ‘winner takes all’. If ‘winner takes all’, how
come there are competing products where the weaker one still has a non-trivial market
share, like ‘Windows’, ‘Mac-os’ (and ‘Linux’)?
Answer: Not ‘level-fields’; or not enough time. There are indeed numerous cases where
two (or more) competing products or ideas, co-exist. For example, in the OS ‘wars’,
MS-windows has a large market share, with mac-OS having a smaller, but near-constant
market share. There are several settings that could cause such deviations.

• One is that we are violating our assumption of ‘fair-play’, e.g., some nodes (like
enthusiastic AppleTM fans) exhibit much lower infection probability �, or even
zero for one of the viruses. Thus by catering to just that niche where it is much
stronger, the competitor can survive.

• A second cause is weak connectivity, like a bar-bell graph with a narrow bridge,
and not enough time to reach steady-state.

• A third cause is viruses of near-equal strength. We omit the simulation results
here, but similar-strength viruses take too long to reach WTA. This is analogous to
the case of two near-equal-strength tennis players, that need several games, and
several tie-breakers, before a winner emerges.

Question: Has this WTA phenomenon appeared in other settings?
Answer: Yes, with simulation results. In epidemiology studies, WTA is referred to as
‘competitive exclusion’ e.g. see [CCHL96, CCHL99, AA05, AM82]. However, they typically
did simulations, or they only studied homogenous or very structured topologies like
cliques.

Question: How about other propagation models (SIR etc)? Will WTA, then?
Answer: We conjecture that the answer is ‘yes’. The full analysis for SIR (= life-long
immunity, like mumps) SIRS (= long, but not permanent, immunity) and more, are the
focus of our ongoing research. We conjecture that similar results may hold, too, extrapo-
lating from the results of (Prakash et al. [PCF+11]): that work showed that, for a single
virus, the epidemic threshold has the same form, for almost any virus propagation model.

Question: Will WTA hold, under partial mutual immunity?
Answer: Future work - no conjectures. In this work, we assume full mutual exclusion,
that is a given node will have at most one of the two viruses/products (iPhone/Android),
at any given point in time, but not both. There are marketing, and biological settings
that a person may have both products/viruses. Will WTA hold, then? This seems like
a difficult question, and left for future work. We suspect that the answer will not be a
simple ‘yes’ or ‘no’.

67

4.7 Conclusions

In summary, we tackled the setting of two competing products (or viruses or ideas etc.)
spreading over a network and studied the problem of what happens in the end (i.e. in
the steady state). In addition to problem formulation and getting ecological concepts to
web-like phenomena, the main contributions of our work are as follows:

1. WTA Result and Proof : We provided a theoretical analysis of the propagation model
for arbitrary graph topology, proving that the ‘winner-takes-all’ i.e. the stronger
virus dominates and wipes-out the weaker virus (if it is above threshold). See
Theorem 4.1.

2. Experiments and Case-studies: We also demonstrated our result using extensive
simulations on real and synthetic networks showing that they match exactly with
our predictions. Moreover, using case-studies of historical data of competing
products (Blu-ray/HD-DVD, Facebook/MySpace, Reddit/Digg), we provided
positive evidence of WTA in real-life.

68

Chapter 5

Competing Viruses: Co-existence

In the previous chapter, we studied competing viruses spreading over a network which
are mutually exclusive and under perfect competition i.e. if a user buys product ‘A’ (or
gets infected with virus ‘X’), she will never buy product ‘B’ (or virus ‘Y’). This is not
always true: for example, a user could install and use both Firefox and Google Chrome
as browsers. Similarly, one type of flu may give partial immunity against some other
similar disease.

In the case of full competition, we proved that ‘winner takes all,’ that is the weaker
virus/product will become extinct. In the case of no competition, both viruses survive,
ignoring each other. So a natural question is: what happens in-between these two
extremes?

In this chapter, we show that there is a phase transition: if the competition is harsher
than a critical level, then ‘winner takes all;’ otherwise, the weaker virus survives. Our
contributions are: (a) the problem definition, which is novel even in epidemiology
literature [AM91, Het00, Ste09] (b) the phase-transition result and (c) experiments on
real data, illustrating the suitability of our results.

5.1 Introduction

Given two partially competing products (like Firefox and Google Chrome; or Android
and iPhone), is it possible that they both survive?

The well-known Competitive Exclusion Principle in ecology states that when two
species are in complete competition under constant conditions, the more fit one will
eventually drive the less fit one into extinction. A more common but less well understood
scenario is one where the competing species induce partial immunity against one another.
There has been significant work trying to elucidate the conditions under which such
partial immunity leads to coexistence [LCC+09, CCF+10, LSN96] but a complete theory
has not yet emerged.

Here, we study the general case of two virus strains with partial (and symmetric)
cross-immunity spreading over a fixed network topology. In addition to the implications

69

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250

S
e
a
rc

h
 Q

u
a
n
tit

y

Time

κ1
κ2

Hulu
Blockbuster

(a) Hulu and Blockbuster

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140 160 180

S
e
a
rc

h
 Q

u
a
n
tit

y

Time

κ1
κ2

Firefox
Chrome

(b) Firefox and Chrome

Figure 5.1: Plots of real web-search interest vs. time for pairs of competitors with our model
fitted to the data.

for the evolutionary problem discussed above, our results have direct relevance to the
spread of rumors and opinions in social networks and market penetration of products.

The contributions of this work are the following:

• the discovery that there is a phase transition, that is, the weaker virus/product may
survive, if the cross-immunity satisfies a threshold condition. This seemed to be an
open problem even within the epidemiology community [LCC+09]

• experiments on real data, showing that our model fits well

Figure 5.1 shows the time-plots for partially competing products Hulu vs. Blockbuster
(a), and Google Chrome vs. Firefox (b). They plot (normalized) count of Google queries,
versus time. We fit our model to the data1 and plot it as well. Notice that it captures the
trends well.

The rest of the chapter is organized in the usual way: we review related work in § 5.2
and formulate the problem giving details of our model in § 5.3. We give the analysis and
proof of our phase-transition and coexistence result in § 5.4 and demonstrate the validity
of the results using simulations and real-world case-studies in § 5.5. Finally, we discuss
other subtle aspects of the model in § 5.6 and conclude in § 5.7.

5.2 Related Work

We give a very brief summary of the related work. For much of the prior work in this
area please see the related work in the previous chapter. As mentioned before, most
works deal with single viruses. Our previous chapter looked at a two-virus SIS model on
arbitrary graphs, but focused on the case where there was full mutual immunity between
viruses. The main result says that, in such a setting, the stronger virus will push the
weaker one to extinction (‘winner takes all’), even if the weaker one would be able to
survive on the network when left alone.

1Fitted with www.alexbeutel.com/jsplot/kdd2012.html

70

www.alexbeutel.com/jsplot/kdd2012.html

Partial immunity models have received much attention in epidemiology. For example,
[LCC+09] suggests a differential equation based model and analyzes it via simulation.
However, for this and most other models of interest, a complete analytical solution has
been beyond reach.

Distinguishing features of current work: In short, none of the previous work fulfills
all the conditions of this current work: (a) analytical proof of ✏critical, the critical value of
the competition threshold (b) closed-form steady-state behavior (c) under an SIS (flu-like)
model.

5.3 Problem Formulation

In this section, we formulate our problem, giving details about the model used and the
assumptions. Table 5.1 explains the terminology we have used in the chapter. Bold letters
typically denote matrices (A, M etc.).

Table 5.1: Symbols and Definitions

Symbol Definition and Description
SI1|2S our competing viruses model
�1(or �2) attack rate of virus 1 (or virus 2)
�1(or �2) cure rate of virus 1 (or virus 2)
✏ Interaction factor between virus 1 and 2
A adjacency matrix of the underlying graph
�1(M) largest eigenvalue of matrix M
� �1(A)
�1 ��1/�1 (strength of virus 1)
�2 ��2/�2 (strength of virus 2)
I1 (or I2) The number of nodes infected with only virus 1 (or only virus 2)
I1,2 The number of nodes infected with both virus 1 and virus 2
1 Fraction of nodes infected with virus 1 ((I1 + I1,2)/N)
2 Fraction of nodes infected with virus 2 ((I2 + I1,2)/N)
i12 Fraction of nodes infected with both viruses (I1,2/N)
i1 (or i2) Fraction of nodes infected with virus 1: I1/N (or virus 2: I2/N)
⇤

1 , ⇤
2 , i⇤12 The solution at the coexistence equilibrium (if exists)

5.3.1 The propagation model

We assume that the competing viruses are spreading on the network according to a
propagation model, which we describe next. We call our propagation model SI1|2S, based

71

S

I1 I2

I1,2

�1
�1

✏�2

�2

�2
�2

✏�1

�1

Figure 5.2: State Diagram for a node in the graph under our partial-competition model.

on the popular “flu-like” SIS (Susceptible-Infected-Susceptible) model [Het00]. SI1|2S
denotes Susceptible - Infected1 or 2 - Susceptible. Each node in the graph can be in one of
four states: Susceptible (healthy), I1 (infected by virus 1), I2 (infected by virus 2), or I1,2

(infected by both virus 1 and virus 2). The state transition diagram as seen from a node
in the network is shown in Figure 5.2. We could have extended other single virus models
as well, but we believe that our model is a reasonable starting point, and we leave the
analysis of other models as future work.

Healing (virus death) rate: �. If a node is in an infected state (I1, I2, or I1,2), it recovers
on its own with some rate, �1 for virus 1 or �2 for virus 2. The healing rate is inversely
related with the virus’s strength: a high � means that nodes that are infected heal quickly.
For example, a product that lasts a long time such that people using it rarely consider
alternatives would be modeled with a low � value.

Attack (virus transmission) rate: �. An infected node can spread the virus to its
neighboring nodes, and the node susceptibility is captured by �1 and �2. Specifically, an
infected node transmits its infection to each of its healthy neighbors independently at rate
�1 (or �2). The more often an idea or product is shared with friends, frequently referred
to as being “viral,” the higher the value for �.

Virus interaction factor: ✏. A node infected with one virus may be more or less
susceptible to being infected by the other virus, as determined by the factor ✏. The
transmission rate for a virus becomes ✏�1 (or ✏�2) when a node is already infected with
one virus. Specifically, if a node is infected with virus 1, each of its neighbors infected
with virus 2 have a transmission rate to it of ✏�2; a node infected with virus 2 can only
be infected with virus 1 at a rate of ✏�1.

This is a novel generalization of the single-virus SIS model to a multiple-virus scenario.
The value of ✏ can describe many different virus interactions. If ✏ = 0 then the viruses
are fully mutually immune, and 0 < ✏ 6 1 suggests an amount of competition between
viruses.

72

Fair-play: We assume that the competitors are playing a ‘fair game’: All nodes in the
network have the same model parameters (�’s, �’s, ✏) for each of the viruses and behave
according to the state-diagram in Figure 5.2.

5.3.2 Problem Statement

We are now in a position to state the problem formally. We assume the underlying
network is connected - otherwise we just have separate disconnected problems.
Interacting viruses problem
Given: An undirected connected graph G, and the propagation model (SI1|2S) parameters
(�1, �1 for virus 1, �2, �2 for virus 2, and ✏)
Find: What are the possible fixed points for the system? In particular, for what values of
✏ is there a fixed point for which both virus 1 and virus 2 survive?

5.3.3 Model Formulation for a Clique

For a clique, the following differential equations fully describe the transitions of the
system, seen in Figure 5.2. Here I1, I2, and I1,2 are the number of nodes infected with
only virus 1, only virus 2, and both virus 1 and 2 respectively. N is the total number of
nodes, and S is the number of susceptible nodes (S = N- I1 - I2 - I12).

dI1

dt
= �1S(I1 + I12) + �2I12 - �1I1 - ✏�2I1(I2 + I12) (5.1)

dI2

dt
= �2S(I2 + I12) + �1I12 - �2I2 - ✏�1I2(I1 + I12) (5.2)

dI12

dt
= ✏�1I2(I1 + I12) + ✏�2I1(I2 + I12)-(�1 + �2)I12 (5.3)

5.4 Results and Proofs

The goal of our analysis is to find for what values of ✏ is there an equilibrium point
for which both virus 1 and virus 2 survive. We find that there is an ✏critical such that if
✏ > ✏critical then an equilibrium point for which the viruses coexist.

5.4.1 Formulating the problem

At an equilibrium point, all derivatives are zero. Thus, we can find a simple equation for
I12

✏(�1 + �2)I1I2 = (�1 + �2 - ✏(�1I2 + �2I1))I12

73

Lemma 5.1. The number of people infected by both virus 1 and virus 2 will obey the following
equation:

I12 = I1I2✏(�1 + �2)/(�1 + �2 - ✏(�1I2 + �2I1))

Proof. Trivial, given the above.

Thus we have the expected three equilibrium points

• I1 = I2 = I12 = 0
• I1 = I12 = 0, I2 = N- �2

�2

• I2 = I12 = 0, I1 = N- �1
�1

and possibly one for which I1, I2 > 0 and obeys the differential equations outlined:

0 = �1S(I1 + I12) + �2I12 - �1I1 - ✏�2I1(I2 + I12) (5.4)
0 = �2S(I2 + I12) + �1I12 - �2I2 - ✏�1I2(I1 + I12) (5.5)
0 = ✏�1I2(I1 + I12) + ✏�2I1(I2 + I12)- (�1 + �2)I12 (5.6)

We rework these equations to be primarily in terms of 1, 2, i12, where 1 = (I1 +
I12)/N, 2 = (I2 + I12)/N, i12 = I12/N. As such, each of these terms represent a fraction of
the population that is infected. We first convert the constraints to

N1�1[1 - 1 - (1 - ✏)i2] = �11 (5.7)
N2�2[1 - 2 - (1 - ✏)i1] = �22 (5.8)

✏N(�11i2 + �22i1) = (�1 + �2)i12 (5.9)

where i1 = I1/N and i2 = I2/N.
Manipulating (5.9) to remove i1 and i2, we find

✏12[�1�1 + �2�2] = i12[�1+�2 + ✏�1�11 + ✏�2�22] (5.10)

Remember, because we are working with a clique the virus strengths are �1 = N�1/�1

and �2 = N�2/�2.

5.4.2 Results

From these constraints, we look to find a lower bound on ✏, such that for any less
competition there can be coexistence.

Theorem 5.1 (Epsilon Threshold Theorem). Given a fully connected graph with the SI1|2S
model parameters �1 > �2, an equilibrium point for which 1, 2 > 0 exists if ✏ > ✏critical, where

✏critical =

�
�1-�2

�2(�1-1) if �1 + �2 > 2
2(1+

p
1-�1�2)

�1�2
if �1 + �2 < 2

(5.11)

74

Proof. In Lemma 5.3 we give the possible fixed point for coexistence. In Lemma 5.4 we
show the constraints for the fixed points to be real, which contribute to the bounds in
(5.11). In Lemmas 5.5 through 5.9 we give the proofs for the constraints on the fixed
points being positive, and in Lemma 5.10 we give the proof that the fixed points are less
than one.

Next we describe all of the Lemmas, which contribute to the proof.

Lemma 5.2. If a fourth equilibrium point exists, then it should satisfy the follow equation:

✏(2 - 1) = 1/�1 - 1/�2 (5.12)

Proof. Since we are only looking for non-zero solutions for 1 and 2, we can eliminate
them in (5.7) and (5.8).

1 - 1 - (1 - ✏)i2 = 1/�1 (5.13)
1 - 2 - (1 - ✏)i1 = 1/�2 (5.14)

Subtracting, we get the lemma.

Lemma 5.3 (Coexistence Lemma). If an equilibrium
point exists for which both viruses coexist in the network, 1, 2 > 0, it will be at:

i12 = ✏12

�1�1 + �2�2

�1 + �2 + ✏�1�11 + ✏�2�22

�
(5.15)

1 = 2 +
1
✏

✓
1
�2

-
1
�1

◆
(5.16)

2 =
-2✏�1�2 + ✏2�1�

2
2 ± ✏

p
�1�

3/2
2
p

4-4✏+✏2�1�2

2✏2�1�2
2

(5.17)

We will denote the solution to these three equations for fixed-points as i⇤12, ⇤
1 , and ⇤

2 respectively.

Proof. Equation (5.15) is a simple rearrangement of equation (5.10), and equation (5.16)
is a rearrangement of equation (5.12). Plugging (5.15) and (5.16) into (5.13) allows us to
solve for 2 resulting in (5.17).

For ⇤
2 (and by extension ⇤

1 and i⇤12) to be a valid fixed-point, ⇤
2 must be: (a) real, (b)

⇤
2 > 0, (c) ⇤

2 6 1.

Lemma 5.4. In order for fixed-point solution ⇤
2 , and by extension ⇤

1 and i⇤12, to be real valued,
either �1�2 > 1 or

✏ <
2(1 -

p
1 - �1�2)

�1�2
or ✏ >

2(1 +
p

1 - �1�2)

�1�2
.

75

Proof. This constraint comes from the square root in equation (5.17) for ⇤
2 . We analyze

the quadratic equation 4 - 4✏+ ✏2�1�2 (in terms of ✏) from inside the square root. It is a
simple, upward-facing parabola. Solving for the roots of the quadratic equation in terms
of ✏ we find

✏ =
2(1 ±

p
1 - �1�2)

�1�2
.

For �1�2 > 1 there is no solution because the equation is positive for all values of ✏.
Thus, if �1�2 > 1 then ⇤

2 must be real valued. For �1�2 < 1 a portion of the parabola is
negative. Therefore, we require that ✏ be in the positive region of the quadratic equation,
where ✏ is less than the lower root or greater than the upper root.

To find when ⇤
2 > 0, we consider the cases above for which it is real. As we explained

before, we will focus on the lower bound for ✏.

Lemma 5.5. For strengths �1�2 > 1, fixed-point ⇤
2 is monotonically increasing as a function of

✏.

Proof. Taking the derivative of (5.17) we get

±(-2 + ✏)
p
�2 +

p
�1
p

4 - 4✏+ ✏2�1�2

✏2p�1�2
p

4 - 4✏+ ✏2�1�2
.

Because �1�2 > 1, all of the square roots are real valued. The denominator is clearly posi-
tive, so to prove that ⇤

2 is monotonically increasing, we must show that the numerator is
positive. To show that the numerator is always positive we would like to show that

±(-2 + ✏)
p
�2 <

p
�1

p
4 - 4✏+ ✏2�1�2

or alternatively

1 <
�1

�2

4 - 4✏+ ✏2�1�2

4 - 4✏+ ✏2 .

Because �1 > �2 the first term is clearly > 1. For �1�2 > 1 (and of course ✏ > 0) this is
trivially true.

Lemma 5.6. Fixed-point solution -
2 , defined by

-
2 =

-2✏�1�2 + ✏2�1�
2
2-✏
p
�1�

3/2
2
p

4-4✏+✏2�1�2

2✏2�1�2
2

, (5.18)

can only be positive when +
2 , defined by

+
2 =

-2✏�1�2 + ✏2�1�
2
2+✏
p
�1�

3/2
2
p

4-4✏+✏2�1�2

2✏2�1�2
2

, (5.19)

is positive.

76

Proof. As a simple case, for �1�2 > 1, -
2 < 0 and thus invalid for all ✏ > 0. As ✏

approaches 0, it is clear that -
2 ! -1, and as ✏ ! 1, we see that -

2 approaches 0.
Since from the previous lemma we know that it is monotonically increasing, -

2 < 0 for
�1�2 > 1.

If we do not restrict �1 and �2, it is still clear that -
2 < +

2 for all ✏ > 0, since the last
term is always positive. We will see later that +

2 < 1 for all ✏ > 0. Therefore, the range
for which -

2 is valid is a strict subset of that for which +
2 is valid.

Because -
2 is only valid when +

2 is valid, it has no impact on the phase transition
claimed in Theorem 5.1. As a result, we will focus on +

2 for the remainder of the proof
and, with a slight abuse of notation, use ⇤

2 to denote +
2 .

Lemma 5.7. When strengths �1�2 > 1, the fixed-point for the population infected by virus 2 is
positive, ⇤

2 > 0, if and only if

✏ >
�1 - �2

�2(�1 - 1)
.

Proof. Solving equation (5.19) for ⇤
2 = 0 produces ✏ = �1-�2

�2(�1-1) . Because ⇤
2 is monotoni-

cally increasing in this region (�1�2 > 1), for all ✏ greater than this solution, ⇤
2 > 0, and

for all ✏ less than this solution ⇤
2 6 0.

Lemma 5.8. If virus strengths �1 + �2 < 2, then the fixed-point for the population infected by
virus 2 is positive, ⇤

2 > 0, for

✏ >
2(1 +

p
1 - �1�2)

�1�2
.

Proof. For ⇤
2 to be positive, the numerator of (5.19) must be positive. We can reduce this

as follows:

- 2✏�1�2 + ✏�1�
2
2 + ✏

p
�1�

3/2
2

p
4 - 4✏+ ✏2�1�2

= ✏�2(
p
�1�2

p
4 - 4✏+ ✏2�1�2 - 2�1 + ✏�1�2)

> ✏�2(0 - 2�1 + 2(1 +
p

1 - �1�2))

= 2✏�2(-�1 + 1 +
p

1 - �1�2)

For this to be positive we must have
p

1 - �1�2 > �1-1, which is true for �1+�2 < 2.

Lemma 5.9. If virus strengths �1 + �2 > 2 then the fixed-point for the population infected by
virus 2 is positive, ⇤

2 > 0, for

✏ >
�1 - �2

�2(�1 - 1)
.

77

Proof. Again, for ⇤
2 to be positive, the numerator of (5.19) must be positive. We can

reduce this as follows:

- 2✏�1�2 + ✏�1�
2
2 + ✏

p
�1�

3/2
2

p
4 - 4✏+ ✏2�1�2

= ✏�2(
p
�1�2

p
4 - 4✏+ ✏2�1�2 - 2�1 + ✏�1�2)

> ✏�2

p
�1�2

s
�1(-2+�1+�2)2

�2(-1 + �1)2 -2�1+�1�2

✓
�1-�2

�2(1-�1)

◆!

= ✏�1�2

✓
2 - �1 - �2

1 - �1
- 2 +

�1 - �2

1 - �1

◆
= 0

Lemma 5.10. The fixed-point for the population infected by virus 2 is valid, ⇤
2 6 1, for �1 > �2

and ✏ > 0.

Proof. The constraint ⇤
2 6 1 is equivalent to

-2✏�1�2 - ✏2�1�
2
2 + ✏

p
�1�

3/2
2

p
4 - 4✏+ ✏2�1�2 < 0.

This can be simplified as follows:

p
�1�2

p
4 - 4✏+ ✏2�1�2 < 2�1 + ✏�1�2 (5.20)

�1�2(4 - 4✏+ ✏2�1�2) < 4�2
1 + ✏2�2

1�
2
2 + 4✏�2

1�2 (5.21)
�1�2 - ✏�1�2 < �2

1 + �2
1�2 (5.22)

�2

�1

1 - ✏

1 + ✏�2
< 1 (5.23)

The simplification to (5.23) makes it clear that the lemma is true for �1 > �2 > 0.

As such, for any interaction factor ✏ > ✏critical, we have proved that ⇤
1 and ⇤

2 are valid
equilibrium points for which the population infected by each virus 1, 2 > 0. 2

5.5 Experiments

We demonstrate our result using (a) simulation experiments and (b) case studies using
real data in this section.

78

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1

F
o

o
tp

ri
n

t
(F

ra
ct

io
n

 o
f

P
o

p
u

la
tio

n
)

Interaction Factor (ε)
εcritical

κ1 (Simulation)
κ2 (Simulation)

i1,2 (Simulation)
κ1 (Theory)
κ2 (Theory)

i1,2 (Theory)

(a) �1 = 6, �2 = 4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 50 100 150 200 250 300

F
o

o
tp

ri
n

t
(F

ra
ct

io
n

 o
f

P
o

p
u

la
tio

n
)

Time

κ1
κ2

i1,2

(b) ✏ = 0.4 > ✏critical = 1, �1 = 6, �2 = 4

Figure 5.3: Coexistence is possible: Results from simulations on clique of size 1000 with theoretical
fixed points overlayed. (a) shows the steady-state population values, 1, 2, and i12, for each
value of ✏, with the theoretical ✏critical marked. (b) shows the development of the two viruses
over time for ✏ > ✏critical. Notice that both viruses survive as expected.

5.5.1 Setup

Without loss of generality, in our experiments we assumed that the first virus is the
stronger virus. We primarily focus on the case where �1 > �2 > 1. For our simulations
we use �1 = 6 and �2 = 4.

We run a simulation on a fully-connected clique of 1000 nodes. We vary ✏ around
our expected threshold and for each value of ✏ perform 10 runs over 4000 time steps. On
each run we begin by infecting 30 nodes at random with each virus.

We analyze the results in two ways. First, we create a steady-state plot of mean values
and standard deviations for 1, 2, and i12 at steady-state over a range of values for ✏.
Over the results of the simulation we draw the behavior predicted by our results. Second,
for one ✏ > ✏critical we track each virus’s development over time with a time-plot. The
time-plot takes the average number of nodes infected (1, 2, and i12) at each time step
and plots this against time. Although the simulations were run for 4000 time steps, the
plots are truncated to give more detail to the initial fluctuations of the virus counts.

5.5.2 Simulation Results

Figure 5.3 displays our results. In short, the plots agree exactly with our result, as
expected. Figure 5.3(a) shows the steady-state plot for the two viruses, and the theoretical
predictions closely match the simulation results. Similarly, the viruses’ growth as shown
in the time-plot in Figure 5.3(b) matches what is expected.

For the steady-state plot, we expect the steady-state value to be one of the other
fixed points where at least one virus dies out for ✏ 6 ✏critical and then a co-existence for
✏ > ✏critical. In Figure 5.3(a) we see for �1 > �2 > 1 and ✏ = 0, winner takes all, as was

79

proven in [PBRF12]. However, for ✏ > ✏critical we see a coexistence between the viruses as
expected; this is true even when the viruses are competing (✏ < 1). For ✏ = 0.4 > ✏critical

we have the time-plot, Figure 5.3(b), showing the growth of both viruses to steady-state
from a small infection in the system.

5.5.3 Case-Studies using Real Data

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250

S
e
a
rc

h
 Q

u
a
n
tit

y

Time

κ1
κ2

Hulu
Blockbuster

(a) Hulu and Blockbuster

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140 160 180
S

e
a
rc

h
 Q

u
a
n
tit

y
Time

κ1
κ2

Firefox
Chrome

(b) Firefox and Chrome

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500 600 700 800 900 1000

S
e
a
rc

h
 Q

u
a
n
tit

y

Time

κ1
κ2

Firefox
Chrome

(c) Firefox and Chrome (Prediction)

Figure 5.4: Real web-search interest vs. time plots for pairs of competitors with our model fitted
to it. (c) Predicts steady state values based on our model. Data acquired from Google Trends.

We collected historical data for ‘web-search interest’ for various competing products
from the Google-Insights website2, which aims to “provide insights into broad search
patterns.” This allows us to use the data as a proxy for sales/interest for each product.
We used the following pairs of rival products:

1. Hulu3 and Blockbuster4: Although not direct competitors, both offer video enter-
tainment services, though under very different models.

2www.google.com/insights/search/
3www.hulu.com
4www.blockbuster.com

80

www.google.com/insights/search/
www.hulu.com
www.blockbuster.com

2. Firefox5 and Google Chrome6: Two rival web browsers.

We consider both pairs of products to be examples of cases where there is partial mutual
immunity; people can use both products, but the use of one we expect would detract
from the use of the other. While our model does not describe the situations perfectly, we
believe it is a good approximation.

In Figure 5.4 we show plots of the web-interest vs. time for both pairs of products,
along with our model fitted to the data7. In Figure 5.4(a), we used a virus interaction
factor of ✏ = 0.7 (along with virus parameters �Hulu = 0.04, �Hulu = 0.0007, �Blockbuster =
0.05, �Blockbuster = 0.00045). In Figure 5.4(b), we used a virus interaction factor of ✏ = 0.6
(along with virus parameters �Firefox = 0.01, �Firefox = 0.000095, �Chrome = 0.01, �Chrome =
0.00015). In Figure 5.4(c) we use the same model as (b) but let the model continue to see
the projected steady state behavior. We note that the plots begin when Hulu and Chrome
are first introduced and with Blockbuster and Firefox at a previous steady-state behavior.
In each of these fittings we see that our model fits the data well. The fact that the model
fits the data well demonstrates the suitability of our SI1|2S model.

5.6 Discussion

5.6.1 A general upper bound

Conjecture 5.1 (Epsilon Threshold Upper Bound). Given an arbitrary graph with the SI1|2S
model parameters �1 > �2 > 1, an equilibrium point for which both virus 1 and virus 2 survive
exists if ✏ > ✏critical, where

✏critical 6
1
�2

(5.24)

Justification: Since �1 > �2 > 1 and 0 < ✏ < 1, we know that both virus 1 and virus 2
would be strong enough to survive independently but there is some competition between
them. Because of the competition, as virus 1 spreads to more nodes, virus 2’s attack rate
on average decreases and thus its strength decreases. Therefore, if we overestimate the
strength or number of people with virus 1, this only makes it more difficult for virus 2
survive and thus decreases the maximum amount of competition virus 2 can handle,
increasing ✏critical. To simplify the problem, we assume that every person is infected with
virus 1 (as if virus 1 was infinitely strong). In this case, a node can only be in state I1 or
I1,2, and the probability of a node with virus 2 infecting a neighbor is always ✏�2. This is
now equivalent to a one virus model where the strength of virus 2 is � 0

2 = ✏�2. Therefore,
as shown in previous research [CWW+08, GMT05, PCF+11], if � 0

2 > 1 then virus 2 will

5www.mozilla.org/en-US/firefox/new/
6www.google.com/chrome
7Fitted with www.alexbeutel.com/jsplot/kdd2012.html

81

www.mozilla.org/en-US/firefox/new/
www.google.com/chrome
www.alexbeutel.com/jsplot/kdd2012.html

survive. In this case, ✏critical =
1
�2

. However, because this is a relaxation of the original
problem, we know that this is an upper bound and in fact ✏critical 6 1

�2
.

5.6.2 Case-Study: Qualitative Analysis

We also consider the example of educational ideas, and specifically sex education, as a
virus. Sociology literature analyzing the success of sex education programs notes the
impact of network effects and social structure on sex education success [BB05]. We match
education policy to our SI1|2S model and analyze the implications.
Policy 1: Abstinence-Only Education Abstinence-only education teaches abstinence
until marriage as the only way to live a healthy life, with students often taking an absti-
nence pledge. Under our model, virus 1 is believing in abstinence (through education or
pledge) and virus 2 is sexual activity. Therefore, those who are in I1 have taken a pledge
of abstinence, those who are in I2 are sexually active, and those people who are in S do
not believe in abstinence but are not sexually active either. It is obviously impossible to
both be following an abstinence pledge and to be sexually active so nobody can be in
state I1,2. Equivalently in this case there is full mutual immunity or ✏ = 0.
Model 1 Predictions and Results Based on this fit, because ✏ = 0, our model predicts
‘winner takes all:’ the weaker virus dies out and the stronger virus survives. Sociology
research [BB05], studying over 11,000 people over 7 years, notes that of the 2399 people
claiming to have taken an abstinence pledge, 1622 (67%) over time forgot. This suggests
that �Abstinence < �Sexual Activity, and as a result, in the long run sexual activity will win over
abstinence.
Policy 2: Comprehensive Sex Education Comprehensive sex education teaches numer-
ous methods to have a safe, healthy sex life, discussing both contraception and abstinence.
Matching this to our model, virus 1 is being educated in safe-sex practices and valuing
their importance and virus 2 is sexual activity. Therefore, those who are in I1 have been
educated about safe-sex practices and believe they are important but are not sexually
active, those in I2 are sexually active but do not practice safe sex, those in I1,2 practice
safe-sex, and those in S are neither educated on safe-sex practices nor sexually active.
Here we expect little to no competition between the two viruses and thus have an ✏ value
close to, if not equal to, 1.
Model 2 Predictions and Results Because ✏ is close to 1, we expect that ✏ > ✏critical. As a
result, it is possible for there to be coexistence of the two viruses, such that there can be a
steady-state in which people are sexually active and practice safe-sex. This appears to
match sociology literature claiming that those who initially use condoms will keep using
condoms [BB05].
In summary, our model qualitatively agrees with sociology research and offers a plausi-
ble explanation for the results of the study. Additionally, these two cases demonstrate
the value of a phase transition. In the first case, the model suggests winner takes all and
the ineffectiveness of abstinence-only education. On the contrary, for policy 2, the model

82

predicts coexistence, which agrees with the findings, and is better for society.

5.6.3 Subtle Points

There are several subtle points, that we deferred until now, for clarity of exposition.
Specifically, here we discuss the following issues:

What does it mean for ✏ > 1?

As before, the virus 2 transmission rate for a virus infected with virus 1 becomes ✏�2 and
the virus 1 transmission rate for a virus infected with virus 2 becomes ✏�1. However,
because ✏ > 1 the transmission rate for each virus increases for neighbors that are already
infected. We consider this to be a form of cooperation between the viruses (products,
ideas, etc.).

This pattern of cooperation between products is common in product ecosystems.
An example of this is that people who have an iPod are more likely to buy music and
videos through Apple’s iTunes. Making use of such cooperation can be seen in ‘freebie
marketing’ or the ‘razor and blades business model,’ in which the company producing
razor blades sells the razors at an artificially low price creating a market for the blades.
This method of tightly integrating products is common in a variety of industries.

What happens if �2 or �1 6 1?

Because �1 > �2 there are two cases we can analyze. The first is when �1 > 1 > �2,
in which the second virus is too weak to survive on its own. We will refer to this as
the “piggyback setting,” because virus 2 can only survive with the help of the first.
The second condition is when 1 > �1 > �2, where both viruses are independently too
weak to survive. We will refer to this as the “teamwork setting,” because only through
cooperation can both viruses survive. In each of these cases, Theorem 5.1 still holds -
plugging in �1 and �2 we find an ✏critical for which a fixed point in which 1, 2 > 0 exists.
This suggests that even if both viruses are independently too weak to survive on their
own, with enough cooperation they can.

To test our theorem, we ran similar simulations where either one or both viruses were
too weak to independently survive. In Figure 5.5(a) we show the steady-state plot for the
piggyback case of �1 > 1 > �2. As expected, for ✏ = 1 when the viruses are independent,
virus 1 survives but virus 2 is not strong enough and dies out. For a sufficient amount of
cooperation, ✏ > ✏critical, we find that virus 2 can survive as well. We see in Figure 5.5(c),
the corresponding time-plot where ✏ = 3.5 > ✏critical, that once virus 1 grows, virus 2 is
able to survive as well.

We also simulated the teamwork case, where neither virus is independently strong
enough to survive, 1 > �1 > �2. In Figure 5.5(b) we show the steady-state plot for this
case. Again, the theoretical result and predicted phase-transition match the simulation

83

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5 6 7

F
o
o
tp

ri
n
t
(F

ra
ct

io
n
 o

f
P

o
p
u
la

tio
n

)

Interaction Factor (ε)
εcritical

κ1 (Simulation)
κ2 (Simulation)

i1,2 (Simulation)
κ1 (Theory)
κ2 (Theory)

i1,2 (Theory)

(a) �1 = 3, �2 = 0.5

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10 12 14

F
o
o
tp

ri
n
t
(F

ra
ct

io
n
 o

f
P

o
p
u
la

tio
n

)

Interaction Factor (ε)
εcritical

κ1 (Simulation)
κ2 (Simulation)

i1,2 (Simulation)
κ1 (Theory)
κ2 (Theory)

i1,2 (Theory)

(b) �1 = 0.8, �2 = 0.6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500 600 700 800 900 1000

F
o
o
tp

ri
n
t
(F

ra
ct

io
n
 o

f
P

o
p
u

la
tio

n
)

Time

κ1
κ2

i1,2

(c) ✏ = 3.5, �1 = 3, �2 = 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50 60 70 80 90 100

F
o
o
tp

ri
n
t
(F

ra
ct

io
n
 o

f
P

o
p
u

la
tio

n
)

Time

κ1
κ2

i1,2

(d) ✏ = 8, �1 = 0.8, �2 = 0.6

Figure 5.5: With enough collaboration, even weak viruses can survive. Results from simulations
on population of N = 1000 with theoretical values overlayed, and 1 > �2. The first column, (a)
and (c), is the “piggyback” case where just virus 2 is too weak to survive. The second column, (b)
and (d), is the “teamwork” case where neither virus is on its own strong enough to survive. The
top row gives the steady-state plots, showing the steady-state footprint vs. the interaction factor
✏. The second row gives the time-plots, showing the infection footprint developing over time.

results. For ✏ = 1, the two viruses are independent and, since they cannot survive
on their own, die out. In this case, the phase transition is based on the second part of
Theorem 5.1 where �1 + �2 < 2, and as such the bound is a result on the restriction of 2

being real. As such, at ✏critical both 1, 2 > 0 rather than equal to 0. We see here at the
threshold a large amount of uncertainty in the simulation but as we move away from the
threshold the simulation follows this new fixed point. Interestingly, we must initially
infect a large portion of the graph for the system to go to this fixed point, and not die out.
For ✏ = 7.75 > ✏critical, Figure 5.5(d) shows the time-plot, demonstrating that both viruses
quickly reach steady-state with a high amount of overlap.

5.7 Conclusions

We defined and studied the problem of partial competition, where two viruses/products
provide partial immunity against each other.

84

The main contributions of our work are as follows:

1. Problem Definition: The problem is novel, in the data mining and web mining
communities, and even in the epidemiology literature [AM91, Het00, Ste09].

2. Threshold Result and Proof : We showed that there is a phase transition: ‘winner takes
all,’ until the competition level drops below a critical value. Above this critical
value we find a closed-form steady-state solution with coexistence.

3. Experiments and Case-studies: We showed results from real settings (like browsers -
Firefox vs Google Chrome), which agree with our model.

85

Part II

Algorithms

86

Overview

We turn our attention to managing cascade-like processes on networks. As we will see,
these problems are closely related to the epidemic threshold problems we addressed in
the previous part of this thesis. We solve two major problems here:

• Effective and Efficient Immunization: Given a large graph, like a computer com-
munication network, which k nodes should we immunize (or monitor, or remove),
to make it as robust as possible against a computer virus attack? Which nodes
should we immunize to prevent an epidemic, if the virus is spreading over an
underlying network changing over time (say day vs night connectivity)? How to
distribute a fixed amount of infection-control resource (say antibiotics) amongst
hospitals? We answer these and several other variants of the immunization prob-
lem. Our algorithms such as NETSHIELD and SMART-ALLOC achieve orders of
magnitude improvement over current practice and other heuristics for complete
immunization (aka node-removal) and fractional immunization over real hospital
patient-transfer graphs, respectively. Finally, we also present effective algorithms
when the underlying network changes with time.

• Finding Culprits: Next, we tackle a different and difficult question: Given a
single snapshot of a partly infected network, how we can reliably identify those
nodes from which the epidemic started; whether for inoculation to prevent future
epidemics, or for exploitation for viral marketing. We propose to employ the
Minimum Description Length principle for identifying that set of seed nodes
from which the given snapshot can be described most succinctly. We introduce
NETSLEUTH (based on a novel ‘submatrix-laplacian’ method), a highly efficient
algorithm for both identifying the set of seed nodes that best describes the given
situation, and automatically selecting the best number of seed nodes—in contrast to
the state of the art.

These are very important tasks with numerous applications in a variety of areas, like
public health (vaccination campaigns), cyber security (patching workstations), and online
social-media analysis (detecting sources of rumors).

87

Chapter 6

Complete Node-Removal

Given a large graph, like a computer communication network, which k nodes should
we immunize (or monitor, or remove), to make it as robust as possible against a com-
puter virus attack? Which nodes should we immunize to prevent an epidemic, if the
virus is spreading over an underlying network changing over time (say day vs night
connectivity)? We need (a) a measure of the ‘Vulnerability’ of a given network (or the
time-varying network), (b) a measure of the ‘Shield-value’ of a specific set of k nodes and
(c) a fast algorithm to choose the best such k nodes.

It turns out that this problem is closely related to the epidemic threshold problem we
studied in the preceeding part of this thesis. Specifically, we answer all the above three
questions: we give the justification behind our choices, we show that they agree with
intuition as well as our previous results on the epidemic threshold (see Chapters 2 and
3). Moreover, we propose NETSHIELD, a fast and scalable algorithm which is provably
near-optimal (within constant factor from optimal), when the network is static. We also
give experiments on large real graphs, where NETSHIELD achieves tremendous speed
savings exceeding 7 orders of magnitude, against straightforward competitors. Finally,
for the dynamic case, we give efficient heuristics and evaluate the effectiveness of our
methods on synthetic and real data like the MIT reality mining graphs.

6.1 Introduction

Given a graph, we want to quickly find the k best nodes to immunize (or, equivalently,
remove), to make the remaining nodes to be most robust to the virus attack. This is
the core problem for many applications: In a computer network intrusion setting, we
want the k best nodes to defend (e.g., through expensive and extensive vigilance), to
minimize the spread of malware. Similarly, in a law-enforcement setting, given a network
of criminals, we want to neutralize those nodes that will maximally scatter the graph.
Similarly, which nodes should we immunize if the underlying network varies with time
(motivated by the day-night pattern of human behavior)?

88

The problem boils down to three questions, which we address in this chapter. For
the static case (similar questions can also be asked in the dynamic case of time-varying
graphs.):

Q1. Vulnerability measure: How to capture the ‘Vulnerability’ of the graph, in a sin-
gle number? That is, how likely/easily that a graph will be infected by a virus.
Similarly, how to capture the ‘Vulnerability’ of a series of graphs?

Q2. ‘Shield-value’: How to quantify the ‘Shield-value’ of a given set of nodes in the
graph, i.e., how important are they in terms of maintaining the ‘Vulnerability’ of
the graph? Alternatively, how much less vulnerable will be the graph to the virus
attack, if those nodes are immunized/removed?

Q3. Algorithm: How to quickly determine the k nodes that collectively exhibit the highest
‘Shield-value’ score on large, disk-resident graphs?

When the graph does not change, we start by adopting the first eigenvalue � of the
graph as the ‘Vulnerability’ measurement (for Q1), which is motivated from immunology
(based on our results in the previous chapters) and graph loop/path capacity. Based on
that, we propose a novel definition of the ‘Shield-value’ score Sv(S) for a specific set of
nodes (for Q2). By carefully using the results from the theory of matrix perturbation, we
show that the proposed ‘Shield-value’ gives a good approximation of the corresponding
eigen-drop (i.e., the decrease of the ‘Vulnerability’ measurement if we remove/ immunize
the set of nodes S from the graph). Furthermore, we show that the proposed ‘Shield-value’
score is sub-modular, which enables us to develop a near-optimal and scalable algorithm
(NETSHIELD) to find a set of nodes with highest ‘Shield-value’ score (for Q3). We conduct
extensive experiments on several real data sets, illustrating the effectiveness and effi-
ciency of the proposed methods. Specifically, our experiments show that the proposed
method NETSHIELD (a) leads an effective immunization strategy; (b) scales linearly with
the size of the graph; and (c) is dramatically faster than competitors (over 7 orders of
magnitude).

Similarly, we choose the first eigenvalue of the system matrix �S (see Chapter 3) as
the quality metric in the dynamic case. We further give efficient and effective heuristics
to optimize it and demonstrate their efficacy through several experiments.

The rest of the chapter is organized as follows: Section 6.2 gives the related work.
Sections 6.3-Section 6.7 deal with the problem in the static case (when the network does
not change with time). Section 6.3 gives the problem definitions, while we present the
‘Vulnerability’ measurement in Section 6.4. The proposed ‘Shield-value’ score is presented
in Section 6.5. We address the computational issues in Section 6.6. We evaluate the
proposed methods in Section 6.7. We next tackle the immunization problem under the
time-varying network case in Section 6.8. Finally, Section 6.9 gives the conclusions.

89

6.2 Related Work

In this section, we review the related work, which can be categorized into three parts:
measuring the importance of nodes on graphs, immunization, and spectral graph analy-
sis. Related work on general graph mining can be found in earlier chapters.

Measuring Importance of Nodes on Graphs In the literature, there are a lot of node im-
portance measurements, including betweeness centrality, both the one based on the short-
est path [Fre77] and the one based on random walks [New05b], PageRank [PBMW98],
HITS [Kle98], and coreness score (defined by k-core decomposition) [MW03]. Other
remotely related works include the abnormality score of a given node [SQCF05], articu-
lation points [HT08], and k-vertex cut [HT08]. Our ‘Shield-value’ score is fundamentally
different from these node importance scores, in the sense that they all aim to measure the
importance of an individual node; whereas our ‘Shield-value’ tries to collectively measure
the importance of a set of k nodes. Despite the fact that all these existing measures are
successful for the goal they were originally designed for, they are not designed for the
purpose of immunization. Therefore, it is not surprising that they lead to sub-optimal im-
munization results (See figure 6.4). Moreover, several of these importance measurements
do not scale up well for large graphs, being cubic or quadratic wrt the number of nodes
n, even if we use approximations (e.g., [MW08]). In contrast, the proposed NETSHIELD
is linear wrt the number of edges and the number of nodes (O(nk2 + m)). Another
remotely related work is outbreak detection [LKG+07] in the sense that both works aim
to select a subset of “important” nodes on graphs. However, the motivating applications
(e.g., immunization) of this work is different from detecting outbreak [LKG+07] (e.g., con-
taminants in water distribution network). Consequently we solve different optimization
problems (e.g., maximize the ‘Shield-value’ in eq. (6.2)) in this chapter.

Immunization Briesemeister et al. [BLP03] focus on immunization of power law
graphs. They focus on the random-wiring version (that is, standard preferential attach-
ment), versus the “highly clustered” power law graphs. Their simulation experiments on
such synthetic graphs show that such graphs can be more easily defended against viruses,
while random-wiring ones are typically overwhelmed, despite identical immunization
policies.

Cohen et al. [CHbA03] studied the acquaintance immunization policy (see Section 6.8
for a description of this policy), and showed that it is much better than random, for both
the SIS as well as the SIR model. For power law graphs (with no rewiring), they also
derived formulae for the critical immunization fraction, above which the epidemic is
arrested. Madar et al. [MKC+04] continued along these lines, mainly focusing on the SIR
model for scale-free graphs. They linked the problem to bond percolation, and derived
formulae for the effect of several immunization policies, showing that the “acquaintance”
immunization policy is the best. Both works were analytical, without studying any real
graphs.

90

Hayashi et al. [HMM03] study the case of a growing network, and they derive
analytical formulas for such power law networks (no rewiring). They introduce the SHIR
model (Susceptible, Hidden, Infectious, Recovered), to model computers under e-mail
virus attack and derive the conditions for extinction under random and under targeted
immunization, always for power law graphs with no rewiring.

In short, none of the above papers solves the problem of optimal immunization for
an arbitrary, given graph or a set of arbitrary time-varying graphs.

Spectral Graph Analysis Pioneering works in this aspect can be traced back to Fiedler’s
seminal work [Fie73]. Representative follow-up works include [SM97, NJW01, ZHD+01,
DLJ08], etc. All of these works use the eigen-vectors of the graph (or the graph Laplacian)
to find communities in the graph.

6.3 Problem Definitions (Static Graphs)

Table 6.1 lists the main symbols we use throughout the chapter. In this work, we focus
on un-directed un-weighted graphs. We represent the graph by its adjacency matrix.
Following standard notations, we use capital bold letters for matrices (e.g., A), lower-
case bold letters for vectors (e.g., a), and calligraphic fonts for sets (e.g., S). We denote
the transpose with a prime (i.e., A 0 is the transpose of A), and we use parenthesized
superscripts to denote the corresponding variable after deleting the nodes indexed by the
superscripts. For example, � is the first eigen-value of A, then �i is the first eigen-value of
A after deleting its i(th) row/column. We use (�

i

, u
i

) to denote the ith eigen-pair (sorted
by the magnitude of the eigenvalue) of A. When the subscript is omitted, we refer to
them as the first eigenvalue and eigenvector respectively (i.e., � , �1 and u , u1).

With the above notations, our problems can be formally defined as follows:

Problem 6.1. Measuring ‘Vulnerability’

Given: A large un-directed un-weighted connected graph G with adjacency matrix A;
Find: A single number V(G), reflecting the ‘Vulnerability’ of the whole graph.

Problem 6.2. Measuring ‘Shield-value’

Given: A subset S with k nodes in a large un-directed un-weighted connected graph A;
Find: A single number Sv(S), reflecting the ‘Shield-value’ of these k nodes (that is, the benefit

of their removal/immunization to the vulnerability of the graph).

Problem 6.3. Finding k Nodes of Best ‘Shield-value’

Given: A large un-directed un-weighted connected graph A with n nodes and an integer k;
Find: A subset S of k nodes with the highest ‘Shield-value’ score among all

�
n

k

�
possible subsets.

In the next three sections, we present the corresponding solutions respectively.

91

Table 6.1: Symbols

Symbol Definition and Description
A, B, . . . matrices (bold upper case)
A(i, j) the element at the ith row and jth

column of matrix A
A(i, :) the ith row of matrix A
A(:, j) the jth column of matrix A
A 0 transpose of matrix A
a, b, . . . column vectors
S,T, . . . sets (calligraphic)
n number of nodes in the graph
m number of edges in the graph
(�

i

, u
i

) the ith eigen-pair of A
� first eigen-value of A (i.e., � , �1)
u first eigen-vector of A (i.e., u , u1)
�(i), �(S) first eigen-value of A by deleting

node i (or the set of nodes in S)
��(i) eigen-drop: ��(i) = �- �(i)

��(S) eigen-drop: ��(S) = �- �(S)

Sv(i) ‘Shield-value’ score of node i

Sv(S) ‘Shield-value’ score of nodes in S

V(G) ‘Vulnerability’ score of the graph

6.4 Background: Our Solution for Problem 1

Here, we focus on Problem 6.1. We suggest using the first eigenvalue � as the solution.
We should point out that it not our main contribution to adopt � as the ‘Vulnerability’
measure of a graph. Nonetheless, it is the base of our proposed solutions for both
Problem 2 and Problem 3.

6.4.1 ‘Vulnerability’ Score

In Problem 6.1, the goal is to measure the ‘Vulnerability’ of the whole graph by a single
number. We adopt the first eigenvalue of the adjacency matrix A as such a measurement
(eq. (6.1)): the larger � is, the more vulnerable the whole graph is.

V(G) , � (6.1)

Figure 6.1 presents an example, where we have four graphs with 5 nodes. Intuitively,
the graph becomes more and more vulnerable from the left to the right. In other words,
for a given strength of the virus attack, it is more likely that an epidemic will break out

92

(a) � = 1.7 (b)� = 2.0 � = 2.9 � = 4.0

Figure 6.1: An example of measuring ‘Vulnerability’ of the graph. More edges, and carefully placed,
make the graph better connected, and thus more vulnerable. Notice that the chain (a) and the star (b) have
the same number of edges, but our � score correctly considers the star as more vulnerable.

in the graphs on the right than those on the left side. Therefore, the vulnerability of the
graph increases We can see that the corresponding � increases from left to right as well.

Notice that the concept of ‘Vulnerability’ is different from vertex connectivity of the
graph [HT08]. For ‘Vulnerability’, we want to quantify how likily/easiy a graph will be
infected by a virus (given the strength of virus attack). Whereas for vertex connectivity,
we want to quantify how difficult for a graph to be disconnected. For example, both
graph (a) and (b) in figure 6.1 have the same vertex connectivity (both are 1s). But graph
(b) is more vulnerable to the virus attack. Also notices that although ‘Vulnerability’ is
related to both graph density (i.e., average degree) and diameter, neither of them can
fully describe the ‘Vulnerability’ by itself. For example, in figure 6.1, (a) and (b) share the
same density/average degree although (b) is more vulnerable than (a); (b) and (c) share
the same diameter although (c) is more vulnerable than (b).

6.4.2 Justifications

The first eigenvalue � is a good measurement of the graph ‘Vulnerability’, because of recent
results on epidemic thresholds from immunology [CWW+08, PCF+11]: � is closely related
to the epidemic threshold ⌧ of a graph under almost any epidemic model (including the
flu-like SIS (susceptible-infective-susceptible) epidemic model), and specifically ⌧ / 1/�.
This means that a virus less infective than ⌧ will quickly get extinguished instead of
lingering forever. Therefore, given the strength of the virus (that is, the infection rate and
the host-recovery rate), an epidemic is more likely for a graph with larger �.

We can also show that the first eigenvalue � is closely related to the so-called loop
capacity and the path capacity of the graph, that is, the number of loops and paths of
length l (l = 2, 3, . . .). If a graph has many such loops and paths, then it is well connected,
and thus more vulnerable (i.e., it is easier for a virus to propagate across the graph = the
graph is less robust to the virus attack).

6.5 Our Solution for Problem 2

In this section, we focus on Problem 6.4. We first present our solution, and then provide
justifications.

93

6.5.1 Proposed ‘Shield-value’ Score

Figure 6.2: An example on measuring the ‘Shield-value’ score of a given set of nodes. The best k nodes
found by our NETSHIELD are shaded. In (a), notice that the highest degree nodes (e.g., node 1) is not
chosen. In (b), immunizing the shaded nodes makes the remaining graph most robust to the virus attack.

In Problem 6.4, the goal is to quantify the importance of a given set of nodes S,
and specifically the impact of their deletion/immunization to the ‘Vulnerability’ of the
rest of the graph. The obvious choice is the drop in eigenvalue, or eigen-drop �� that
their removal will cause to the graph. We propose to approximate it, to obtain efficient
computations, as we describe later. Specifically, we propose using Sv(S) defined as:

Sv(S) =
X

i2S

2�u(i)2 -
X

i,j2S

A(i, j)u(i)u(j) (6.2)

Intuitively, by eq. (6.2), a set of nodes S has higher ‘Shield-value’ score if (1) each of
them has a high eigen-score (u(i)), and (2) they are dissimilar with each other (small
or zero A(i, j)). Figure 6.2 shows an example on measuring the ‘Shield-value’ score of a
given set of nodes. The best k nodes found by our NETSHIELD (which will be introduced
very soon in the next section) are shaded. The result is consistent with intuition. In
figure 6.2(a), it picks node 13 as best k = 1 node (although nodes 1, 5 and 9 have the
highest degree). In figure 6.2(b), deleting the shaded nodes (node 1, 5, 9 and 13) will
make the graph the least vulnerable (i.e., the remaining graphs are sets of isolated nodes;
and therefore it is most robust to virus attack).

6.5.2 Justifications

Here, we provide some justifications on the proposed ‘Shield-value’ score, which is
summarized in Lemma 6.1. It says that our proposed ‘Shield-value’ score Sv(S) is a
good approximation for the eigen-drop ��(S) when deleting the set of nodes S from the
original graph A.

94

Lemma 6.1. Let �(S) be the (exact) first eigen-value of Â, where Â is the perturbed version of A
by removing all of its rows/columns indexed by set S. Let � = �- �2 be the eigen-gap, and d be
the maximum degree of A. If � is the simple first eigen-value of A, and � > 2

p
2kd, then

��(S) = Sv(S) +O(
X

j2S

kA(:, j)k2) (6.3)

where Sv(S) is computed by eq. (6.2) and ��(S) = �- �(S).

Proof: First, let us write Â as a perturbed version of the original matrix A:

Â = A + E, and E = F + F 0 + G (6.4)

where F(:, j) = -A(:, j) (j 2 S and F(:, j) = 0 (j /2 S); G(i, j) = A(i, j) (i, j 2 S) and
G(i, j) = 0(i /2 S, or j /2 S).

Since Au = �u, we have

u 0F 0u = u 0Fu = (F 0u) 0u = -
X

j2S

�u(j)2

u 0Gu =
X

i,j2S

A(i, j)u(i)u(j) (6.5)

Let �̃ be the corresponding perturbed eigen-value of �, according to the matrix perturba-
tion theory (p.183 [SS90]), we have

�̃ = �+ u 0Eu +O(kEk2)

= �+ u 0Fu + u 0F 0u + u 0Gu +O(kEk2)

= �- (
X

j2S

2�u(j)-
X

i,j2S

A(i, j)u(i)u(j))

+O(
X

j2S

kA(:, j)k2)

= �- Sv(S) +O(
X

j2S

kA(:, j)k2) (6.6)

Let �̃
i

(i = 2, ...,n) be the corresponding perturbed eigen-value of �
i

(i = 2, ...,n). Again,
by the matrix perturbation theory (p.203 [SS90]), we have

�̃ > �- kEk2 > �- kEk
F

> �-
p

2kd
�̃
i

6 �
i

+ kEk2 6 �
i

+ kEk
F

6 �
i

+
p

2kd (6.7)

Since � = �- �2 > 2
p

2kd, we have �̃ > �̃
i

(i = 2, ...,n). In other words, we have �(S) = �̃.
Therefore,

��(S) = �- �(S) = �- �̃

= Sv(S) +O(
X

j2S

kA(:, j)k2) (6.8)

which completes the proof. 2

95

6.6 Our Solution for Problem 3

In this section, we deal with Problem 6.3. Here, the goal is to find a subset of k nodes
with the highest ‘Shield-value’ score (among all

�
n

k

�
possible subsets). We start by showing

that the two straight-forward methods (referred to as ‘Com-Eigs’, and ‘Com-Eval’) are
computationally intractable. Then, we present the proposed NETSHIELD algorithm.
Finally, we analyze its accuracy as well as its computational complexity.

6.6.1 Preliminaries

There are two obviously straight-forward methods for Problem 6.3. The first one (referred
to as ‘Com-Eigs’1) works as follows: for each possible subset S, we delete the correspond-
ing rows/columns from the adjacency matrix A; compute the first eigenvalue of the
new perturbed adjacency matrix; and finally output the subset of nodes which has the
smallest eigenvalue (therefore has the largest eigen-drop). Despite the simplicity of this
strategy, it is computational intractable due to its combinatorial nature. It is easy to show
that the computational complexity of ‘Com-Eigs’ is O(

�
n

k

�
·m)2. This is computationally

intractable even for small graphs. For example, in a graph with 1K nodes and 10K edges,
suppose that it takes about 0.01 second to find its first eigen-value. Then we need about
2,615 years to find the best-5 nodes with the highest ‘Shield-value’ score!

A more reasonable (in terms of speed) way to find the best-k nodes is to evaluate
Sv(S), rather than to compute the first eigen-value �S,

�
n

k

�
times, and pick the subset

with the highest Sv(S). We refer to this strategy as ‘Com-Eval’. Compared with the
straight-forward method (referred to as ‘Com-Eigs’, which is O(

�
n

k

�
·m)); ‘Com-Eval’ is

much faster (O(
�
n

k

�
· k2)). However, ‘Com-Eval’ is still not applicable to real applications

due to its combinatorial nature. Again, in a graph with 1K nodes and 10K edges, suppose
that it only takes about 0.00001 second to evaluate Sv(S) once. Then we still need about
3 months to find the best-5 nodes with the highest ‘Shield-value’ score!

6.6.2 Proposed NETSHIELD Algorithm

The proposed NETSHIELD is given in Alg. 1. In Alg. 1, we compute the first eigenvalue
� and the corresponding eigenvector u in step 1. In step 4, the n⇥ 1 vector v measures
the ‘Shield-value’ score of each individual node. Then, in each iteration of steps 6-17, we
greedily select one more node and add it into set S according to score(j) (step 13). Note
that steps 10-12 are to exclude those nodes that are already in the selected set S.

1In fact, we can prove Problem 6.3 is NP-hard, using a slight variant of the proof of Theorem [fill] in
Chapter 7.

2We assume that k is relatively small compared with n and m (e.g., tens or hundreds). Therefore, after
deleting k rows/columns from A, we still have O(m) edges.

96

Algorithm 1 NETSHIELD

Input: the adjacency matrix A and an integer k
Output: a set S with k nodes

1: compute the first eigen-value � of A; let u be the corresponding eigen-vector u(j)(j =
1, ...,n);

2: initialize S to be empty;
3: for j = 1 to n do
4: v(j) = (2 · �- A(j, j)) · u(j)2;
5: end for
6: for iter = 1 to k do
7: let B = A(:, S);
8: let b = B · u(S);
9: for j = 1 to n do

10: if j 2 S then
11: let score(j) = -1;
12: else
13: let score(j) = v(j)- 2 · b(j) · u(j);
14: end if
15: end for
16: let i = argmax

j

score(j), add i to set S;
17: end for
18: return S.

6.6.3 Analysis of NETSHIELD

Here, we analyze the accuracy and efficiency of the proposed NETSHIELD.
First, according to the following theorem, Alg. 1 is near-optimal wrt ‘Com-Eval’. In

addition, by Lemma 6.1, our ‘Shield-value’ score (which ‘Com-Eval’ tries to optimize) is a
good approximation for the actual eigen-drop ��(S) (which ‘Com-Eigs’ tries to optimize).
Therefore, we would expect that Alg. 1 also gives a good approximation wrt ‘Com-Eigs’
(See Section 6.7 for experimental validation).

Theorem 6.1. Effectiveness of NETSHIELD. Let S and S̃ be the sets selected by Alg. 1 and
by ‘Com-Eval’, respectively. Let ��(S) and ��(S̃) be the corresponding eigen-drops. Then,
��(S) > (1 - 1/e)��(S̃).

Proof: Let I, J,K be three sets and I ✓ J. Define the following three sets based on I, J,K:
S = I [K, T = J [K, R = J \ I.

97

Substituting eq.(6.2), we have

Sv(S) - Sv(I) =
X

i2K

2�u(i)2 -
X

i,j2K

A(i, j)u(i)u(j)

- 2
X

j2I,i2K

A(i, j)u(i)u(j)

Sv(T) - Sv(J) =
X

i2K

2�u(i)2 -
X

i,j2K

A(i, j)u(i)u(j)

- 2
X

j2J,i2K

A(i, j)u(i)u(j) (6.9)

According to Perron-Frobenius theorem, we have u(i) > 0(i = 1, ...,n). Therefore,

(Sv(S) - Sv(I))- (Sv(T)- Sv(J))

= 2
X

i2K,j2R

A(i, j)u(i)u(j) > 0 (6.10)

) Sv(S)- Sv(I) > Sv(T)- Sv(J)

Therefore, the function Sv(S) is sub-modular.
Next, we can verify that node i selected in step 16 of Alg. 1 satisfies i = argmax

j/2SSv(S[
j) for a fixed set S.

Next, we prove that Sv(S) is monotonically non-decreasing wrt S. According to
eq. (6.9), we have

Sv(S) - Sv(I) =
X

i2K

2�u(i)2 -
X

i,j2K

A(i, j)u(i)u(j)

- 2
X

j2I,i2K

A(i, j)u(i)u(j)

>
X

i2K

2�u(i)2 - 2
X

j2S,i2K

A(i, j)u(i)u(j)

= 2
X

i2K

u(i)(�u(i)-
X

j2S

A(i, j)u(j))

> 2
X

i2K

u(i)(�u(i)-
nX

j=1

A(i, j)u(j))

= 2
X

i2K

u(i)(�u(i)- �u(i)) = 0 (6.11)

where the second last equality is due to the definition of eigenvalue.
Finally, it is easy to verify that Sv(�) = 0, where � is an empty set. Using the property

of sub-modular functions [KG07], we have ��(S) > (1 - 1/e)��(S̃). 2

98

According to Lemma 6.2, the computational complexity of Alg. 1 is O(nk2 + m),
which is much faster than both ‘Com-Eigs’ (O(

�
n

k

�
m)) and ‘Com-Eval’ (O(

�
n

k

�
k2)).

Lemma 6.2. Computational Complexity of NETSHIELD. The computational complexity of
Alg. 1 is O(nk2 +m).

Proof: Omitted for brevity. 2

Finally, according to Lemma 6.3, the space cost of Alg. 1 is also efficient (i.e., linear
wrt the size of the graph).

Lemma 6.3. Space Cost of NETSHIELD. The space cost of Alg. 1 is O(n+m+ k).

Proof: Omitted for brevity. 2

6.7 Experimental Evaluations (Static Graphs)

We present detailed experimental results in this section. All the experiments are designed
to answer the following questions:

1: (Effectiveness) How effective is the proposed Sv(S) in real graphs?
2: (Efficiency) How fast and scalable is the proposed NETSHIELD?

6.7.1 Data sets

Table 6.2: Summary of the data sets

Name n m

Karate 34 152
AA 418,236 2,753,798

NetFlix 2,667,199 171,460,874

We used three real data sets, which are summarized in table 6.2. The first data set
(Karate) is a unipartite graph, which describes the friendship among the 34 members of a
karate club at a US university [Zac77]. Each node is a member in the karate club and the
existence of the edge indicates that the two corresponding members are friends. Overall,
we have n = 34 nodes and m = 156 edges.

The second data set (AA) is an author-author network from DBLP.3 AA is a co-
authorship network, where each node is an author and the existence of an edge indicates
the co-authorship between the two corresponding persons. Overall, we have n =

3http://www.informatik.uni-trier.de/~ley/db/

99

418, 236 nodes and m = 2, 753, 798 edges. We also construct much smaller co-authorship
networks, using the authors from only one conference (e.g., KDD, SIGIR, SIGMOD, etc.).
For example, KDD is the co-authorship network for the authors in the ‘KDD’ conference.
For these smaller co-authorship networks, they typically have a few thousand nodes and
up to a few ten thousand edges.

The last data set (NetFlix) is from the Netflix prize.4 This is also a bipartite graph. We
have two types of nodes: user and movie. The existence of an edge indicates that the
corresponding user has rated the corresponding movie. Overall, we have n = 2, 667, 199
nodes and m = 171, 460, 874 edges. This is a bipartite graph, and we convert it to a

unipartite graph A: A =

✓
0 B

B 0 0

◆
, where 0 is a matrix with all zero entries and B is the

adjacency matrix of the bipartite graph.

6.7.2 Effectiveness

Here, we first test the approximation accuracy of the proposed Sv(S). Then, we compared
the different immunization policies, followed by some case studies. Notice that the
quality vs. speed trade-off for the proposed NETSHIELD, the optimal ‘Com-Eigs’ and the
alternative greedy method is presented in subsection 6.7.3.

Approximation quality of Sv(S)

The proposed NETSHIELD is based on eq. (6.2). That is, we want to approximate the
first eigen-value of the perturbed matrix by � and u. By Lemma 6.1, it says that Sv(S)
is a good approximation for the actual eigen-drop ��(S). Here, let us experimentally
evaluate how good this approximation is on real graphs. We construct an authorship
network from one of the following conferences: ‘KDD’, ‘ICDM’, ‘SDM’ and ‘SIGMOD’.
We then compute the linear correlation coefficient between ��(S) and Sv(S) with several
different k values (k = 1, 2, 5, 10, 20). The results are shown in table 6.3. It can be seen
that the approximation is very good - in all the cases, the linear correlation coefficient is
greater than 0.95. Figure 6.3 gives the scatter plot of ��(S) (i.e., the actual eigen-drop) vs.
Sv(S) (i.e., the proposed ‘Shield-value’) for k = 5 the on ‘ICDM’ data set.

Immunization by NETSHIELD

The proposed ‘Vulnerability’ score of the graph is motivated by the epidemic thresh-
old [PCF+11]. As a consequence, the proposed NETSHIELD leads to a natural immu-
nization strategy for the SIS model (susceptible-infective-susceptible, like, e.g., the flu):
quarantine or delete the subset of the nodes detected by NETSHIELD in order to prevent

4http://www.netflixprize.com/

100

Table 6.3: Evaluation on the approximation accuracy of f(S). Larger is better.

k ‘KDD’ ‘ICDM’ ‘SDM’ ‘SIGMOD’
1 0.9519 0.9908 0.9995 1.0000
2 0.9629 0.9910 0.9984 0.9927
5 0.9721 0.9888 0.9992 0.9895
10 0.9726 0.9863 0.9987 0.9852
20 0.9683 0.9798 0.9929 0.9772

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

actual eigen−drop

sh
ie

d
−

va
lu

e
 (

e
st

im
a

te
d

 e
ig

e
n

−
d

ro
p

)

Figure 6.3: Evaluation of the approximation accuracy of Sv(S) on the ‘ICDM’ graph. The proposed
‘Shield-value’ Sv (y-axis) gives a good approximation for the actual eigen-drop ��(S) (x-axis). Most
points are on or close to the diagonal (ideal).

an epidemic from breaking out. 5

We compare it with the following alternative choices: (1) picking a random neigh-
bor of a randomly chosen node[CHbA03] (‘Aquaintance’), (2) picking the nodes with
the highest eigen scores u(i)(i = 1, ...,n) (‘Eigs’)6, (3) picking the nodes with the
highest abnormality scores [SQCF05] (‘abnormality’), (4) picking the nodes with the
highest betweenness centrality scores based on the shortest path [Fre77](‘Short’), (5)
picking the nodes with the highest betweenness centrality scores based on random
walks [New05b](‘N.RW’), (6) picking the nodes with the highest degress (‘Degree’), and
(7) picking the nodes with the highest PageRank scores [PBMW98](‘PageRank’). For
each method, we delete 5 nodes for immunization. Let s = � · b/d be the normalized
virus strength (bigger s means more stronger virus), where b and d are the infection rate
and death rate, respectively. The result is presented in figure 6.4, which is averaged over
1000 runs. It can be seen that the proposed NETSHIELD is always the best, - its curve
is always the lowest which means that we always have the least number of infected
nodes in the graph with this immunization strategy. Notice that the performance of

5Infact our NETSHIELD will also help with the immunization for almost any model (as the threshold is
dependent on �).

6For the un-directed graph which we focus on in this work, ‘Eigs’ is equivalent to ‘HITS’[Kle98].

101

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.001

0.01

0.1

1

Time step

lo
g
 (

fr
a
ct

io
n
 o

f
in

fe
ct

e
d
 n

o
d
e
s)

Acquaintance

PageRank

Degree

Abnormality

N.RW

Short

Eigs

NetShield

Netshield

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.001

0.01

0.1

1

Time step

L
o

g
 (

fr
a

ct
io

n
 o

f
in

fe
ct

e
d

 n
o

d
e

s)

Acquaintance
PageRank
Degree
Abnormality
N.RW
Short
Eigs
NetShield

Abnormality

Netshield

(a) s = 1.4 (b) s = 2.9

Figure 6.4: Evaluation of immunization of NETSHIELD on the Karate graph. The fraction of infected
nodes (in log-scale) vs. the time step. s is normalized virus strength. Lower is better. The proposed
NETSHIELD is always the best, leading to the fastest healing of the graph. Best viewed in color.

‘Eigs’ is much worse than the proposed NETSHIELD. This indicates that by collectively
finding a set of nodes with the highest ‘Shield-value’, we indeed obtain extra performance
gain (compared with naïvely choosing the top-k nodes which have the highest individual
‘Shield-value’ scores).

Case studies

Next, we will show some case studies to illustrate the effectiveness of the proposed Sv(S)
as a ‘Shield-value’ score of a subset of nodes.

We run the proposed NETSHIELD on AA data set and return the best k = 200 authors.
Some representative authors, to name a few, are ‘Sudhakar M. Reddy’ ‘Wei Wang’ ‘Heinrich
Niemann’, ‘Srimat T. Chakradhar’, ‘Philip S. Yu’, ‘Lei Zhang’, ‘Wei Li’, ‘Jiawei Han’, ‘Srinivasan
Parthasarathy’, ‘Srivaths Ravi’, ‘Antonis M. Paschalis’, ‘Mohammed Javeed Zaki’, ‘Lei Li’,
‘Dimitris Gizopoulos’, ‘Alberto L. Sangiovanni-Vincentelli’, ‘Narayanan Vijaykrishnan’, ‘Jason
Cong’, ‘Thomas S. Huang’, etc. We can make some very interesting observations from the
result:

1 There are some multi-disciplinary people in the result. For example, Prof. Alberto
L. Sangiovanni-Vincentelli from UC Berkeley is interested in ‘design technology’,
‘cad’, ‘embedded systems’, and ‘formal verification’; Prof. Philip S. Yu from UIC is
interested in ‘databases’, ‘performance’, ‘distributed systems’ and ‘data mining’.

2 Some people show up because they are famous in one specific area, and occasionally
have one/two papers in a remotely related area (therefore, increasing the path
capacity between two remote areas). For example, Dr. Srimat T. Chakradhar mainly

102

focuses on ‘cad’. But he has co-authored in a ‘NIPS’ paper. Therefore, he creates a
critical connection between these two (originally) remote areas: ‘cad’ and ‘machine
learning’.

3 Some people show up because they have ambiguous names (e.g., Wei Wang, Lei Li,
Lei Zhang, Wei Li, etc.). Take ‘Wei Wang’ as an example; according to DBLP,7 there
are 7 different ‘Wei Wang’s. In our experiment, we treat all of them as one person.
That is to say, it is equivalent to putting an artificial ‘Wei Wang’ in the graph who
brings 7 different ‘Wei Wang’s together. These 7 ‘Wei Wang’s are in fact spread out
in quite different areas. (e.g., Wei Wang@UNC is in ‘data mining’ and ‘bio’; Wei
Wang@NUS is in ‘communication’; Wei Wang@MIT is in ‘non-linear systems’.)

6.7.3 Efficiency

We will study the wall-clock running time of the proposed NETSHIELD here. Basically,
we want to answer the following three questions:

1. (Speed) What is the speedup of the proposed NETSHIELD over the straight-forward
methods (‘Com-Eigs’ and ‘Com-Eval’)?

2. (Scalability) How does NETSHIELD scale with the size of the graph (n and m) and
k?

3. (Quality/Speed Trade-Off) How does NETSHIELD balance between the quality and
the speed?

For the results we report in this subsection, all of the experiments are done on the same
machine with four 2.4GHz AMD CPUs and 48GB memory, running Linux (2.6 kernel). If
the program takes more than 1,000,000 seconds, we stop running it.

(a) Karate (b) AA (c) NetFlix

Figure 6.5: Wall-clock time vs. the budget k for different methods. The time is in the logarithmic scale.
Our NETSHIELD (red star) is much faster. Lower is better.

7http://www.informatik.uni-trier.de/~ey/db/indices
/a-tree/w/Wang:Wei.html

103

First, we compare NETSHIELD with ‘Com-Eigs’ and ‘Com-Eval’. Figure 6.5 shows
the comparison on three real data sets. We can make the following conclusions: (1)
Straight-forward methods (‘Com-Eigs’ and ‘Com-Eval’) are computationally intractable
even for a small graph. For example, on the Karate data set with only 34 nodes, it takes
more than 100,000 and 1,000 seconds to find the best-10 by ‘Com-Eigs’ and by ‘Com-
Eval’, respectively. (2) The speedup of the proposed NETSHIELD over both ‘Com-Eigs’
and ‘Com-Eval’ is huge - in most cases, we achieve several (up to 7) orders of magnitude
speedups! (3) The speedup of the proposed NETSHIELD over both ‘Com-Eigs’ and
‘Com-Eval’ quickly increases wrt the size of the graph as well as k. (4) For a given size
of the graph (fixed n and m), the wall-clock time is almost constant - suggesting that
NETSHIELD spends most of its running time in computing � and u.

Next, we evaluate the scalability of NETSHIELD. From figure 6.6, it can be seen that
NETSHIELD scales linearly wrt both n and m, which means that it is suitable for large
graphs.

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

x 10
4

0.2

0.25

0.3

0.35

0.4

0.45

0.5

of nodes

w
a

ll−
cl

o
ck

 t
im

e
 (

se
co

n
d

s)

k=1

k=5

k=10

k=20

(a) changing n (fix m = 119, 460)

0 0.5 1 1.5 2 2.5

x 10
8

0

50

100

150

200

250

300

350

of edges

w
a

ll−
cl

o
ck

 t
im

e
(s

e
co

n
d

s)

k=1

k=5

k=10

k=20

(b) changing m (fix n = 2, 667, 119)

Figure 6.6: Evaluation of the scalability of the proposed NETSHIELD wrt. n (number of nodes) and m

(number of edges), respectively. The wall-clock time of our NETSHIELD scales linearly wrt n and m.

Finally, we evaluate how the proposed NETSHIELD balances between the quality
and speed. For the Karate graph, we use the proposed NETSHIELD to find a set of k
nodes and check the corresponding eigen-drop (i.e., the decrease of the first eigen-value
of the adjacency matrix) as well as the corresponding wall-clock time. We compare it

104

with ‘Com-Eigs’, which always gives the optimal solutions (i.e., it returns the subset that
leads to the largest eigen-drop). The results (eigen-drop vs. wall-clock time) are plotted
in figure 6.7. It can been seen that NETSHIELD gains significant of speedup over the
‘Com-Eigs’, at the cost of a small fraction of quality loss (i.e., the green dash lines are
near-flat).

Figure 6.7: Evaluation of the quality/speed trade off. Eigen-drop vs.wall-clock time, with different budget
k.The proposed NETSHIELD (red star) achieves a good balance between eigen-drop and speed. Note that
the x-axis (wall-clock time) is in logarithmic scale. The number inside the parenthesis above each green
dash curve is the ratio of eigen-drop between NETSHIELD and ‘Com-Eigs’. NETSHIELD is optimal when
this ratio is 1. Best viewed in color.

We also compare the proposed NETSHIELD with the following heuristic (referred to
as ‘Greedy’): at each iteration, we re-compute the first eigenvector of the current graph
and pick a node with the highest eigen-score u(i); then we delete this node from the
graph and go to the next iteration. For the NetFlix graph, we find a set of k nodes and
check the corresponding eigen-drop as well as the corresponding wall-clock time. The
quality/speed trade-off curve is plotted in figure 6.8. From the figure, we can make two
observations: (1) the quality of the two methods (‘Greedy’ vs. the proposed NETSHIELD)
are almost the same (note that the green dash curves in the plots are always straight flat);
(2) the proposed NETSHIELD is always faster than ‘Greedy’ (up to 103x speedup).

6.8 Immunization under time-varying graphs

We now tackle the problem of immunization under a time-varying network. Consider
a setting with clearly different behaviors say, day/night, each characterized by a cor-
responding adjacency matrix (A1 for day, A2 for night)—what are the best nodes to
immunize to prevent an epidemic as much as possible? We restrict our attention to the

105

Figure 6.8: Comparison of NETSHIELD vs.‘Greedy’. The proposed NETSHIELD (red star) is better than
‘Greedy’ (i.e., faster, with the same quality). Note that the x-axis (wall-clock time) is in logarithmic scale.
The number inside the parenthesis above each green dash curve is the speedup of the proposed NETSHIELD

over ‘Greedy’. Best viewed in color.

SIS-model only for this problem. More generally, the problem we are tackling can be
formally stated as follows:

Problem 6.4. Dynamic Immunization

Given: (1) T alternating behaviors, characterized by a set of T graphs A = {A1, A2 . . . , A
T

};
and (2) the SIS model with virus parameters � and � and (3) k vaccines;

Find: The best-k nodes for immunization.

6.8.1 Quality Metric

Using our results in Chapter 3, we can evaluate the quality of any immunization policy.
Recall that there is no epidemic if the largest eigenvalue of the corresponding ‘system
matrix’ is below one in magnitude. Hence, smaller the value of �S, lesser are chances of
the virus causing any epidemic. Put differently, while immunizing, we want to decrease
the �S value of the system as much as possible. Thus, the efficacy of any immunization
policy should be measured using the amount of “drop” in �S it causes and the resulting
�S after immunization.

6.8.2 Proposed immunization policies

We now discuss some new immunization policies for time-varying graphs, partially
motivated by known policies used for static graphs. Again, for ease of exposition we
focus our attention only on the {A1, A2} system of Section 3.3. From the above, it is clear

106

that optimally we should choose that set of k nodes which result in the smallest �S value
possible after immunization. This implies that for each set of k node we test, we need to
delete k rows/columns from both A1 and A2 to get new matrices A⇤

1 and A⇤
2 and then

compute the new �S value. The number of k sets is
�
n

k

�
and therefore this method is

combinatorial in nature and will be intractable even for small graphs. Nevertheless, we
call this strategy Optimal and show experimental results for this policy too, because this
policy will give us the lower-bound on the �S that can be achieved after k immunizations.

We want policies which are practical for large graphs and at the same time be efficient
in lowering the �S value of the system i.e. they should be close to Optimal. Specifically
to this effect, we now present several greedy policies as well. As the heuristics are greedy
in nature, we only describe how to pick the best one node for immunization from a given
set of G1 and G2 graphs. Our proposed policies are:

Greedy-DmaxA (Highest degree on A1 or A2 matrices) Under this policy, at each step
we select the node with the highest degree considering both the A1 or A2 adjacency
matrices. This is motivated by the degree immunization strategy used for static
graphs.

Greedy-DavgA (Highest degree on the “average” matrix) We select the node with the
highest degree in the Aavg matrix where Aavg = (A1 + A2)/2.

Greedy-AavgA (Acquaintance immunization [CHbA03] on the average matrix) The “ac-
quaintance” immunization policy works by picking a random person, and then
immunizing one of its neighbors at random (which will probably be a ‘hub’). We
run this policy on the Aavg matrix.

Greedy-S (Greedy on the system-matrix) This is the greedy strategy of immunizing
the node at each step which causes the largest drop in �S value. Note that even this
can be expensive for large graphs as we have to evaluate the first eigenvalue of S
after deleting each node to decide which node is the best.

Optimal Finally, this it the optimal through combinatorial strategy mentioned above of
finding the best-k set of nodes which decrease �S the most.

6.8.3 Experimental Setup

We conducted a series of experiments using the MIT Reality Mining data set [EPL09].
The Reality Mining data consists of 104 mobile devices (cellular phones) monitored over
a period of nine months (September 2004 - June 2005). If another participating Bluetooth
device was within a range of approximately 5-10 meters, the date and time of the contact
and the device’s MAC address were recorded. Bluetooth scans were conducted at 5-
minute intervals and aggregated into two 12-hour period adjacency matrices (day and
night). The epidemic simulations were accomplished by alternating the day and night
matrices over the period of simulation. All experiments were run on a 64-bit, quad-core
(2.5Ghz each) server running a CentOS linux distribution with shared 72 GB of RAM.
Simulations were conducted using a combination of Matlab 7.9 and Python 2.6.

107

6.8.4 Results

Figure 6.9: Experiments on Reality Mining graphs: �S vs k for different immunization policies.
Lower is better. Greedy-DavgA clearly drops the �S value aggressively and is close to the
Greedy-Opt.

Figure 6.9 shows the �S value after immunizing k = 1, 2, . . . , 10 nodes using each of
the policies outlined above. As Optimal and Greedy-S require � and � as inputs, we
set � = 0.5, � = 0.1. Running Optimal became prohibitively expensive (> 4 hours on the
MIT reality graphs) after k = 7 - hence we don’t show data points for k > 8 for Optimal.
Moving on to the greedy strategies we find that Greedy-S performs the best after
k = 10 by dropping the �S value as aggressively as possible - equal to Optimal at many
places. We find that Greedy-DavgA also performs very well. Intuitively this is because
the highest degree node in Aavg is very well-connected and hence has a huge effect in
reducing the Aavg value (we discuss more about Aavg below later). At the same time,
Greedy-DmaxA is comparable to Greedy-DavgA as we find the highest degree among
both the graphs: so this highest degree will also mostly have the highest mean degree.
Finally, Greedy-AavgA drops the �S value the least among all the policies. Given the
first random choice of node, Greedy-AavgA can be “trapped" in the neighborhood of a
node far form the best node to immunize, and thus can be forced to make a choice based
on the limited local information.

Figure 6.10 demonstrates the effectiveness of our quality metric i.e. the �S value
for each immunization policy after k = 10 immunizations. It is a scatter plot of Max.
infections till steady state and the various �S values at the end of the immunizations. So
points closer to the origin (minimum footprint and �S) represent better policies. Clearly,
Optimal should theoretically be the closest to the origin (we don’t show it as it didn’t
finish). Also as discussed before, Greedy-AavgA is the worst and that is demonstrated
by its point. From Figure 6.9 we can see that Greedy-S has the least �S value after k = 10,
hence it is closest to the origin and thus has the smallest footprint. Others perform well
too, as their final �S values were close as well.

To summarize, in our experiments we demonstrated that policies decreasing �S the

108

Figure 6.10: Scatter plot of Max. infections till steady state and �S for different immunization
policies after k = 10 immunizations. Points closer to the origin are better. All policies perform in
accordance to the �S values achieved (see Figure 6.9).

most are the best policies as they result in smaller footprints as well. Also, simple greedy
policies were effective and achieved similar �S values like expensive combinatorial
policies.

6.8.5 Discussion

We discuss some pertinent issues and give additional explanations in this section.

Goodness of the Aavg matrix: We saw that Greedy-DavgA gave very good results
and was close to Greedy-S and Optimal. This can be explained with the help of the
following lemma.

Lemma 6.4. (1 - 2�)I + 2�Aavg is a first-order approximation of the S matrix.

Proof. Note that (T = 2),

S = S1 ⇥ S2

= ((1 - �)I + �A1)⇥ ((1 - �)I + �A2)

= (1 - �)2I + (1 - �)�(A1 + A2) + �2A1A2

⇡ (1 - 2�)I + �(A1 + A2) = (1 - 2�)I + 2�
✓

A1 + A2

2

◆

where we neglected second order terms involving � and �. Thus (1 - 2�)I + 2�Aavg is a
first-order approximation of the S matrix.
In other words, we can consider the time-varying system to be approximated by a static
graph system of the Aavg graph adjacency matrix with a virus of the same strength (�/�
remains the same). The threshold for a static graph with adjacency matrix A is ��A/�.
So in our static case, we should aim to reduce �Aavg as much as possible. Any policy
which aims to reduce the �Aavg value will approximate our original goal of dropping the
�S value. Thus, this gives a theoretical justification of why Greedy-DavgA gave good
results.

109

Temporal Immunization: In this section, we concentrated only on static immunization
policies - policies where once immunized, a node is ‘removed’ from the contact graphs.
While this makes sense for biological vaccinations, in a more complex ‘resource’ oriented
scenario where each ‘glove’ protects a person only for the time it is worn, a time-varying
immunization policy might be more useful. e.g., we may have finite number of gloves to
give and we can change the assignment of gloves during day/night. In this case, it may
be better to immunize nurses in hospitals during the day by giving them the gloves but
during the night, we can decide to give gloves to restaurant waiters or children, because
the nurses are now not well-connected in the contact graph. Our threshold results can
trivially estimate the impact or any ‘what-if’ scenarios w.r.t. such temporal immunization
algorithms.

6.9 Conclusion

We studied the problem of immunization (node-removal): both on graphs which are
fixed and graphs which change with time in this chapter. Simply put we asked the
question: "what are the best-k nodes to immunize to defend against an epidemic on static
and time-varying graphs?". This problem is closely dependent on the epidemic threshold
problem which we addressed in the previous chapters. Besides the problem definitions,
our main contributions are:

1. A novel definition of ‘Shield-value’ score for a fixed graph, Sv(S) for a set of nodes
S, by carefully using the results from the theory of matrix perturbation; (Sv() is
a good approximation to the eigen-drop ��, the reduction of ‘Vulnerability’, see
Lemma 6.1).

2. For the static case, we gave a near-optimal and scalable algorithm (NETSHIELD) to
find a set of nodes with the highest ‘Shield-value’ score, by showing that our setting
has the sub-modularity property (i.e., Theorem 6.1). Moreover, NETSHIELD also
scales linearly with the size of the graph (number of edges). We also developed
several heuristics for time-varying graphs.

3. Extensive experiments on several real data sets, illustrating both the effectiveness
as well as the efficiency of our methods, sometimes outperforming competitors by
several orders of magnitude.

A promising research direction is to parallelize the current methods (e.g., using
Hadoop8).

8http://hadoop.apache.org/

110

Chapter 7

Fractional Immunization

In the previous chapter, we studied the problem of immunization as completely removing
nodes from the network. While preventing contagion in networks is an important
problem in public health and other domains, the assumption that selected nodes can
be rendered completely immune does not hold for infections for which there is no
vaccination or effective treatment. Instead, one can confer fractional immunity to some
nodes by allocating variable amounts of infection-prevention resource to them. We
formulate the problem to distribute a fixed amount of resource across nodes in a network
such that the infection rate is minimized, prove that it is NP-complete and derive a
highly effective and efficient linear-time algorithm. We demonstrate the efficiency and
accuracy of our algorithm compared to several other methods using simulation on real-
world network datasets including US-MEDICARE and state-level interhospital patient
transfer data. We find that concentrating resources at a small subset of nodes using our
algorithm is up to 6 times more effective than distributing them uniformly (as is current
practice) or using network-based heuristics. To the best of our knowledge, we are the
first to formulate the problem, use truly nation-scale network data and propose effective
algorithms.

7.1 Introduction

Given a graph and vaccines which provide partial (‘fractional’) protection, how to dis-
tribute them to maximize lives saved? Networks carry harmful agents, e.g., disease,
computer viruses, and even misinformation. The networks’ structure dictates how
rapidly the malicious agent will spread. One can take advantage of this structure to iden-
tify specific nodes for infection control, such that the spread of the disease is significantly
curtailed. In selecting nodes for infection control, previous work has assumed that nodes
can be rendered completely immune. However, in many cases the complete immuniza-
tion of a node is not an option. Bacteria present in hospitals have developed resistance
to most antibiotics. Vaccines take time to be developed for both human and computer
viruses, prompting other measures to prevent epidemics. However, one can provide

111

(a) Connections (b) UNIFORM (⇠ current)

(c) DEGREE (d) SMART-ALLOC

Figure 7.1: Our proposed SMART-ALLOC method minimizes number of infections (red circles):
(a) The US-MEDICARE network overlayed on a map (b-d) Infected hospitals after a year (365
days) under different immunization algorithms. The same amount of resources (k = 200) were
distributed by the algorithms. UNIFORM is the largely current practice of distributing evenly
across all hospitals, while DEGREE distributes according to the number of connections of a
hospital.

partial (‘fractional’) protection by allocating resources to render nodes less susceptible.
In this chapter we formulate the problem of distributing resources to minimize

the spread of infection on a network. Previously devised models, which assume that
allocating a single unit of resource to a node renders it completely immune are a special
case of this more general problem. We illustrate the problem in two settings: the spread
of infection between hospitals through patient transfers, and the spread of malicious code
between individuals through transfers of computer code between users in an electronic
setting.

Consider the problem of prevention of hospital-to-hospital transfer of drug resistant
bacteria. Critically ill patients are frequently and routinely transferred between hospi-
tals in order to provide necessary specialized care [ICM+09]. While such interhospital
transfers are an essential part of routine patient care, they also enable the transfer from

112

hospital to hospital of highly virulent micro-organisms resistant to many or all antibi-
otics [DWG10, Liv03]. As an example, recent work [Mea12] implicates inter-hospital
patient transfers as an important vehicle for spread of “superbug" MRSA (methicillin-
resistant Staphylococcus aureus). There is no existing technology, short of isolating a
hospital, that can completely prevent the spread of such micro-organisms. To disrupt
transfers by removing a hospital from the system can only be done under truly extraordi-
nary circumstances (such as the outbreak of SARS in Toronto). Instead, there are large
numbers of infection control technologies (e.g., bottles of disinfectant) that offer partial
prevention and can be applied at individual hospitals (e.g., [ZIM+09]). Since such infec-
tion control technologies are costly, how should policy-makers optimally deploy them in
order to minimize the global interhospital spread of highly resistant micro-organisms
via patient transfers?

We also consider the spread of malicious content in an electronic setting. In the
Second Life virtual world, nearly all content, from the landscape, to clothing, to the
avatars’ movements, are created and distributed as scripts by the users themselves. This
is part of the interactivity that has made the enterprise a success. However these virtual
environments create the potential for malicious scripts to be inadvertently picked up and
dispersed by unwitting users 1. Without shutting down a users’ account, it is not possible
to confer complete immunity upon that node. However, one could allocate resources
differentially to a subset of nodes, in the form of educating users and auditing their code
inventories.

Motivated by the above applications, and the many other instances where complete
immunization is not feasible (e.g., HIV transmission, or H1N1 flu transmission prior
to availability of vaccine) we study the problem of effective and efficient fractional
immunization on directed weighted graphs. In fractional immunization, one allocates
differing amounts of resource to nodes from a fixed total budget. Nodes which receive
more infection-prevention resource have a smaller likelihood of becoming infected when
exposed than nodes receiving no or little resource. A straightforward approach that tests
each possible allocation would very quickly become computationally intractable (e.g.,
for a network with 2000 nodes, it will take more time than the age of the universe to
examine all the possibilities on a 2GHz processor machine). Instead, we give an effective
and efficient linear-time (in nodes and edges) algorithm SMART-ALLOC in this chapter.
Our extensive experiments show that we may achieve significant benefits if nodes
coordinate their allocation of resources, rather than making allocations independently,
as is current practice in many settings. See Figure 7.1 for an illustration, where our
algorithm outperforms other alternatives by up to 6x fewer infections.

The rest of the chapter is organized as follows: § 7.2 reviews related work, § 7.3 gives
the problem formulation and the hardness result, § 7.4 and § 7.5 explain our proposed
method and § 7.6 presents extensive experiments on datasets. Finally, we conclude in

1http://www.reuters.com/article/2007/08/20/us-disease-game-idusn2031054020070820?
sp=true

113

http://www.reuters.com/article/2007/08/20/us-disease-game-idusn2031054020070820?sp=true
http://www.reuters.com/article/2007/08/20/us-disease-game-idusn2031054020070820?sp=true

§ 7.7.

7.2 Related Work

In short, all the existing immunization strategies mentioned below assume: (1) full
immunity - once a node is immunized, it is completely removed from the graph; (2) binary
allocation (i.e., each node would need at most 1 antidote); and (3) symmetric immunization
- once applied, an antidote affects both incoming and outgoing edges. These assumptions
might be too strong for the inter-hospital patient transfers applications. To the best of our
knowledge, we are the first to address the more realistic and challenging setting, where
the effect of an antidote could be partial and asymmetric and the same node can receive
multiple antidotes.

We review related work in the context of networks here, which can be categorized into
three parts: epidemic thresholds, immunization algorithms and information diffusion.

Epidemic Thresholds/Conditions Much work has been done in finding epidemic thresh-
olds (minimum virulence of a virus which results in an epidemic) for a variety of net-
works [Bai75, McK25, AM91, KW93, PSV02, WCWF03, GMT05, PCF+11, MNP06]. It
should be pointed out that, with the exception of [MNP06] most if not all of the existing
work assumes symmetry in virus propagation. That is, the probability that A infects B or
B infects A is the same, assuming either A or B are infected. The inter-hospital patient
transfer graph is asymmetric; a hospital that is better equipped to treat a critical care
patient is more likely to be on the receiving end of a transfer. Asymmetries in transfer
are also present in e.g. email networks.

Immunization Cohen et al. [CHbA03] studied the acquaintance immunization policy,
and showed that it is much better than random, for both the SIS as well as the SIR model
on random power-law graphs. Hayashi et al. [HMM03] modeled e-mail viruses using
the SHIR model (Susceptible, Hidden, Infectious, Recovered) and derived the extinction
conditions under random and targeted immunization. Tong et.al. [TPT+10] proposed
an effective immunization strategy in the SIS model also motivated by preventing the
spread of computer viruses. Briesemeister et al. [BLP03] studied immunization policies
on power-law graphs. Lappas et. al. [LTGM10] study the problem of finding best-possible
‘culprits’ who started an infection.

General information diffusion processes There is a lot of research interest in studying
dynamic processes on large graphs, (a) blogs and propagations [GGLNT04, KNRT03,
KKT03, RD02], (b) information cascades [BHW92, GLM01, Gra78] and (c) marketing
and product penetration [Rog03, LAH06]. These dynamic processes are all closely
related to virus propagation. For example, one may wish to allocate third-party “fact
checking” resources to content posted on specific blogs in order to minimize the spread

114

of misinformation in the network. Although no blog could be completely immune to
spreading misinformation, such efforts would dampen its spread.

7.3 Problem Formulation and Hardness result

We first formulate the problem explicitly. Let A be the adjacency matrix of the connected
directed weighted graph (of N nodes and E edges) on which the virus is spreading—entry
A(i, j) in the matrix denotes the weight on the edge between nodes (hospitals) i and j
(e.g., the weight can be the average number of patient-transfers per day). The infection
spreading model can be described by a flu-like model with no immunity, technically the
SI model (‘susceptible-infected’) of epidemiology [AM91]. Briefly, at every time-step,
any healthy node can get the infection from one of its currently infected neighbors. The
probability of becoming infected by any particular neighbor during a period of time is
independent and proportional to the weight of the connecting edge. Also, once infected,
a node always stays infected. Any node gets partial immunity upon getting an antidote.
Any amount x of antidote cuts the transmissibility of the virus by a factor f(x) (called
the utility function). For example, under function f(x) = 0.5x, each additional antidote
to hospital i decreases the probability of transmission from any neighbor j of i by a
fixed percentage (50%). Our results hold for any utility function f(x) with a diminishing
marginal returns property typical of infection-control techniques (c.f. [ZIM+09]). Also
note the inherent asymmetric nature of the effect of an antidote, it only effects the incoming
edges of any node. The infection starts with some initially infected ‘seed’ nodes. We
want to distribute the antidotes so that the expected “footprint” (the expected number of
infections at some given time t) is minimized. To summarize, we are given:

• The SI model as the virus-spreading process
• A fixed directed weighted graph A (each edge e having weight w

e

with 0 < w
e

6 1
e.g., the weight can be the average number of patient-transfers per day between
hospitals)

• A total of k antidotes having partial effect e.g., bottles of disinfectant
• A weakening function f(x), denoting how beneficial are x units of antidote, typically

with diminishing marginal returns property

Using popular epidemiological assumptions, we assume that the virus and the underly-
ing graph do not change.2 The problem can be stated as:

Problem 7.1 (MAX-HEALTH). Distribute the antidotes such that for an infection process
spreading over the resulting graph after the antidote-allocation, we minimize the “footprint" (the
expected number of infections at time t, for some given t).

The current practice in allocating varying amounts of antidote across a network is
effectively uniform, e.g. hospitals independently tackle infection control. However, this

2Relaxing these assumptions is a promising research direction.

115

makes no use of the connected network we are given. As mentioned in the introduction,
another obvious but computationally prohibitively expensive method is to estimate
the footprint through computer simulations. How can we get a practical and effective
algorithm?

7.3.1 Our proposed problem—MIN-CONN

Main Idea Our observation is that the footprint depends on the connectivity of the
underlying network and as we show next, the best single measure of connectivity is �

A

,
the so-called ‘largest eigenvalue’ of the adjacency matrix of the network. Roughly, it
describes the number of paths between pairs of nodes in a graph, discounting for longer
paths. Earlier results [WCWF03, GMT05, PCF+11] have also shown that the epidemic
threshold (maximum virus strength so that there is no epidemic) on unweighted, undi-
rected graphs depends on the largest eigenvalue of the adjacency matrix. Instead of
MAX-HEALTH, we then propose to minimize the largest eigenvalue of the weighted
adjacency matrix while distributing the antidotes.

Justification Unfortunately, note that unlike other models, our virus spreading model
is SI and thus has no epidemic threshold - any initial infection will eventually infect
everyone in the graph. But still, as our next lemma shows, we can upper-bound the
expected number of infected nodes in the graph at any time t:

Lemma 7.1. In the SI virus spreading model on a graph:

�(t) 6 (1 + �
A

)t�(0)

where �(t) is the expected num. of infected nodes at time t > 0 and �(0) is a scalar depending
just on the initial conditions (independent of t).

Proof. Suppose the discrete-time SI process is running on graph A and p
i

(t) denotes the
probability that node i is infected at time t after the process started. Then,

p
i

(t+ 1) = p
i

(t) + (1 - p
i

(t)) · �
i

(7.1)

where �
i

is the probability that node i receives some infection from any of its infected
neighbors during the time t to t+ 1. Let R be an indicator random variable for the event
that node i gets the infection during t to t+ 1. Clearly,

R = 1S
j2neighbor(i) Tj

where T
j

is the event that node j transferred an infection between time t and t+ 1; 1
j

(t)
is the corresponding indicator random variable. Using the well-known relation that
expectation of an indicator random variable is just the p.d.f. of the random variable:

�
i

= E[R] = E[1S
j2neighbor(i) Tj

]

6
NX

j=1

E[1
j

(t)] =
NX

j=1

A(j, i)p
j

(t)

116

where the second step follows because for any two events A and B, 1
A[B

= 1
A

+ 1
B

-
1
A

1
B

) E[1
A[B

] 6 E[1
A

] + E[1
B

]. Thus using Equation 7.1 and above:

p
i

(t+ 1) 6 p
i

(t) + (1 - p
i

(t))
NX

j=1

A(j, i)p
j

(t)

Letting ~P(t) = [p1(t),p2(t), . . . ,p
N

(t)]T , we can write the entire system as:

~P(t+ 1) 6 ~P(t) + [I- diag(~P(t))]⇥AT ⇥ ~P(t)

= ~P(t) +AT~P(t)- diag(~P(t))AT~P(t)

6 (I+AT)~P(t)

6 (I+AT)t~P(0)

Consider the all ones vector ~e. Then for any t > 0, ~eT~P(t) = �(t), the expected number
of infected nodes at time t. Hence,

�(t+ 1) 6 ~eT (I+AT)t~P(0)

= ~eT (
NX

j=1

(1 + �
A,i)

t~v
i

~uT

i

)~P(0)

6 (1 + �
A,1)

t~eT (
nX

j=1

~v
i

~uT

i

)~P(0)

where we used the spectral decomposition of matrix I+AT in the second step. Denoting
�
A,1 as �

A

, we have that
�(t+ 1) 6 (1 + �

A

)t�(0)

where �(0) = ~eT (
P

n

j=1~vi~u
T

i

)~P(0) (a scalar depending just on the initial conditions inde-
pendent of t).

Thus, we propose to minimize the upper-bound on the expected number of infected
nodes at any time t, by minimizing the largest eigenvalue �

A

.
We call our proposed problem MIN-CONN. Suppose the vector which gives us

the distribution for k antidotes is ~m = {m1,m2, . . . ,m
N

} (where m
i

is the number of
antidotes given to node i), with the constraint that

P
m

i

= k. Denoting A 0 as the
resulting adjacency matrix after distributing the antidotes, our transformed problem can
be stated as:

Problem 7.2 (MIN-CONN). Distribute the antidotes such that the largest eigenvalue of the
resulting adjacency matrix is minimized i.e.

minimize �
A

0 s.t.
X

i

m
i

= k, 8
i

m
i

2 {0, 1, ..}

It is easy to see that if we define a matrix F = diag(f(~m)),3 then A 0 = A⇥ F.
3f(~m) just applies the function f on each element of the vector ~m

117

7.3.2 MIN-CONN is NP-complete

Unfortunately, MIN-CONN is NP-complete. Consider the decision version of MIN-
CONN:

Problem 7.3 (MIN-CONN Decision Version). Given a directed and weighted graph G =
(V ,E), k > 0, t > 0, and non-increasing f(x) (hence, instance (G,k, t, f(x))) is there an
assignment ~m with

P
i

m
i

= k, 8
i

m
i

2 Z⇤ such that �
AF

6 t where A is the adjacency matrix
of G and F = diag(f(~m))?

We will prove MIN-CONN (Decision version) is NP-complete next.

Theorem 7.1. MIN-CONN (Decision Version) is NP-complete.

Proof. Clearly, MIN-CONN (Decision Version) is in NP: given an integral assignment ~m
as witness, we can check in poly-time if the largest eigenvalue is less than the threshold.
Hence we just need to prove that it is poly-time reducible from an NP-complete problem.

We reduce from INDEPENDENT-SET, a well-known NP-complete problem [GJ83].

Problem (INDEPENDENT-SET). Given a undirected, unweighted graph G = (V ,E) and a
number k > 0 (i.e. instance (G,k)), is there a set of k vertices, no two of which are adjacent?

Say the size of G is n. Given an instance of INDEPENDENT-SET (G,k) we create an
instance I ⌘ (G,n- k, 0, f(x)) of MIN-CONN where f(x) is defined as

f(x) =

�
1, if x = 0
0, if x > 0

Note that such a f(x) forces any algorithm for MIN-CONN to essentially choose k vertices
whose all incoming edges will be deleted. Clearly this construction takes polynomial
time. We now need to prove two things:
1. If there is an independent set S in G, the instance I has a YES answer.
This is true, because we can set m

i

= 1 for all n- k nodes i not in S (i.e. V \ S). Consider
the resulting graph G 0. There will not be any edges from vertices in S to any other vertex.
Also, there will not be any edges from vertices in set V \ S to each other. These follow
because of the antidote distribution and the fact that S was an independent set for G.
Hence, the adjacency matrix AF of G 0 will look like:

AF =

0
n-k,n-k

C
0
k,n-k

0
k,k

�

where C is a size (n- k)⇥ k matrix representing the edges from V \ S to S. It is easy to
check that the largest eigenvalue of AF is 0. Hence I has a YES answer.
2. If G does not have an independent set of size k, then instance I has a NO answer.
Suppose the algorithm for MIN-CONN selects n- k vertices whose all incoming edges
will be deleted. Call the un-selected vertices set S (|S| = k) and the resulting graph

118

G 0 (adjacency matrix AF). Consider G
S

and G 0
S

, the subgraph induced by the vertices
of S in G and G 0 respectively. Clearly G

S

⌘ G 0
S

, as the algorithm didn’t select any
vertex in S. Also, as G does not have an independent set of size k, G

S

is not a null
graph (with no edges) and thus has some connected sub-graph H. Applying the Perron-
Frobenius theorem [McC00], the largest eigenvalue of the adjacency matrix for H is
positive. Denoting the adjacency matrix of G 0

S

(or G
S

) as D, the matrix AF will look like:

AF =

0
n-k,n-k

C
0
k,n-k

D

�

where like before C is a size (n - k)⇥ k matrix representing the edges from V \ S to S.
We know that the largest eigenvalue of AF is at least the largest eigenvalue of D and the
largest eigenvalue of D is at least the largest eigenvalue of the adjacency matrix of H
(eigenvalue interlacing). Hence, D has at least one non-zero eigenvalue. Thus for any S,
the largest eigenvalue of AF is non-zero and hence instance I has a NO answer.

Hence, MIN-CONN (Decision version) is NP-complete.

7.4 Proposed Method—Overview

As MIN-CONN is NP-complete, we resort to heuristics. A simple and intuitive heuristic
is to disrupt the connectivity of the network by distributing the antidotes according to the
number of neighbors (‘degree’) of a hospital. Thus a hospital involved in a larger number
of total patient transfers will receive more resources than small isolated hospitals. This
appears to be a reasonable approach until we realize that this does not directly attack
the exact connectivity metric: �

A

. For example, this method will allocate most of the
resources to the big coastal hospitals, and may miss out on a critical but mid-sized central
hospital acting as a ‘bridge’ between the coasts. Hence, our heuristic should directly try
to optimize the drop in �

A

. Next we present two such heuristics in improving speed: (a)
EXHAUSTIVE, (b) SMART-ALLOC.

7.4.1 Algorithm EXHAUSTIVE

Algorithm EXHAUSTIVE greedily tries to find the best hospital to allocate each additional
antidote to. Clearly, the best node is the one in the graph which, when given the extra
antidote, decreases �

A

the most at that step. Hence, we need to compute the largest
eigenvalue N times for making only a single allocation decision (so for k antidotes, it will
be done k⇥N times). This is very expensive e.g., for a US-wide network of about 2000
hospitals, it took about a day to distribute only 1500 antidotes. The total running time
would O(kNE), using the O(#edges) Lanczos algorithm for computing the eigenvalue).
For larger graphs (such as our Second-Life network), this would be too slow to be
feasible.

119

7.4.2 Algorithm SMART-ALLOC

We give an overview of our approach here, and the theoretical under-pinnings in the
next section.

Best single allocation Following from the discussion above, instead, we can give each
additional antidote to the currently most ‘important’ (central) hospital, with the hope that
it is also the hospital reducing �

A

the most. Fortunately, we can show that the measure
of centrality which allows us to closely approximate the drop in �

A

is the so-called
Eigenvector centrality adapted to directed graphs (a combination of the so-called ‘hub’-
ness and ‘authority’-ness scores [Kle98] of each node). We just give the next antidote
to the hospital which has the highest such centrality score currently. This would be
faster than EXHAUSTIVE, though with some approximation. Note that we still have to
perform the eigenvalue computation (to update the centralities of all the nodes) after
each allocation decision. Can we do better?

Batched allocation The answer is yes - in fact, we can make r times fewer updates
(for a suitably chosen r) to node centralities by carefully allocating r antidotes in one go,
using only the old centrality values. Thus we need to update and ‘resync’ the centralities
only every r allocations. We call this algorithm SMART-ALLOC: it is much faster (linear
on number of nodes and edges) than the other methods with minimal loss of accuracy at
the same time (a point we illustrate using experiments as well—see Sections 7.6.2 and
7.6.3).

7.5 Proposed Method—Theorems and proofs

Here we give details of the two main ideas we mentioned above. Jumping ahead, our
effective and efficient algorithm SMART-ALLOC is given in § 7.5.2.

7.5.1 Best single allocation—Details

Let ~u = [u1,u2, . . . ,u
N

]T and ~v = [v1, v2, . . . , v
N

]T be right and left eigenvectors of A
corresponding to �

A

. In a nutshell, the best node i⇤ to give a single antidote is the one
with the maximum value of u

i

v
i

i.e. i⇤ = arg max
i

u
i

v
i

. We can prove the following
lemma to justify it.

Lemma 7.2. Assuming the current adjacency matrix is A, the change in the in the largest
eigenvalue ��

A

after distributing one antidote to a node, say i, approximated to the first order is
given by:

��
A

= �
A

✓
f(1)u

i

v
i

vTu
- 1
◆

120

Proof. We know that Au = �
A

u and vTA = �
A

vT (right and left eigenvectors). Ac-
cording to the Perron-Frobenius theorem [McC00], �

A

is real and non-negative and the
components of the corresponding eigenvectors v and u all are positive. After a small
modification due to the medicine:

(A+ �A)(u+ �u) = (�
A

+ ��
A

)(u+ �u)

Premultiplying by vT and neglecting second order terms:

��
A

⇡ vT�Au

vTu
(7.2)

Clearly, after distributing one antidote to node i, �A is:

�A = AF
i

-A (7.3)

where F
i

= diag([f(0), . . . , f(1), . . . , f(0)]) (i.e. the i-th position on the diagonal is f(1)).
Using it in Equation 7.2:

��
A

⇡ vTAF
i

u

vTu
-

vTAu

vTu

=
�
A

vTF
u

vTu
- �

A

= �
A

✓
f(1)u

i

v
i

vTu
- 1
◆

(7.4)

Proved.

This requires the computation of ~u and ~v, which is O(E). We can continue giving the
antidotes in this way, but as discussed above, we will need to re-compute ~u and ~v after
each allocation decision.

7.5.2 Batched allocation—Details

In sum, SMART-ALLOC uses Algorithm 2 to batch-allocate and resync till we have
exhausted total budget k (see § 7.5.2). We now show how we can batch-allocate r
antidotes in one-go. Suppose the distribution of allocations as before is given by the
vector ~m. In this case, we can prove the following lemma, similar to Lemma 7.2.

Lemma 7.3. The change in the largest eigenvalue ��
A

after distributing r antidotes according
to ~m (so

P
i

m
i

= r) approximated to the first order is given by:

��
A

= �
A

(
vTFu

vTu
- 1)

where v and u are the left and right eigenvectors of A corresponding to �
A

and F = diag(f(~m)).

121

Proof. (Details Omitted for brevity) The main change from Lemma 7.2 is that �A = AF-A
now.

Subsequently, for the best allocation of r antidotes, it is easy to see that we have the
following optimization problem now, analogous to MIN-CONN:

Problem 7.4 (MAX-DROP). Distribute antidotes such that:

minimize
NX

i=1

f(m
i

) · u
i

· v
i

s.t.
X

i

m
i

= r

(of course, 8
i

m
i

2 {0, 1, ..}). Clearly, it is an integer optimization problem, which in
general is NP-complete.

GreedyDrop: An optimal greedy algorithm

Surprisingly, we can prove that a greedy algorithm achieves the optimal solution for
MAX-DROP, when f(x) is monotone non-increasing convex. The algorithm is given in
Algorithm 2.

Algorithm 2 GreedyDrop
Input: Directed Weighted Adjacency matrix A, batch-size r, monotone non-increasing

convex function f(x)
1: u = first right eigenvector of A
2: v = first left eigenvector of A
3: ~m = ~0
4: for i = 1 to r do
5: j = max

h

[f(m
h

)- f(m
h

+ 1)]u
h

v
h

6: m
j

= m
j

+ 1
7: end for
8: return ~m

Intuitively, at each iteration, we pick the index (node) j which maximizes the drop
in the value of the objective at that step. Clearly, the running time of the algorithm is
O(E+ kN). We prove the optimality of GreedyDrop in Theorem 7.2. First, we prove the
following lemma:

Lemma 7.4. Given a convex non-increasing function f(x), define function g(x) = f(x)-f(x+1).
Then g(x) is non-increasing.

Proof. As f(x) is monotone non-increasing and convex, from the property of convex
functions:

f(x)- f(y) > f 0(y)[x- y] 8x,y (7.5)

122

Using Equation 7.5 with x = x,y = x+ 1 and x = x+ 1,y = x, we get:

-f 0(x+ 1) 6 g(x) 6 -f 0(x)

Similarly,
-f 0(x+ 2) 6 g(x+ 1) 6 -f 0(x+ 1)

Clearly, from the preceding inequalities, we have that 8x g(x + 1) 6 g(x) i.e. g(x) is a
non-increasing function.

Theorem 7.2. GreedyDrop returns the optimal integral ~m for MAX-DROP when f(x) is
monotone non-increasing and convex.

Proof. Say GreedyDrop returns mG as the answer, but m⇤ is the true optimal. Then there
was some first step (say t) where we incremented some m

j

from s
j

to s
j

+ 1 in mG but
m⇤ has m

j

= s
j

. Because we have a fixed batch-budget r, m⇤ also has some m
k

as s
k

+ 1
while mG has m

k

which is at most s
k

.
Consider another assignment m 0 which is identical to m⇤ except m

k

= s
k

and m
j

=
s
j

+ 1. Note that we are still satisfying our constraint and hence it is a valid assignment.
The score of this assignment is:

Score(m 0) =
NX

i=1

f(m
i

) · u
i

· v
i

= Score(m⇤) + [f(s
k

)- f(s
k

+ 1)]u
k

v
k

-[f(s
j

)- f(s
j

+ 1)]u
j

v
j

(7.6)

where the last step is due to the construction of m 0.
Recall that while computing mG, GreedyDrop had chosen j at step t i.e.,

j = max
h

[f(m
h

)- f(m
h

+ 1)]u
h

v
h

at step t. At that instant, suppose m
k

= s 0
k

. Hence from the above equation we can
conclude that:

[f(s 0
k

)- f(s 0
k

+ 1)]u
k

v
k

6 [f(s
j

)- f(s
j

+ 1)]u
j

v
j

(7.7)

In addition, we know that s 0
k

6 s
k

. But from Lemma 7.4, g(s 0
k

) > g(s
k

) i.e.

f(s 0
k

)- f(s 0
k

+ 1) > f(s
k

)- f(s
k

+ 1) (7.8)

So, from Equations 7.7 and 7.8:

[f(s
k

)- f(s
k

+ 1)]u
k

v
k

6 [f(s
j

)- f(s
j

+ 1)]u
j

v
j

Coupled with Equation 7.6, the above inequality implies that Score(m 0) 6 Score(m⇤). If
Score(m 0) < Score(m⇤), then m⇤ is not optimal as we started with the assumption that
m⇤ is optimal and hence has the lowest score. If Score(m 0) = Score(m⇤), then we can
conclude that GreedyDrop did not make an error at step t and made it at some other point.
Continuing similarly, finally, either m⇤ is not optimal or GreedyDrop is correct. Hence, a
contradiction, mG is optimal and GreedyDrop gives the optimal integral answer.

123

SMART-ALLOC

Finally, we are ready to describe our algorithm SMART-ALLOC: use GreedyDrop (Algo-
rithm 2) to batch-allocate a small number (r) of resources and then ‘re-sync’ (re-compute)
the first left and right eigenvectors and continue similarly till our budget k is exhausted.

One may ask why can not we directly allocate all k antidotes in one-go using Greedy-
Drop? This is because, unfortunately, the accuracy of the first-order approximation in
Lemma 7.3 is only good when the number of antidotes k is small w.r.t. the graph i.e
when k⌧ N. But that is not the case in general - for e.g. in our motivating problem one
may want to distribute 200 infection control resources among 2000 nationwide hospitals.
In fact, k can be arbitrarily high, since the units of resource in this problem are set with
arbitrary granularity. It is easy to see the next lemma:

Lemma 7.5 (Running time of SMART-ALLOC). The running time of the algorithm SMART-
ALLOC is O(kE/r+ kN).

Clearly, we want to use as large r as possible. Our proposed rule-of-thumb is to
choose r proportional to the spectral-gap (|�

A

|- |�
A,2|) of the graph. Larger the spectral-

gap, lesser is the sensitivity of the spectrum of A [GVL89], lesser is the need to re-sync
often and hence larger is the r we can use e.g. in our experiments on hospital graphs,
which had a small spectral-gap, we found that r = 6 performed very well.

7.6 Experiments

We designed experiments to answer the following questions about our algorithm SMART-
ALLOC: (i) Effectiveness for reducing the rate of infection, (ii) Effectiveness for MIN-
CONN and (ii) Scalability. In short, SMART-ALLOC proves to be a fast and effective
algorithm for both reducing the rate of infection and solving MIN-CONN and is very
close to EXHAUSTIVE, at a fraction of the running cost, while others are much worse.

7.6.1 Setup

For answering the above questions we ran extensive simulation experiments and com-
pared against many other resource allocation methods (see Table 7.1) on multiple real-
world datasets (see Table 7.2). We ran parallel experiments on a Condor [TTL05] cluster
of 58 cores each being a generic Fedora 7 machine. All the algorithms and the SI infection
process were coded in C++. We use f(x) = 0.50x and r = 6 for all our experiments. The
choice of the function f(x) captures the diminishing marginal utility of infection control
based on a wide-range of studies in the medical literature of existing infection control
techniques (c.f. [ZIM+09]).

124

Table 7.1: Various Algorithms used for comparison

Method Name Method Description Speed O(·)
UNIFORM Distribute uniformly among the nodes, breaking ties

randomly.
kN

DEGREE Distribute randomly proportional to the ‘degree’† of the
nodes.

E+ kN

EXHAUSTIVE Allocate each additional antidote to that node which
decreases the largest eigenvalue �

A

the most in that
step.

kEN

SMART-ALLOC Allocate r antidotes in one go based on node centralities
and only then recompute.

kE/r+ kN

†As the graphs are directed, we use degree centrality [Fre79] - geometric mean of in-
degree (the number of transfers the hospital receives) and out-degree (the number of
transfers the hospital sends out).

Table 7.2: Various real-world datasets used in our work

Dataset Name Nodes (N) Edges (E) Description
US-MEDICARE 2138 10241‡ All critical patient transfers among US

hospitals based on all Medicare Provider
Analysis and Review (MedPAR) final ac-
tion claims between Sept. 1, 2004 - Sept. 1,
2005 [ICM+09].

PENN-ALL 137 1121‡ Critical patient transfers within Pennsyl-
vania hospitals based on all discharges
(not just Medicare) between July 1, 2004 -
June 30, 2006 [ICM+09].

GESTURE 166,774 1.5 million Second-Life transfer-network of ‘gestures’
among users. Gestures can include any-
thing from animation, chat to playing
sounds.

‡ Weight for each edge u! v was the average number of transfers from hospital u to v
per day.

125

7.6.2 Effectiveness for MIN-CONN problem

(a) US-MEDICARE (b) PENN-ALL

Figure 7.2: Largest Eigenvalue after allocation vs Budget k of resources used for different algo-
rithms. (a) US-MEDICARE Network (b) PENN-ALL Network. Lower is better and SMART-ALLOC

is near-optimal in both cases. (plots use color)

MIN-CONN aims to decrease the largest eigenvalue the most - how do the algorithms
perform in that measure? In short, SMART-ALLOC comes very close to EXHAUSTIVE while
others are much worse. Figure 7.2 shows the largest eigenvalue of the resulting graph
after giving k antidotes according to various algorithms vs k on the US-MEDICARE
and PENN-ALL networks. UNIFORM and DEGREE perform poorly, although DEGREE
is better (sometimes marginally) than UNIFORM. SMART-ALLOC and EXHAUSTIVE are
much better at achieving the lowest eigenvalue for all k. EXHAUSTIVE is expected to be
near-optimal as it does an exhaustive search via repeated eigenvalue computation for
the node which decreases the eigenvalue the most. On the other hand, SMART-ALLOC
performs well due to our careful approximation and algorithm-design.

7.6.3 Effectiveness for MAX-HEALTH problem

We ultimately want to test how the algorithms perform for MAX-HEALTH. In short,
again, SMART-ALLOC proves to be an effective algorithm and is very close to EXHAUS-
TIVE while others are much worse. See Figures 7.3 and 7.4 - they show the expected
number of infected nodes (hospitals) vs. time tick after running the infection process
on the partially immunized US-MEDICARE and PENN-ALL networks for different
budget k of antidotes. The different curves represent the different algorithms used for
allocation. As the edge-weights represent the average number of transfers per day, the
curves represent the average footprint for each day after the infection starts. Each curve
is an average of 21380 and 1370 simulation runs for US-MEDICARE and PENN-ALL
respectively - in this way we ensured that we seeded the infection from each hospital for
10 different runs. We ran the simulations till 365 time-ticks (= 1 year) and took the average
over all runs for each time-tick. Finally, the range of values of k for US-MEDICARE and
PENN-ALL were chosen according to the network sizes and the function f(x) = 0.50x.

126

(a) k = 100 (b) k = 150 (c) k = 200

Figure 7.3: US-MEDICARE network for different algorithms and budget k of resources: Expected
Number of Infections vs Time ticks (⇡ days). Again EXHAUSTIVE and SMART-ALLOC perform
the best and are close to each other, as expected. Each curve average of 21380 runs and lower is
better (plot uses color)

(a) k = 75 (b) k = 100 (c) k = 120

Figure 7.4: PENN-ALL network for different algorithms and budget k of resources: Expected
Number of Infections vs Time ticks (⇡ days). Again EXHAUSTIVE and SMART-ALLOC perform
the best (they are almost on top of each other), as expected. Each curve average of 1370 runs and
lower is better (plot uses color)

Our algorithm SMART-ALLOC clearly is very close to EXHAUSTIVE and has the lowest
footprints everyday compared to the rest. For e.g., in Figure 7.3(f), after an year with
k = 200 antidotes, EXHAUSTIVE and SMART-ALLOC have an expected total of 42 and 46
hospitals infected, while the other methods end with about 2.5 times worse at around
110. It is even more pronounced in PENN-ALL (Figure 7.4(f)): after an year with k = 120,
EXHAUSTIVE and SMART-ALLOC have an expected footprint of ⇠ 8, while the next closest
method is about 3 times worse at around 23. This shows the dramatic impact an effective
allocation algorithm can have on the number of infected nodes. Moreover note that
all algorithms essentially mimic their performance w.r.t. MIN-CONN (Figure 7.2) i.e.
larger the corresponding drop in the first eigenvalue �

A

, lower is the number of expected
infections, validating our reduction of MAX-HEALTH to MIN-CONN.

The current practice is for each hospital to independently manage infection control,

127

which may be no better from the network perspective than using UNIFORM. But note
that compared to UNIFORM, SMART-ALLOC can be up to 6 times better (see Figure 7.4(f)).
Interestingly, for the US-MEDICARE network, we found that to achieve the same level
of infection control as SMART-ALLOC and k = 120, we need a budget of about k = 800
resources if distributed according to UNIFORM.

7.6.4 Scalability

As discussed before, SMART-ALLOC is much faster than its chief competitor EXHAUSTIVE
(see Table 7.1). For example, it took more than 10 hours to distribute 200 resources
using EXHAUSTIVE on the US-MEDICARE network while it took just ⇠ 14 seconds to run
SMART-ALLOC for the same budget - a 2500x speed-up. As a further comparison, the
naïve simulation-based algorithm ran for a week and still had not finished for the same
budget - a more than 30, 000x speed-up. Additionally, on the GESTURE network, we had
to stop EXHAUSTIVE after it took 3 days to allocate a single resource; SMART-ALLOC took
⇠ 150 mins to allocate 2000 resources.

7.6.5 Generality

Figure 7.5: Expected number of infections vs time-ticks for different algorithms, budget k = 2000
on the GESTURE network. SMART-ALLOC is the best. Each curve average of 1000 runs. (plot
uses color)

As mentioned in § 7.1, although our problem was originally motivated on hospital-
transfer networks, the problem of fractional immunization arises in many other scenarios,
and is arguably more realistic than complete immunization. To demonstrate the utility
of SMART-ALLOC in domains other than epidemiology, we also compare performance
on the GESTURE network of asset transfers between virtual world users. Figure 7.5
shows the the expected number of infected users vs. time, if a malicious asset were to
be created and transferred between users. We budget k = 2000 antidotes, and select the
infection source randomly. We don’t show EXHAUSTIVE because, as mentioned before, it

128

didn’t complete even after 3 days whereas SMART-ALLOC allocated all 2000 resources in
⇠ 150 mins. As expected, SMART-ALLOC has the fewest users infected, while others have
up to ⇠ 2.5 times more users infected, demonstrating the efficacy of our algorithm in a
completely different domain.

7.7 Conclusion

This work is the first to address the problem of allocation of infection-control resources
with fractional and asymmetric impact among nodes in a network. It is a more general
problem than that of selecting a subset of nodes to be immunized completely via a
vaccine. The potential applications are broad—from curbing spread of infection between
hospitals from patient transfers, to preventing spread of malicious code in virtual world
settings.

We formulated the problem, proved it is NP-complete, and gave a highly efficient
and effective algorithm SMART-ALLOC, which also we demonstrated through extensive
experiments on multiple real-world datasets, including nation-wide patients-transfer
networks and electronic virtual-world social transfer-networks. SMART-ALLOC runs in
seconds (as opposed to weeks), on commodity hardware; more importantly, applied on
real hospital-transfer networks (2005 U.S. Medicare data, 2004-2006 PA all-payer data) it
results to up to 6x fewer infections, compared to current practice and other heuristics.

The current practice in control of highly resistant organisms via patient transfers
has been largely focused within individual hospitals. Hence, the current public health
policy is missing an opportunity to significantly reduce infection rates with an infection
prevention strategy that accounts for the potential transfer of bacteria along the network
of inter-hospital patient transfers.

129

Chapter 8

General Edge Placement

In this chapter, we shift the problem of controlling the dissemination of an entity (e.g.,
meme, virus, etc) on a large graph to the level of edges and ask: which edges should we
add or delete in order to speed-up or contain a dissemination? First, we propose effective
and scalable algorithms to solve these dissemination problems. Second, we conduct a
theoretical study of the two problems and our methods, including the hardness of the
problem, the accuracy and complexity of our methods, and the equivalence between the
different strategies and problems. Lastly, we conduct experiments on real topologies of
varying sizes to demonstrate the effectiveness and scalability of our approaches.

8.1 Introduction

As we have already seen in previous chapters, managing the dissemination of an entity
(e.g., meme, virus, etc) on a large graph is a challenging problem with applications in
various settings and disciplines. In its generality, the propagating entity can be many
different things, such as a meme, a virus, an idea, a new product, etc. The propagation
is affected by the topology and the properties of the entity: its ‘virality’, its speed, its
‘stickiness’ or the duration of the infection of a node. Our focus here is the topology, since
we assume that we cannot alter the properties of the propagating entity.

The problem we address is how we can affect the propagation by modifying the
edges of the graph. In fact, we address two different problems. First, in the NETMELT
problem, we want to contain the dissemination by removing a given number of edges.
For example, we can consider the distribution of malware over a social network. Deleting
user accounts may not be desirable, but deleting edges (‘unfriending’ people) may be
more acceptable. More specifically, we want to delete a set of k edges from the graph
to minimize the infected population. Second, in the NETGEL problem, we want to
enable the dissemination by adding a given number of edges. Specifically, we want
to add a set of k new edges into the graph to maximize the population that adopt the
information. For example, we could extend the social network scenario using the recent
‘arab spring’ which often used Facebook and Twitter for coordinating events: we may

130

want to maximize the spread of a potential piece of information. Note that an additional,
key requirement for both problems is computational efficiency: the solution should scale
to large graphs.

Both problems are challenging for slightly different reasons. For the NETMELT
problem, most of the existing methods operate on the node-level, e.g., deleting a subset
of the nodes from the graph to minimize the infected population from a propagating
virus. In the above social spam example, this means that we might have to shutdown
some legitimate user accounts. Can we avoid this by operating on a finer granularity,
that is, only deleting a few edges between users to slow down the social spam spreading?
For the NETGEL problem, things are even more challenging because of its high intrinsic
time complexity. Let n be the number of the nodes in the graph. There are almost n2

non-existing edges since many real graphs are very sparse. In other words, even if
we only want to add one single new edge into the graph, the solution space is O(n2).
This complexity ‘explodes’ if we aim to add multiple new edges collectively, where the
solution space becomes exponential. To date, there does not exist any scalable solution for
the NETGEL problem.

The overarching contribution of this work is the formulation and theoretical study of
the dissemination management via edge manipulation: how to place a set of edges1 to
achieve the desired outcome. The main contributions can be summarized as follows:

• Algorithms. We propose effective and scalable algorithms to optimize the leading
eigenvalue, the key graph parameter that controls the information dissemination
processes for both NETMELT and NETGEL, respectively;

• Proofs and Analysis. We show the accuracy and the complexity of our methods; the
hardness of the problem, and equivalence between the different strategies;

• Experimental Evaluations. Our evaluations on real large graphs show that our
methods are both effective and scalable (see Fig. 8.1 as an example).

The rest of the work is organized as follows. We introduce notation and formally
define the NETGEL and NETMELT problems in Section 2. We present and analyze the
proposed algorithms in Section 3 and Section 4, respectively. We provide experimental
evaluations in Section 5. We review the related work in Section 6 and conclude in
Section 7.

8.2 Problem Definitions

Table 8.1 lists the main symbols used throughout the chapter. We consider directed,
irreducible unipartite graphs. For ease of presentation, we discuss the unweighted
graph scenario although the algorithms we propose can be naturally generalized to the
weighted case. We represent a graph by its adjacency matrix. Following the standard
notation, we use bold upper-case for matrices (e.g., A), bold lower-case for vectors (e.g.,

1In this work, we use the terms ‘link’ and ‘edge’ interchangeably.

131

0 1000 2000 3000 4000 5000
0.000001

0.0001

0.01

0.000001

0.0001

Time Step

L
o
g
 F

ra
ct

io
n
 o

f
In

fe
ct

e
d
 N

o
d
e
s

Original Graph

Proposed Method

Figure 8.1: Comparison of maximizing the outcome of the information dissemination process.
Larger is better. The proposed method (red) leads to the largest number of ‘infected’ nodes
(e.g., having more people in the social networks to adopt a piece of good idea, etc). Notice
that all the alternative methods are mixed with the result on the original graph (yellow), which
means that they fail to affect the outcome of the dissemination process. See Section 6 for detailed
experimental setting.

a), and calligraphic fonts for sets (e.g., I). We denote the transpose with a prime (i.e., A 0

is the transpose of A). Also, we represent the elements in a matrix using a convention
similar to Matlab, e.g., A(i, j) is the element at the ith row and jth column of the matrix A,
and A(:, j) is the jth column of A, etc.

When we discuss the relationship between the two different strategies (node deletion
vs. edge deletion) for the NETMELT problem, it is helpful to introduce the concept of line
graph, where the nodes represent the edges in the original graph. Formally, each edge in
the original graph A becomes a node in the line graph L(A); and there is an edge from
one node to the other in the line graph if the target of the former edge is the same as the
source of the latter edge in the original graph A. It is formally defined as follows:

Definition 8.1 (Line Graph). Given a directed graph A, its directed line graph L(A) is a graph
such that each node of L(A) represents an edge of A, and there is an edge from a node e1 to e2 in
L(A) iff for the corresponding edges hi1, j1i and hi2, j2i in A, j1 = i2.

With the notation of the line graph L(A), we have two equivalent ways to represent
an edge. Let e

x

(e
x

= 1, ...,m) be the index of the nodes (i.e., the edges in A) in the line
graph. We can also represent the edge e

x

by the pair of its source and target nodes in the
original graph A: hi

x

, j
x

i, i.e., the edge e
x

starts with the node i
x

and ends at node j
x

.
In order to design an effective strategy to optimize the graph structure to affect the

outcome of an information dissemination process, we need to answer the following three
questions. (1) (Key graph parameters/metrics) What are key graph metrics/parameters
that determine/control the dissemination process? (2) (Graph operations) What types

132

Table 8.1: Symbols

Symbol Definition and Description
A, B, . . . matrices (bold upper case)
A(i, j) the element at the ith row and the jth

column of A
A(i, :) the ith row of matrix A
A(:, j) the jth column of matrix A
A 0 transpose of matrix A
a, b, . . . vectors
I, J, . . . sets (calligraphic)
� the largest (in module) eigenvalue of A
u, v the n⇥ 1 left eigenvector and right

eigenvector associated with �.
n the number of the nodes in the graph
m the number of the edges in the graph
k the budget (i.e., the number of deleted or

added edges)

of graph operations (e.g., deleting nodes/edges, adding edges, etc) are we allowed to
change the graph structure? (3) (Affecting algorithms) For a given graph operation, how
can we design effective, scalable algorithms to optimize the corresponding key graph
parameters?

For information dissemination on real graphs, we have already seen that for a large
family of dissemination processes, the largest (in modulus) eigenvalue � of the adjacency
matrix A or an appropriately defined system matrix is the only graph parameter that
determines the tipping point of the dissemination process, i.e., whether or not the
dissemination will become an epidemic. In principle, this gives a clear guidance on the
algorithmic side, that is, an ideal, optimal strategy to affect the outcome of the information
dissemination process should change the graph structure so that the leading eigenvalue � is
minimized or maximized.

Based on this observation, now we can transform the original problem of affecting
the dissemination process to the eigenvalue optimization problem, that is,

(1) minimize the leading eigenvalue � for NETMELT;
(2) maximize the leading eigenvalue � for NETGEL.

In this chapter, we focus on operating on the edge-level to design affecting algorithms.
With the above notation, our problems can be formally defined as the following two
sub-problems:

Problem 8.1. NETMELT (Edge Deletion)

Given: A large n⇥ n graph A and an integer (budget) k;

133

Output: A set of k edges from A whose deletion from A creates the largest decrease of the leading
eigenvalue of A.

Problem 8.2. NETGEL (Edge Addition)

Given: A large n⇥ n graph A and an integer (budget) k;
Find: A set of k non-edges of A whose addition to A creates the largest increase of the leading

eigenvalue of A.

As we will show soon, both problems are combinatorial.

8.3 Proposed Algorithm for NETMELT

In this section, we address the NETMELT problem (Prob. 8.1), that is, to delete k edges
from the original graph A so that its leading eigenvalue � will decrease as much as
possible. We first study the relationship between two different strategies (edge deletion
vs. node deletion), and then present our algorithm, followed by the analysis of its
effectiveness as well as efficiency.

8.3.1 Edge Deletion vs. Node Deletion

Roughly speaking, in the NETMELT Problem (Edge Deletion), we want to find a set of k
‘important’ edges from the graph A to delete. With the notation of the line graph L(A),
intuitively, such ‘important’ edges in A might become ‘important’ nodes in the line graph
L(A). In this section, we briefly present the relationship between these two strategies
(node deletion vs. edge deletion).

Our main result is summarized in Lemma 8.1, which says that the eigenvalues of the
original graph A are also the eigenvalues of its line graph L(A).

Lemma 8.1. Line Graph Spectrum. Let � be an eigenvalue of the graph A. Then � is also the
eigenvalue of the line graph L(A).

PROOF. Let u and v be the left and right eigenvectors of the graph A that correspond
to any eigenvalue �. We have Av = �v and u 0A = �u 0. Equivalently, we have:

�v(i) =
X

j:A(i,j)=1

v(j) and �u(j) =
X

i:A(i,j)=1

u(i) (8.1)

Let e
x

(e
x

= 1, ...,m) be an edge of the graph A. Recall that we can also represent
e
x

by its source and target nodes: hi
x

, j
x

i. Let Ã be the adjacency matrix of the line
graph L(A). By the definition of the line graph, we have Ã(e

x

, e
y

) = 1 if j
x

= i
y

, and
Ã(e

x

, e
y

) = 0 otherwise (e
x

, e
y

= 1, ...,m).
We define two m ⇥ 1 vectors ũ and ṽ as: ũ(e

x

) = u(i
x

) and ṽ(e
x

) = v(j
x

) with
e
x

= 1, ...,m.

134

Next, we will show that ũ and ṽ are the left and right eigenvectors of Ã respectively,
with � being the corresponding eigenvalue.

For any edge e
x

(e
x

= 1, ...,m), we have

Ã(e
x

, :)ṽ =
X

e

y

:Ã(e
x

,e
y

)=1

ṽ(ey)

=
X

e

y

:i
y

=j

x

v(j
y

) (all edges adjacent from e
x

)

=
X

j

y

:A(j
x

,j
y

)=1

v(j
y

) (all edges from node j
x

)

= �v(j
y

) (due to Eq. (8.1))
= �ṽ(e

x

) (due to dfn. of ṽ) (8.2)

Similarly, for any edge e
x

(e
x

= 1, ...,m), we have

ũ 0Ã(:, e
x

) =
X

e

y

:Ã(e
y

,e
x

)=1

ũ(ey)

=
X

e

y

:j
y

=i

x

u(i
y

) (all edges adjacent to e
x

)

=
X

j

y

:A(j
y

,i
x

)=1

u(i
y

) (all edges to node i
x

)

= �u(i
x

) (due to Eq. (8.1))
= �ũ(e

x

) (due to dfn. of ũ) (8.3)

Putting Eq. (8.2) and Eq. (8.3) together, we have Ãṽ = �ṽ and ũ 0Ã = �ũ 0, which
completes the proof. 2

By Lemma 8.1, it seems that edge deletion (Prob. 8.1) can be transformed to the node
deletion problem on the line graph – that is, select a subset of k nodes from the line
graph L(A) whose deletion creates the largest decrease in terms of the leading eigenvalue
of L(A). However, by the following lemma, the node deletion problem itself is still a
challenging task.

Lemma 8.2. Hardness of Node Deletion. It is NP-Complete to find a set of k nodes from a
graph A, whose deletion will create the largest decrease of the largest eigenvalue of the graph A.

PROOF. The proof can be done by the reduction from the independent node set
problem, which is known to be NP-Complete [Kar72]. The detailed proof is omitted for
brevity. 2

That said, we seek an effective algorithm that directly solves the NETMELT problem
next.

135

8.3.2 Proposed K-EDGEDELETION Algorithm

The key to solving Prob. 8.1 (NETMELT) is to quantify the impact of deleting a set
of edges in terms of the leading eigenvalue �. The naive way is to recompute the
leading eigenvalue � after deleting the corresponding set of edges - the smaller the new
eigenvalue, the better the subset of the edges. But it is computationally infeasible for
large graphs since it takes O(m) time for each of the

�
m

k

�
possible sets, as in general, the

impact for a given set of the edges (in terms of decreasing the leading eigenvalue �) is
not equal to the summation of the impact of deleting each individual edge.

Let u and v be the leading left eigenvector and right eigenvector of the graph A,
respectively. Intuitively, the left eigen-score u(i) and the right eigen-score v(j) (i, j =
1, ...,n) provide some importance measure for the corresponding nodes i and j. The core
idea of the proposed K-EDGEDELETION algorithm is to quantify the impact of each edge
by the corresponding left and right eigen-scores independently (step 9) . Our upcoming
analysis in the next subsection shows that this strategy (1) leads to a good approximation
of the actual impact wrt decreasing the leading eigenvalue; and (2) naturally de-couples
the dependence among the different edges. As a result, we can avoid the combinatorial
enumeration in Prob. 8.1 by picking the top-k edges with the highest individual impact
scores (step 9).

Note that steps 2-7 in Alg. 3 are to ensure that all the eigen-scores (i.e., u(i), v(j)(i, j =
1, ...,n)) are non-negative. According to the Perron-Frobenius theorem [GL96], such
eigenvectors u and v always exist.

Algorithm 3 K-EDGEDELETION

Input: the adjacency matrix A and the budget k
Output: k edges

1: compute the leading eigenvalue � of A; let u and v be the corresponding left and
right eigenvectors, respectively;

2: if min
i=1,...,nu(i) < 0 then

3: assign u -u
4: end if
5: if min

i=1,...,nv(i) < 0 then
6: assign v -v
7: end if
8: for each edge e

x

: (i
x

, j
x

) e
x

= 1, ...,m; i
x

, j
x

= 1, ...,n do
9: score(e

x

) = u(i
x

)v(j
x

);
10: end for
11: return top-k edges with the highest score(e

x

)

136

8.3.3 Proofs and Analysis

Here, we analyze the accuracy and the efficiency of the proposed K-EDGEDELETION
algorithm.

The accuracy of the proposed K-EDGEDELETION is summarized in Lemma 8.3. Ac-
cording to Lemma 8.3, the first-order matrix perturbation theory, together with the fact
that many real graphs have large eigen-gap, provides a good approximation to the impact
of a set of edges in terms of decreasing the leading eigenvalue. What is more important,
with such an approximation, the impact of the different edges are now de-coupled from
each other. Therefore, we can avoid the combinatorial enumeration of Prob. 8.1 by simply
returning the top-k edges with the highest individual impact scores (step 9 in Alg. 3).

Notice that by Lemma 8.3, there is an O(k) gap between the approximate and the
actual impact of a set of edges in terms of decreasing the leading eigenvalue. Our
experimental evaluations show that the correlation between the approximate and the
actual impact is very high (See Section 6 for details), indicating that it indeed provides a
good approximation for the actual decrease of the leading eigenvalue.

Lemma 8.3. Let �̂ be the (exact) first eigenvalue of Â, where Â is the perturbed version of A by
removing all of its edges indexed by the set S. Let � = � - �2 be the eigen-gap of the matrix A
where �2 is the second eigenvalue of A, and c = 1/(u 0v). If � is the simple first eigenvalue of A,
and � > 2

p
k, then �- �̂ = c

P
e

x

2S u(i
x

)v(j
x

) +O(k).

PROOF. Let �
i

(i = 1, ...,n) be the ordered eigenvalues of A (i.e., |�| = |�1| > |�2|... >
|�

n

|). Let �̃
i

(i = 1, ...,n) be the corresponding eigenvalues of Â. Notice that we omitted
the subscripts for the leading eigenvalues (i.e., �1 = �, and �̃1 = �̃).

Let Â = A + E. We have kEk
Fro

=
p
k.

According to the first-order matrix perturbation theory (p.183 [SS90]), we have

�̃1 = �1 +
u 0Ev
u 0v

+ O(kEk2)

= �1 - c
X

e

x

2S

u(i
x

)v(j
x

) +O(k) (8.4)

Next, we will show that �̃1 is indeed the leading eigenvalue of Â. To this end, again
by the matrix perturbation theory (p.203 [SS90]), we have

�̃1 > �1 - kEk2 > �1 - kEkFro > �1 -
p
k

�̃
i

6 �
i

+ kEk2 6 �
i

+ kEk
Fro

6 �
i

+
p
k(i > 2) (8.5)

Since � = �1 - �2 > 2
p
k, we have �̃1 > �̃

i

(i = 2, ...,n). In other words, we have that
�̃1 = �̂ is the leading eigenvalue of Â. Therefore,

�- �̂ = c
X

e

x

2S

u(i
x

)v(j
x

) +O(k) (8.6)

137

which completes the proof. 2

The efficiency of the proposed K-EDGEDELETION is summarized in the following
lemma, which says that with a fixed budget k, K-EDGEDELETION is linear wrt the size of
the graph for both time and space cost.

Lemma 8.4. Efficiency of K-EDGEDELETION. The time cost of Alg. 3 is O(mk + n). The
space cost of Alg. 3 is O(n+m+ k).

PROOF. Using the power method, step 1 takes O(m) time. Steps 2-7 take O(n)
time. Steps 8-10 take O(m) time. Step 11 takes O(mk) time. Therefore, the overall time
complexity of Alg. 3 is O(mk+ n), which completes the proof of the time cost.

We need O(m) to store the original graph A. It takes O(n) and O(1) to store the eigen-
vectors and eigenvalue, respectively. We need additional O(m) to store the scores (Step
9) for all the edges. Finally, it takes O(k) for the selected k edges. Therefore, the overall
space complexity of Alg. 3 is O(m+n+k), which completes the proof of the space cost. 2

8.4 Proposed Algorithm for NETGEL

In this Section, we address the NETGEL problem (Prob. 8.2), where we want to add a set
of new links into the graph A so that its leading eigenvalue � will increase as much as
possible. We first present the proposed K-EDGEADDITION algorithm, and then analyze
its accuracy as well as efficiency.

8.4.1 Proposed K-EDGEADDITION Algorithm

Let T be a set of non-existing edges in A, that is, for each e
x

: hi
x

, j
x

i 2 T, we have
A(i

x

, j
x

) = 0. Let �̂ be the leading eigenvalue of the new adjacency matrix Â by intro-
ducing the new edges indexed by the set T. By the similar procedure as in the proof of
Lemma 8.3, we can show that the impact of the new set of edges T in terms of increasing
the leading eigenvalue �̂- � can be approximated as

�̂- � ⇡
X

e

x

2T

u(i
x

)v(j
x

) (8.7)

Therefore, it seems that we could use a similar procedure as K-EDGEDELETION
to solve the NETGEL problem (referred to as ‘Naive-Add’): for each non-existing edge
e
x

: hi
x

, j
x

i, calculate its score as score(e
x

) = u(i
x

)v(j
x

); and pick top-k non-existing
edges with the highest scores.

However, many real graphs are very sparse, i.e., m << n2. Therefore, we have
O(n2 - m) ⇡ O(n2) possible non-existing edges. In other words, Naive-Add requires

138

quasi-quadratic time wrt the number of the nodes (n) in the graph, which does not scale
to large graphs.

To address this issue, we propose an efficient algorithm, which is summarized in
Alg 4. The core idea of K-EDGEADDITION is to prune a large portion of the non-existing
edge pairs based on their left and right eigen-scores. As in Alg. 3, we take the same
procedure to make sure that the left and right eigenvectors (u, v) are non-negative. We
omit these steps in Alg 4 for brevity.

Algorithm 4 K-EDGEADDITION

Input: the adjacency matrix A and the budget k
Output: k non-existing edges

1: compute the left (u) and right (v) eigenvectors of A that correspond to the leading
eigenvalue (u, v > 0);

2: calculate the maximum in-degree (d
in

) and out-degree (d
out

) of A, respectively;
3: find the subset of k+ d

in

nodes with the highest left eigen-scores u
i

. Index them by
I;

4: find the subset of k+ d
out

nodes with the highest right eigen-scores v
j

. Index them
by J;

5: for each edge e
x

: hi
x

, j
x

i i
x

2 I, j
x

2 J, A(i
x

, i
j

) = 0 do
6: score(e

x

) = u(i
x

)v(j
x

). Index them by P;
7: end for
8: return top-k non-existing edges with the highest scores among P.

8.4.2 Proofs and Analysis

Here, we analyze the accuracy and efficiency of the proposed K-EDGEADDITION.
The accuracy of the proposed K-EDGEADDITION is summarized in Lemma 8.5, which

says that K-EDGEADDITION selects the same set of edges as Naive-Add.

Lemma 8.5. Effectiveness of K-EDGEADDITION. Alg. 4 outputs the same set of non-
existing edges as Naive-Add.

PROOF. Omitted for brevity. 2

The efficiency of the proposed K-EDGEADDITION is summarized in the following
lemma.

Lemma 8.6. Efficiency of K-EDGEADDITION. The time cost of Alg. 4 is O(m+ nt+ kt2).
The space cost of Alg. 4 is O(n+m+ t2), where t = max(k,d

in

,d
out

).

PROOF: Using the power method, step 1 takes O(m) time. Step 2 takes O(m+ n) time.
Steps 3-4 take O(n(d

in

+ k)) and O(n(d
out

+ k)) time respectively, both of which can
be written as O(nt). Steps 5-7 take O((k + d

in

)(k + d
out

)) = O(t2) time. Step 8 takes

139

O((k + d
in

)(k + d
out

)k) = O(kt2). Therefore, the overall time cost is O(m + nt + kt2),
which completes the proof of the time complexity.

We need O(m) to store the original graph A. It takes O(n) to store the eigenvec-
tors u and v. Step 2 takes additional O(n + 1) space. Steps 3-4 take O(d

in

+ k) and
O(d

out

+ k) space respectively, both of which can be simplified as O(t). Steps 5-7 take
at most O((k + d

in

)(k + d
out

)) = O(t2) space. Step 9 takes O(k) space. Therefore, the
overall space cost (by omitting the smaller terms) is O(m+ nt+ kt2), which completes
the proof of the space complexity. 2

8.5 Experimental Evaluations

Dataset n m

Oregon-A 633 2,172
Oregon-B 1,503 5,620
Oregon-C 2,504 9,446
Oregon-D 2,854 9,864
Oregon-E 3,995 15,420
Oregon-F 5,296 20,194
Oregon-G 7,352 31,330
Oregon-H 10,860 46,818
Oregon-I 13,947 61,168

Table 8.2: Dataset summary.

Dataset k = 10 k = 50 k = 100 k = 500 k = 1000
Oregon-A 0.999 0.997 0.995 0.973 0.924
Oregon-B 0.999 0.999 0.998 0.993 0.988
Oregon-C 1.000 0.999 0.999 0.996 0.991
Oregon-D 0.999 0.999 0.999 0.994 0.988
Oregon-E 1.000 0.999 0.999 0.998 0.995
Oregon-F 1.000 0.999 0.999 0.998 0.997
Oregon-G 1.000 0.999 0.999 0.999 0.998
Oregon-H 1.000 1.000 0.999 0.999 0.999
Oregon-I 1.000 1.000 0.999 0.999 0.999
Table 8.3: Evaluations on the approx. quality. Larger is better.

140

In this section, we provide empirical evaluations for the proposed K-EDGEDELETION
and K-EDGEADDITION algorithms. Our evaluations mainly focus on (1) the effectiveness
and (2) the efficiency of the proposed algorithms.

8.5.1 Experimental Setup

Data sets. We used a popular set of real graphs for our experiments - the Oregon AS
(Autonomous System) router graphs, which are AS-level connectivity networks inferred
from Oregon route-views2. These were collected once a week, for 9 consecutive weeks.
Table 8.2 summarizes the nine graphs we used in our evaluations.

Evaluation criteria. As mentioned before, the leading eigenvalue � of the graph is
the only graph parameter that determines the epidemic threshold for a large family of
information dissemination processes. Therefore, we report the change of the leading
eigenvalue for the effectiveness comparison - for both NETMELT and NETGEL problems.
A larger change of the leading eigenvalue is better, which suggests that we can affect
the outcome of the dissemination process more. In addition, we also run virus propa-
gation simulations to compare how different methods affect the actual outcome of the
propagation. For the computational cost and scalability, we report the wall-clock time.

Machine configurations. All the experiments ran on the same machine with four 2.4GHz
AMD CPUs and 48GB memory, running Linux (2.6 kernel).

0 50 100 150 200
0

2

4

6

8

10

k

D
e

lta
 L

a
m

b
d

a

Rand
Line−Deg
Line−Eig
Line−Page
K−EdgeDelete

0 50 100 150 200
0

2

4

6

8

10

k

D
e

lta
 L

a
m

b
d

a

Rand
Line−Deg
Line−Eig
Line−Page
K−EdgeDelete

0 50 100 150 200
0

2

4

6

8

10

k

D
e

lta
 L

a
m

b
d

a

Rand
Line−Deg
Line−Eig
Line−Page
K−EdgeDelete

(a) Oregon-A (b) Oregon-B (c) Oregon-C

Figure 8.2: The decrease of the leading eigenvalue vs. the budget k. Larger is better. The proposed
K-EDGEDELETION always leads to the biggest decrease of the leading eigenvalue.

8.5.2 Effectiveness of K-EDGEDELETION

Approximation Quality. For both K-EDGEDELETION and K-EDGEADDITION, we want
to approximate the actual change of the leading eigenvalue by the first order matrix
perturbation theory. This is the only place we introduce the approximation. By Lemma 8.3,

2http://topology.eecs.umich.edu/data.html

141

0 500 1000 1500 2000

.005

0.01

0.05

0.1

0.5

1

Time Step

L
o
g
 F

ra
ct

io
n
 o

f
In

fe
ct

e
d
 N

o
d
e
s

Rand

Line−Page

Line−Deg

Line−Eig

Original

K−EdgeDelete

K−EdgeDelete

0 500 1000 1500 2000
0.01

0.05

0.1

0.5

1

Time Step

L
o
g
 F

ra
ct

io
n
 o

f
In

fe
ct

e
d
 N

o
d
e
s

Rand

Line−Page

Line−Deg

Line−Eig

Original

K−EdgeDelete

K−EdgeDelete

(a) s = 2.8 (b) s = 4.3

Figure 8.3: Comparison of minimizing the outcome of the virus propagation. Fraction of infected
nodes vs. time stamp. Lower is better. The proposed K-EDGEDELETION always leads to the least
number of infected nodes. Notice that y-axis is in the logarithmic scale.

it says that the quality of such an approximation depends on both the budget k as well as
the eigengap of the original graph, with an O(k) gap. Here, let us experimentally evaluate
how good this approximation is on real graphs. We compute the linear correlation
coefficient between the actual and approximate leading eigenvalue after we randomly
remove k (k = 10, 50, 100, 500, 1000) edges. The results are shown in table 8.3. It can
be seen that the approximation is very good - in all the cases, the linear correlation
coefficient is greater than 0.92, and often it is very close to 1.

The Impact of Decreasing the Leading Eigenvalue. Here, we evaluate the effectiveness
of the proposed K-EDGEDELETION in terms of decreasing the leading eigenvalue � of
the graph. Lemma 8.1 suggests that the ‘important’ edges on the original graph A might
become ‘important’ nodes on the line graph L(A). We follow this intuition to design
the following comparative strategies: (1) randomly select k edges from the original
graph A (referred to as ‘Rand’); (2) select k edges with the highest degrees in the line
graph L(A) (referred to as ‘Line-Deg’); (3) select k edges with the highest eigen-scores
in the line graph L(A) (referred to as ‘Line-Eig’); and (4) select k edges with the highest
PageRank scores in the line graph L(A) (referred to as ‘Line-Page’). For ‘Rand’, we run
the experiments 100 times and report the average result. For ‘Line-Deg’, we have two
variants by using out-degree or in-degree. In our evaluation, we found that these two
variants give the similar results. Therefore, we only report the results by out-degree.
For the same reason, we only report the results by the right eigen-scores for ‘Line-Eigs’.
For ‘Line-Page’, there is an additional parameter of the teleport probability. We run the
experiments with the different teleport probabilities and report the best results.

For brevity, we only present the results on Oregon-A, Oregon-B and Oregon-C since
the results on the rest six graphs are similar. From Fig. 8.2, it can be seen that our K-

142

EDGEDELETION always leads to the biggest decrease in terms of the leading eigenvalue.
For example, on Oregon-C graph, the proposed K-EDGEDELETION decreases the leading
eigenvalue by 3.8 with the budget k = 50, which is almost double of the second best
method (e.g., 2.0 by ‘Line-Deg’). Therefore, we expect that K-EDGEDELETION would
affect the outcome of the dissemination processes better than the alternative choices, e.g.,
having less number of infected nodes in the graph, etc. We validate this next.

Affecting Virus Propagation. Next, we evaluate the effectiveness of the proposed K-
EDGEDELETION in terms of minimizing the outcome of the information dissemination
processes. To this end, we simulate the virus propagation for the SIS model (susceptible-
infective-susceptible) on the graph [WCWF03]. For each method, we delete k = 200
edges from the original graph. Let s = �b/d be the normalized virus strength (bigger s
means stronger virus), where b and d are the infection rate and death rate, respectively.
The results are presented in Fig. 8.3, which is averaged over 1,000 runs. It can be seen
that the proposed K-EDGEDELETION is always the best - its curve is always the lowest
which means that we always, as desired, have the least number of infected nodes in the
graph with this strategy. In Fig. 8.3, ‘Original’ (the yellow curve) means that we simulate
the virus propagation on the original graph without deleting any edges. Notice that
when the virus becomes stronger (Fig. 8.3(b)), all the curves except the proposed method
mix with ‘Original’, which means that they all fail to affect the virus propagation in this
case. In contrast, our proposed method (the red curve) can still significantly reduce the
number of infected nodes.

Node Deletion vs. Edge Deletion. Finally, in some applications, e.g., to stop malware
propagation on the computer networks, both node deletion (e.g., shutting down some
machines) and edge deletion (e.g., blocking some links between machines) are feasible.
In this case, we want to know which strategy (node deletion or edge deletion) is more
effective in affecting the outcome of such propagation process. To this end, we use an
effective node immunization algorithm [TPT+10] to delete k̃ = 1, 10 nodes respectively
(referred to as ‘Node-Del’). For each k̃, we then use our proposed K-EDGEDELETION
to delete the same amount of edges from the original graph (referred to as ‘Edge-Del’).
We compare the decrease of the leading eigenvalues of the two methods. The results are
summarized in Fig. 8.4. It can be seen that ‘Edge-Del’ always leads to a bigger decrease
of the leading eigenvalue - which suggests that by operating on the edge level, we can
design a more effective algorithm with the same budget to affect the outcome of the
information dissemination process. The results are consistent with the intuition - not all
the edges adjacent to the ‘important’ nodes, which the node immunization algorithm
aims to delete, are also ‘important’ (e.g., many edges adjacent to an ‘important’ node
might link to/from some degree-1 nodes). In other words, edge deletion enables us to
optimize the underlying graph structure on a finer granularity by picking each individual
edge one by one.

143

(a) k̃ = 1

(b) k̃ = 10
Figure 8.4: Comparison between node deletion vs. edge deletion. Larger is better. With the same
amount of edges deleted, our proposed K-EDGEDELETION (red) leads to a bigger decrease in
terms of the leading eigenvalue.

8.5.3 Effectiveness of K-EDGEADDITION

To our best knowledge, there are no existing methods to add k new links into an existing
graph in order to increase its leading eigenvalue. Let Ā be the complementary graph of
A, which has the same node set as A, and Ā(i, j) = 1 iff A(i, j) = 0. With the notation
of the complementary graph, we use the following intuition to design the comparative
methods: to select k ‘important’ edges from the complementary graph Ā and add them into
the original graph A. More specifically, we compare the proposed K-EDGEADDITION
with the following strategies: (1) randomly select k edges (referred to as ‘Rand’); (2)
select k edges with the highest out-degrees in the line graph of the complementary graph
Ā (referred to as ‘CompDeg’); (3) select k edges with the highest right eigen-scores in
the line graph of the complementary graph Ā (referred to as ‘CompEigs’); (4) select k
edges with the highest PageRank scores in the line graph of the complementary graph
Ā (referred to as ‘CompPage’); and (5) select k edges by running K-EDGEDELETION in
the complementary graph Ā (referred to as ‘CompDelete’). Again, for ‘Rand’, we run
the experiments 100 times and report the average result. We only report the results of
‘CompDeg’ by out-degree and those of ‘CompEig’ by right eigen-scores, respectively,
since the other variants give the similar performance. For ‘CompPage’, we run the
experiments with the different teleport probabilities and report the best results.

144

The Impact of Increasing the Leading Eigenvalue. We first evaluate the effectiveness of
the proposed K-EDGEADDITION in terms of increasing the leading eigenvalue of the
graph. For brevity, we only present the results on Oregon-A, Oregon-B and Oregon-C since
the results on the rest of the graphs are similar. From Fig. 8.5, it can be seen that the
proposed K-EDGEADDITION always leads to the biggest increase in terms of the leading
eigenvalue of the graph. Notice that for all the comparative methods, they behave like
‘Rand’ (blue curve), especially when the budget k is small.

Affecting Virus Propagation. We also evaluated the effectiveness of the proposed K-
EDGEADDITION in terms of maximizing the outcome of the information dissemination
process. To this end, again, we simulate the virus propagation for the SIS model on
the graph. For each method, we add k = 200 new edges into the graph. Again, let
s = �b/d be the normalized virus strength, with bigger s being stronger virus. Here,
our goal is to increase the number of ‘infected’ nodes (e.g., having more people in the
social networks to adopt a piece of good idea, etc) by introducing a set of new links
into the graph. The result is presented in Fig. 8.6, which is averaged over 1,000 runs.
It can be seen that the proposed K-EDGEADDITION is always the best - its curve is
always the highest which means that we always have the largest number of ‘infected’
nodes in the graph with this strategy. Notice that when the strength of the virus is weak
(Fig. 8.6(a)), all the curves except the proposed method mix with or are very close to
‘Original’ (yellow curve), which means that they have little impact to boost the outcome
of the propagation in this case. In contrast, our proposed method (the red curve) can
still significantly increase the number of ‘infected’ nodes. Therefore, we conclude that
our proposed K-EDGEADDITION is much more effective to guild the outcome of the
dissemination process.

0 50 100 150 200
0.00001

0.0001

0.001

0.01

0.1

1

10

k

L
o

g
 D

e
lta

 L
a

m
b
d

a

CompDelete
Rand
CompDeg
CompEigs
CompPage
K−EdgeAdd

0 50 100 150 200
.00001

.0001

.001

.01

.1

1

10

k

L
o

g
 D

e
lta

 L
a

m
b
d

a

CompDelete
Rand
CompDeg
CompEigs
CompPage
K−EdgeAdd

0 50 100 150 200
0.000001

−5

0.0001

0.01

1

10

k

L
o

g
 D

e
lta

 L
a

m
b
d

a

CompDelete
Rand
CompDeg
CompEigs
CompPage
K−EdgeAdd

(a) Oregon-A (b) Oregon-B (c) Oregon-C

Figure 8.5: The increase of the leading eigenvalue vs. the budget k. Larger is better. The proposed
K-EDGEADDITION always leads to the largest increase of the leading eigenvalue. Notice that
y-axis is in the logarithmic scale.

145

0 1000 2000 3000 4000 5000
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

Time Step

L
o
g
 F

ra
ct

io
n
 o

f
In

fe
ct

e
d
 N

o
d
e
s

K−EdgeAdd

CompDeg

Original

CompDelete

Rand CompPage

CompEigs

0 1000 2000 3000 4000 5000

0.0001

0.0005

0.001

0.005

0.01

Time Step

L
o
g
 F

ra
ct

io
n
 o

f
In

fe
ct

e
d
 N

o
d
e
s

K−EdgeAdd

Rand

CompPage

Original

CompDeg

CompEigs

CompDelete

(a) s = 1.1 (b) s = 1.3

Figure 8.6: Comparison of maximizing the outcome of virus propagation. Fraction of ‘infected’
nodes vs. time stamp. Larger is better. The proposed K-EDGEADDITION always leads to the
largest number of ‘infected’ nodes. Notice that y-axis is in the logarithmic scale.

8.5.4 Scalability

We use the subsets of the largest data set Oregon-I to evaluate the scalability of the
proposed algorithms. The results are presented in Fig. 8.7. We can see that the proposed
K-EDGEDELETION and K-EDGEADDITION scale almost near-linearly wrt m, which
means that they are suitable for large graphs. Notice that for both cases, we also observe
a slight super-linear trend. This is due to the following two reasons: (1) for both K-
EDGEDELETION and K-EDGEADDITION, we use the power method to compute the
leading eigenvalue and the corresponding eigenvectors. When m increases, the actually
iteration number in the power method also tends to increase; (2) for K-EDGEADDITION
when m increases, the maximum degree (max(d

in

,d
out

)) also increases even though we
fix the number of the nodes (n).

1 2 3 4 5 6

x 10
4

0.7

0.9

1.1

1.3

1.5

Number of edges (m)

W
a

ll−
cl

o
ck

 t
im

e
 (

se
c)

k=500

k=100

k=1000

1 2 3 4 5 6

x 10
4

5.5

6

6.5

7

7.5

8

Number of edges (m)

W
a

ll−
cl

o
ck

 t
im

e
 (

se
c)

k=500

k=100

k=1000

(a) K-EDGEDELETION (b) K-EDGEADDITION

Figure 8.7: Scalability of proposed algorithms. Both K-EDGEDELETION and K-EDGEADDITION

scale near-linearly wrt the size of the graph.

146

8.6 Related Work

In this section, we review the related work specific to the problems discussed in this
chapter. We have already reviewed most of the related work in previous chapters (more
specifically see Chapters 6 and 7).

Affecting Algorithms. Note that all the previous works focus on operating on
the node level (i.e., delete or inoculate a set of ‘best’ nodes) to affect the outcome of
the dissemination. In contrast, we study the equally important, but much less studied
affecting algorithms by operating on the edge level.

There exist some empirical evaluations on edge removal strategies for slightly differ-
ent purposes, such as, slowing down the influenza spreading [MK09], minimizing the
average infection probability [SMHH11], evaluating and comparing the attack vulner-
ability [HKYH02], etc. The closest related work to our K-EDGEDELETION algorithm
is [BS11], which proposed a convex optimization based approach to approximately mini-
mize the leading eigenvalue of the graph. However, the method is based on semi-definite
programming and does not scale to large graphs. Moreover, for all these methods, it
remains unclear if they can be generalized to address the even more challenging NETGEL
problem, where we want to add new edges to promote the information dissemination.

Measuring the Importance of Nodes and Edges. In the literature, there are a lot of
node importance measurements, including betweenness centrality, both the one based
on the shortest path [Fre77] and the one based on random walks [New05b, KPST11]
PageRank [PBMW98], HITS [Kle98], and coreness score [MW03]. Our work is also
related to the so-called k-vital edges problem, which aims to delete a set of links from
the graphs to increase the shortest path length [LSH00] or the weight of the minimum
spanning tree of the remaining graph [She95]. K-vital edge problem itself is known to be
NP-Hard. Other remotely related work includes graph augmentation [PBG11], graph
sparsification [KMST10], network inhibition [Phi93] and network-interdiction [Woo93,
IW02]. Both network inhibition and network interdiction are NP-Hard.

8.7 Conclusion

In this chapter, we studied the problem of how to optimize the link structure to affect the
outcome of information dissemination processes. The main contributions of the work
are:

• Algorithms. We observe that for a large family of information dissimilation pro-
cesses, the problem boils down to the eigenvalue optimization problem. We propose
an effective, scalable algorithm to optimize such a key graph parameter (i.e., the
leading eigenvalue) that controls the information dissemination process, for both
NETMELT and NETGEL, respectively;

• Proofs and Analysis. We show the accuracy (Lemma 3 and Lemma 5) and the com-
plexity of our methods (Lemma 4 and Lemma 6); the hardness of the problem

147

(Lemma 2), and the equivalence between the different strategies (Lemma 1, Lemma 7
and Lemma 8);

• Experimental Evaluations. Our evaluations on real large graphs show that (a) com-
pared with alternative choices to optimize the link structure, our methods are much
more effective to affect the outcome of the dissemination process; (b) compared with
the node deletion strategy, our K-EDGEDELETION offers a more effective way by
operating on the edge level; and (c) both K-EDGEDELETION and K-EDGEADDITION
scale to large graphs.

APPENDIX

Higher-Order NETMELT. From Lemma 8.3, it can be seen that the only place we intro-
duce the approximation in Alg. 3 is to approximate the actual decrease of the leading
eigenvalue by the first-order matrix perturbation theory. The readers might wonder if
we can further improve the quality by using higher-order matrix perturbation theory,
while maintaining the linear scalability of the algorithm.

We explored second-order matrix perturbation theory to approximate the actual
decrease of the leading eigenvalue, and found that (1) it generates very similar results
as the proposed K-EDGEDELETION algorithm and (2) it requires 5-10x more wall-clock
time. The reason might be that for the NETMELT problem, the first-order perturbation
already gives a very good approximation. Therefore, in practice, we recommend K-
EDGEDELETION for simplicity.

Nonetheless, the new algorithm based on the second-order perturbation exhibits
some interesting theoretic properties. It also helps understand the relationship between
edge deletion and node deletion on the algorithmic level. We present it here for the
completeness.

Let c = 1
u 0v , with second-order matrix perturbation, we can approximate3 the impact

of deleting a set of edges S in terms of the leading eigenvalue as:

�- �̂ ' Impact(S) = c(
X

e

x

2S

u(i
x

)v(j
x

)

-
1

2�

X

e

x

2S,e
y

2S,j
x

=i

y

u(i
x

)v(j
y

)) (8.8)

Compared with the first-order perturbation (eq. (8.6)), we have an additional penal-
ized term in eq. (8.8): u(i

x

)v(j
y

) for any two adjacent edges e
x

and e
y

. The intuition is to
encourage the edges in the set S to be far away (not adjacent) from each other.

By eq. (8.8), the impact of different edges in the set S is no longer independent with
each other. At the first glance, this might complicate the algorithm since now we need to

3These formulae is similar as the one in [MSN10]

148

optimize at the set level, that is, to find a set of edges that collectively maximize eq. (8.8).
However, by the following lemma, the impact defined in eq. (8.8) exhibits some nice
diminishing return properties.

Lemma 8.7. Second-Order Approximation Properties. The Impact(S) defined in eq. (8.8)
has the following properties:

(1) Impact(�) = 0, where � is an empty set;
(2) Impact(S) is monotonically non-decreasing wrt the set S;
(3) Impact(S) is sub-modular wrt the set S.

PROOF. Easy to check. 2

Thanks to such diminishing return properties, it naturally leads to the following
greedy algorithm (K-EDGEDELETION++) to find a near-optimal subset of edges to delete
from the original graph A. And it can be shown that the overall time complexity of
K-EDGEDELETION++ remains linear wrt the size of the graph.

Algorithm 5 K-EDGEDELETION++

Input: the adjacency matrix A and the budget k
Output: k edges indexed by set S

1: compute the first eigen-value � of A; compute the corresponding left and right
eigenvectors u and v (u, v > 0), respectively;

2: initialize the set S to be empty;
3: score(e

x

) = u(i
x

)v(j
x

) (e
x

: hi
x

, j
x

i, e
x

= 1, ...,m);
4: for k0 = 1, ...,k do
5: find e0 = argmax

e

x

,e
x

/2Sscore(e
x

);
6: add the new edge e0 : (i0, j0) into S;
7: for each edge e

y

: hi
y

, j
y

i s.t. j
y

= i0 do
8: score(e

y

) score(e
y

)- 1/(2�)u(i
y

)v(j0);
9: end for

10: for each edge e
y

: hi
y

, j
y

i s.t. i
y

= j0 do
11: score(e

y

) score(e
y

)- 1/(2�)u(i0)v(jy);
12: end for
13: end for

An interesting property of Alg. 5 is that it builds the equivalence between edge
deletion and node deletion on the algorithmic level:

Lemma 8.8. Equivalence of Alg. 5 to Node Immunization. Let S be the set of edges by
running Alg. 5 on graph A; T be the set of edges by running the node immunization algo-
rithm [TPT+10] on the line graph L(A); and |S| = |T|. We have S = T.

149

Chapter 9

Finding Culprits

Given a snapshot of a large graph, in which an infection has been spreading for some
time, can we identify those nodes from which the infection started to spread? In other
words, can we reliably tell who the culprits are? In this chapter, we answer this ques-
tion affirmatively, and give an efficient method called NETSLEUTH for the well-known
Susceptible-Infected virus propagation model.

Essentially, we are after that set of seed nodes that best explain the given snapshot.
We propose to employ the Minimum Description Length principle to identify the best set
of seed nodes and virus propagation ripple, as the one by which we can most succinctly
describe the infected graph. We give an highly efficient algorithm to identify likely sets
of seed nodes given a snapshot. Then, given these seed nodes, we show we can optimize
the virus propagation ripple in a principled way by maximizing likelihood. With all three
combined, NETSLEUTH can automatically identify the correct number of seed nodes, as
well as which nodes are the culprits.

Experimentation on our method shows high accuracy in the detection of seed nodes,
in addition to the correct automatic identification of their number. Moreover, we show
NETSLEUTH scales linearly in the number of nodes of the graph.

9.1 Introduction

We focus on a different and difficult question in this chapter: Given a single snapshot
of a partly infected network, how we can reliably identify those nodes from which the
epidemic started; whether for inoculation to prevent future epidemics, or for exploitation
for viral marketing.

As such, given a snapshot of a large graph G(V,E) in which a subset of nodes V 0 ✓ V

is currently infected, and assuming the Susceptible-Infected (SI) propagation model, we
consider the problem of how to efficiently and reliably find those seed nodes S ✓ V 0 from
which the epidemic started, without requiring the user to choose the number seed nodes
in advance. In other words, we address the questions: How many culprits are there, and
who are they?

150

Figure 9.1: Example: Culprits, how many, and which ones? A snapshot of a 2D grid in which an
infection has been stochastically spreading. Grey circles are infected nodes, while Grey dots
are un-infected. The 2 Blue stars denote the true seeds. The 2 Red diamonds denote the seeds
automatically discovered by NETSLEUTH—that is, both in number (two) and location (being
spatially very close to the true seeds).

We propose to employ the Minimum Description Length (MDL) principle [Gr7] to
identify that set of seed nodes, and that virus propagation ripple starting from those
nodes that best describes the given snapshot. We give an highly efficient algorithm to
identify likely seed nodes, and show we can easily optimize the description length of
the virus propagation ripple for a given seed set by greedily maximizing likelihood. As
such, we can identify the best set of seed nodes in a principled manner, without having
to choose k, the number of seed nodes in advance.

As an example, consider Figure 9.1. It depicts an example grid-structured graph, in
which a subgraph has been infected by a stochastic process starting from two seed nodes.
The plot shows the true seed nodes, as well as the seed nodes automatically identified by
NETSLEUTH; it finds the correct number of seed nodes, and places these where a human
would; in fact, the discovered seeds have a higher likelihood for generating this infected
subgraph than the true seed nodes.

We develop a two step approach by first finding high-quality seeds given the number
of seeds, and then using our carefully designed MDL score to pinpoint the true number
of seeds. For the first part, we use the notion of ‘exoneration’ from the un-infected
frontier—e.g., in Figure 9.1 the nodes on the edge of the infected snapshot are unlikely to

151

Table 9.1: Comparison between three culprit-identifying methods: NETSLEUTH, Rumor-
centrality [SZ11], and Effectors [LTGM10]

infection k>1 automatically O(·)†
model determines k

NETSLEUTH (our method) SI X X Linear
Rumor-centrality [SZ11] SI – – Quadratic
Effectors [LTGM10] IC X – Quadratic

† Running time given for arbitrary graphs.

be the culprits due to the large number of un-infected nodes surrounding them. Based
on this idea, we develop a novel ‘submatrix-laplacian’ method to find out the best seed
sets given a number of seeds (see Section 9.4 for more details). Given these seed-sets, we
also give an efficient algorithm to compute the MDL scores, thus finding the number of
seeds in a parameter-free way.

Although network infection models have been researched extensively, identifying
the seed nodes of an epidemic is surprisingly understudied. We are, however, not the
first to research this problem. Recently, Shah and Zaman [SZ10, SZ11] developed rumor-
centrality for identifying the single source node of an epidemic. In contrast, we allow for
multiple seed nodes, and automatically determine their number. Lappas et al. [LTGM10]
studied the ‘Effectors’ problem of identifying k seed nodes in a steady-state network
snapshot, under the Independent Cascade (IC) model. In contrast, we study the SI model,
allow the snapshots from any time during the epidemic, and our approach is parameter-
free as by MDL we can automatically identify the best value for k. Furthermore, and
very importantly for large graphs, in comparison our method is computationally much
more efficient. Table 9.1 gives a comparison of NETSLEUTH to these methods. We discuss
related work in more detail in Section 9.6.

Experimentation shows that NETSLEUTH detects seed nodes and automatically iden-
tifies their number, both with high-accuracy. With synthetic data we show it can handle
difficult fringe cases, and is in agreement with human intuition. We show we reliably
identify the correct number of seed nodes on real data, and also that our detected seeds
are of very high quality (measured by multiple metrics). Finally, we show our method
scales linearly with the number of edges of the graph.

The rest of the chapter is organized in the typical way: preliminaries, our problem
formulation and method, experiments, related work and then conclusion.

9.2 Preliminaries

In this section we give notation, and introduce MDL and the infection spreading model
we use.

152

9.2.1 Notation

Table 9.2 gives some of the notation and symbols we will be using in this work. We
consider undirected, unweighted graphs G = (V,E) of N = |V| nodes. All logarithms in
this chapter are to base 2, and we adopt the standard convention that 0 log 0 = 0. We
denote the transpose of any matrix or vector V as VT . Finally note that L

A

is a submatrix
of L(G), not the laplacian matrix of G

I

.

Table 9.2: Terms and Symbols

Symbol Definition and Description
SI model Susceptible-Infected model
� attack probability of the virus in the SI model
G = (V,E) graph under consideration
G

I

= (V
I

,E
I

) given infected subgraph of G
R ripple, list of sets of nodes how virus propagates
N |V|, number of nodes in graph G

N
I

|V
I

|, number of nodes in graph G
I

d(i) degree of node i

F set of un-infected nodes having at least one infected neighbor (in V
I

)
E
F

set of edges connecting nodes in F to V
I

A(G) adjacency matrix of graph G (size N⇥N)
A adjacency matrix of G

I

(size N
I

⇥N
I

)
D(G) diagonal degree matrix of graph G

L(G) laplacian matrix of G i.e. L(G) = D(G)-A(G)
L
A

submatrix (size N
I

⇥N
I

) of L(G) corresponding to the infected graph G
I

QMDL MDL-based culprits quality measure (see § 9.5)
QJD set-Jaccard-distance-based culprits quality measure (see § 9.5)

9.2.2 The Susceptible-Infected Model

The most basic epidemic model is the so-called ‘Susceptible-Infected’ (SI) model [AM91].
Each object/node in the underlying graph is in one of two states - Susceptible (S) or
Infected (I). Once infected, each node stays infected forever. Each infected node tries to
infect each of its neighbors independently with probability � in each discrete time-step,
which reflects the strength of the virus.

Note that here 1/� defines a natural time-scale (intuitively it is the expected number
of time-steps for a successful attack over an edge). As an example, if we assume that the
underlying network is a clique of N nodes, under continuous time, the model can be
written as: dI(t)

dt

= �(N - I(t))I(t), where I(t) is the number of infected nodes at time
t—the solution is the logistic function and it is invariant to �⇥ t.

153

9.2.3 Minimum Description Length Principle

The Minimum Description Length principle (MDL) [Gr7], is a practical version of Kol-
mogorov Complexity [LV93]. Both embrace the slogan Induction by Compression. For
MDL, this can be roughly described as follows.

Given a set of models M, the best model M 2M is the one that minimizes L(M) +
L(D | M), in which L(M) is the length in bits of the description of M, and L(D | M) is
the length of the description of the data encoded with M.

This is called two-part MDL, or crude MDL—as opposed to refined MDL, where model
and data are encoded together [Gr7]. We use two-part MDL because we are specifically
interested in the model: the seed nodes and ripple that give the best description. Further,
although refined MDL has stronger theoretical foundations, it cannot be computed except
for some special cases. Note that MDL requires the compression to be lossless in order to
allow for fair comparison between different M 2M.

To use MDL, we have to define what our models M are, how a M 2 M describes
the data at hand, and how we encode this all in bits. Note, that in MDL we are only
concerned with code lengths, not actual code words.

9.3 Our Problem Formulation

Next we formulate our problem in terms of MDL. Our goal is to obtain the most succinct
explanation of ‘what happened’. To do so, we require two ingredients: the first is a
formal objective—a cost function—which we discuss in this section. The second is then
an algorithm to find good solutions, which we give in Section 9.4.

Our cost function will consist of two parts, 1) scoring the seed set (Model cost) and 2)
scoring the successive infected nodes starting from the seed (Data cost).

We assume that both sender and receiver know the layout of G = (V,E), but not
which nodes are in G

I

= (V
I

,E
I

). This makes, using the general formulation of MDL in
Section 9.2.3, G

I

the data D we want to describe using our models M. As such, informally,
our goal is to identify those nodes, and an infection propagation ripple starting from
those nodes, by which G

I

can most easily be described.

9.3.1 Cost of the Model

As our models we consider seed sets. A seed set S ✓ V
I

is a subset of |S| nodes of G
I

from
which the infection starts spreading—the ‘patients zero’, so to speak. We denote by L(S)
the encoded length, in bits, of a seed set S.

To describe a seed set S, we first have to encode how many nodes S contains. This
number, |S|, is upper-bounded by the number of nodes in G. Hence, by using straight-
forward block-encoding we can encode |S| in logN bits, by which we spend equally
many bits to encode either a small or a large number. In general, however, we favor small

154

seeds sets: simple explanations. The MDL optimal Universal code for integers [Ris83] is
therefore a better choice as it rewards smaller seed sets by requiring fewer bits to encode
their size. With this encoding, LN, the number of bits to encode an integer n > 1 is defined
as LN(n) = log⇤(n)+log(c0), where log⇤ is defined as log⇤(n) = log(n)+log log(n)+ · · · ,
where only the positive terms are included. To make LN a valid encoding, c0 is chosen as
c0 =

P
J>1 2-LN(j) ⇡ 2.865064 such that the Kraft inequality is satisfied.

To identify which nodes in G are seed nodes, we use the very efficient class of data-
to-model codes [VV04]. A data-to-model code is essentially an index into a canonically
ordered enumeration of all possible data (values) given the model (the provided infor-
mation). Here, we know |S| unique nodes have to be selected out of N, for which there
are

�
N

|S|

�
possibilities. Assuming a canonical order, log

�
N

|S|

�
gives us the length in bits of

an index to the correct set of node ids.
Combining the above, we now have L(S) for the number of bits to identify a seed set

S ✓ V
I

as

L(S) = LN(|S|) + log
✓
N

|S|

◆
. (9.1)

9.3.2 Cost of the Data given the Model

Next, we need to describe the infected subgraph G
I

given a seed set S. We do this by
encoding the infection propagation ripple, or the description of ‘what happened’. Starting
from the seed nodes, per time step we identify that set of nodes that gets infected at this
time step, iterating until we have identified all the infected nodes.1

Propagation ripples: More formally, a propagation ripple R is a list of node ids per
time-step t, which represents the order in which nodes of G

I

became infected, starting
from S at time t = 0. Let us write Vt

I

(S,R) to indicate the set of infected nodes at time t
starting from seed set S and following ripple R, with V0

I

= S. For readability, we do not
write S and R wherever clear from context. As such, a valid propagation ripple R is a
partitioning of node ids V

I

\ S of G
I

, where every node in a part is required to have an
edge from a node j 2 Vt-1

I

.
Clearly, however, not every ripple from the seed set to the final infected subgraph is

equally simple to describe. For instance, the more infected neighbors an uninfected node
has, the more likely it is that it will get infected, as it is under constant attack—therefore,
it should be more succinct to describe that this node gets infected than it would for a
node under single attack.

Frontier sets: To encode a ripple R, at each time t we consider the collection of
nodes currently under attack given the SI model (i.e. non-infected nodes with currently
atleast one infected neighbor, or if t = 0, neighbors to a seed-node 2 S). We refer to
this set as Ft, for the frontier-set at time t. Define attack degree a(n) of a non-infected

1When not interested in the actual ripple R, one could encode G
I

by its overall probability starting from
S. Obtaining this probability, however, is very expensive, even by MCMC sampling. As we will see in
Sections 9.4 and 9.5 computing a good ripple is both cheap and gives good results.

155

node n as the number of infected neighbor nodes it has at the current iteration, i.e.
a(n) = |{j 2 V | e

jn

2 E ^ X
j

(t)}|, in which X
j

(t) is an indicator function for whether
node j is infected at time t.

We divide Ft into disjoint subsets Ft

i

per attack degree i, that is, into sets of nodes
having the same attack degree. As such, we have Ft = Ft

1 [Ft

2 [. . ., and correspondingly
ft1, ft2, . . . for the sizes of these subsets (we will drop using the t superscript, when clear
from context).

Starting from the seed set, for every time step t the receiver can easily construct
the corresponding frontier set Ft—which leaves us to transmit which of the nodes, if
any, in the frontier set got infected in the current iteration. As, however, the infection
probabilities per attack degree differ, we transmit this information per Ft

d

.
Probability of Infection: The SI model assumes an attack probability parameter �—so,

the independent probability p
d

of a node in F
d

being infected is: p
d

= 1 - (1 - �)d.
Given p

d

we can write down the probability distribution of a total of m
d

nodes being
infected for each subset F

d

. This is simply a Binomial with parameter p
d

i.e.

p(m
d

| f
d

,d) =
✓
f
d

k

◆
pm

d

d

(1 - p
d

)fd-m

d .

Hence, as such, a value for � determines p.
Encoding a Wave of Attack: Given p, a probability distribution for seeing m

d

nodes
out of f

d

infected given an attack degree d, we need - logp(m
d

| f
d

,d) bits to optimally
transmit the value of m

d

. That is, we encode m
d

using an optimal prefix code—for which
we can calculate the optimal code lengths by Shannon entropy [CT06]. Then, once we
know both f

d

and m
d

, we can use code words of resp. - log m

d

f

d

and - log 1 - m

d

f

d

bits
long to transmit whether a node in F

d

got infected or not. This gives us

L(Ft) = -
X

Ft

d

2Ft

✓
logp(m

d

|f
d

,d) +m
d

log
m

d

f
d

+ (f
d

-m
d

) log 1 -
m

d

f
d

◆
(9.2)

for encoding the infectees in the frontier set at time t.
Then, for the recipient to know when to stop reading, we have to transmit how many

time steps until we have reached G
I

. The number of iterations T will be transmitted
just like |S|, using LN. For the ripple R, starting from the frontier-set defined by the seed
nodes S, we iteratively transmit which nodes got infected at t+ 1—which in turn allows
the recipient to construct Ft+1. Note that, by L(Ft) we assume ripple R to be in time
scale of 1/�. That is, for low � we consider a lower time resolution than for high �. This
is because the SI model displays a natural invariance of time-scale (see Section 9.2.2). So
we have ripple R that gives the infections at every 1/� time-steps.

With the above, we have L(R | S) for the encoded length of a ripple R starting at a

156

seed set S as

L(R | S) = LN(T) +
TX

t

L(Ft) . (9.3)

9.3.3 The Problem

With L(S) and L(R | S), we have as the total description length L(G
I

, S,R) of an infected
subgraph G

I

of G following a valid infection propagation ripple R starting from a set of
seed nodes S by

L(G
I

, S,R) = L(S) + L(R | S) .

Note that as G is constant over all seed sets S and ripples R, we can safely ignore it in
the computation of the total encoded size, for its encoded length would be constant term
and hence not influence the selection of the best model.

By which we can now formally state our problem.

Minimal Infection Description Problem Given a snapshot of a graph G(V,E) of N nodes,
of which the subgraph G

I

(V
I

,E
I

) of N
I

nodes are infected, and an infection probability �, by the
Minimum Description Length principle we are after that seed set S and that valid propagation
ripple R for which

L(G
I

, S,R)

is minimal for the Susceptible-Infected propagation strategy.

Clearly, this problem entails a large search space - both in the possible seed-subsets of
V
I

and the possible propagation ripples given any seed-set. In fact, as shown by Shah
and Zaman [SZ11], even the problem of just finding one MLE seed for a given infected
snapshot in an arbitrary graph is very hard (#P-Complete, equivalent to counting the
number of linear extensions of a poset). Further, the provable algorithms they give are
for one seed on d-regular trees only. To tackle the problem on general graphs we hence
resort to heuristics.

9.4 Proposed Method

The outline of our approach is as follows: given a fixed number of seeds k, we identify
a high-quality k-seed set. Given these seed nodes, we optimize the propagation ripple.
With these two combined, we can use our MDL score to identify the best k.

9.4.1 Best seed-set given number of seeds — ‘Exoneration’

A central idea is that intuitively, un-infected nodes should provide some degree of
‘exoneration’ from ‘blame’ for the neighboring infected nodes. See Figure 9.2—it shows
two illustrative examples of an infected chain (a) and a chain with a star in the middle (b)

157

(colored nodes are infected and blue denote the true seeds). Note that while the node X is
the most central among the infected nodes and is rightly the most likely seed, the node Y
is not a likely seed because of the many un-infected nodes surrounding it. In fact, in this
case the most likely starting points would be the two Blue nodes. Hence any method to
identify the seed-sets should take into account the centrality of the infected nodes among
the infected graph, but also penalize nodes for being too close to the un-infected frontier
(the ‘exoneration’). As we explain next, our method is able to do this in a principled
manner.

X

(a) A chain

Y

(b) A chain-star

Figure 9.2: Centrality is not enough - effects of ‘exoneration’: Infection snapshot examples
(colored nodes are infected, blue nodes are the true seeds) (a) Node X is the most central among
the infected nodes; (b) Node Y is the most central among infected nodes, but the high count of
non-infected neighbors ‘exonerates’ it.

9.4.2 Finding best single seed—Our Main Idea

We first explain how to find the best single seed and then how to extend it to multiple
seeds. Jumping ahead, the main idea is as follows.

Main Idea The single best seed s⇤ is the one with the highest score in ~u1 i.e.

s⇤ = arg max
s

~u1(s)

where ~u1 is the smallest eigenvector of the laplacian submatrix L
A

as defined in Table 9.2.
Next, we give the justification.

9.4.3 Finding the best single seed—Justification

From Section 9.3, it is clear that nodes that are not in either the final frontier set F or V
I

play no role, as they were not infectious nor could have been infected. Hence, WLOG,
assume G contains only the infected subgraph G

I

and the frontier set F. Also, assume
nodes are numbered in such a way that the first |V- V

I

| nodes are the un-infected nodes

158

and the rest are the infected ones. If the total number of nodes in the graph is N, the
number of infected nodes is N

I

, then the number of un-infected nodes in G is N -N
I

.
Further notation is given in Table 9.2.

Let X
i

(t) be the indicator (0/1) Random Variable denoting if node i in the graph is
infected or not at time t (1 = infected, 0 = un-infected). Let Y

ij

(t) be the indicator random
variable denoting if node j successfully attacks i at time t. Consider the following update
equation for any node i 2 V

I

:

X
i

(t+ 1) = X
i

(t) + (9.4)
(1 - X

i

(t))⇥_

j2N(i)

Y
ij

(t)(X
j

(t)- X
i

(t) + X
i

(t))

Following the above equation, if X
i

(t) = 1 then X
i

(t+ 1) = 1, i.e., once a node is infected,
it stays infected. Also if X

i

(t) = 0, then X
i

(t + 1) =
W

j2N(i) Yij

(t)X
j

(t). Or in other
words, an uninfected node may get infected only if an infected neighbor successfully
transmits the infection. Additionally for any node i 2 V - V

I

, we define X
i

(t) = 0,
as these nodes were not infected at all during the infection process. Hence, the above
equations exactly define a discrete-time SI process but with the constraint that the nodes
in the given final frontier set always stay un-infected, thus enforcing the ‘exoneration’
discussed before. Hence we want to find the seed node which maximizes spread in this
‘constrained’ epidemic, which we show how to next.

For any node i 2 V
I

, taking expectations both sides of Equation 9.4, and using the
fact that for any indicator random variable X, E[X] = Pr(X = 1), we get:

P
i

(t+ 1) = P
i

(t) +U- V (9.5)

where,

P
i

(t) = Pr(X
i

(t) = 1)

U = E

2

4
_

j2N(i)

Y
ij

(t)(X
j

(t)- X
i

(t) + X
i

(t))

3

5

V = E

2

4X
i

(t)⇥
_

j2N(i)

Y
ij

(t)(X
j

(t)- X
i

(t) + X
i

(t))

3

5

Clearly, as all the terms inside are positive,

V > 0,U > 0 (9.6)

Also,

U 6
X

j2N(i)

A(G)
ij

(P
j

(t)- P
i

(t) + P
i

(t))

=
X

j2N(i)

A(G)
ij

P
i

(t) +
X

j2N(i)

A(G)
ij

(P
j

(t)- P
i

(t))

159

as an infected node j attacks any of its neighbors i independently with probability
A(G)

ij

(i.e. E[Y
ij

(t)] = A(G)
ij

) and because by linearity of expectation, for any two
events indicator random variables 1

A

and 1
B

, we have 1
A

_ 1
B

= 1
A

+ 1
B

- 1
A

1
B

)
E[1

A

_ 1
B

] 6 E[1
A

] + E[1
B

]. Also note that:
X

j2N(i)

A(G)
ij

P
i

(t) 6 d
max

⇥ P
i

(t) (9.7)

where d
max

is the largest degree in graph G. Thus,

U 6 d
max

P
i

(t) +
X

j2N(i)

A(G)
ij

(P
j

(t)- P
i

(t)) (9.8)

From Equations 9.6 and 9.8, we can conclude that, for each node i 2 V
I

:

P
i

(t+ 1) 6 P
i

(t) + d
max

P
i

(t)

+
X

j2N(i)

A(G)
ij

(P
j

(t)- P
i

(t))

Let � = 1+d
max

. Recall that 8t, P
i

(t) = 0 for any eventual un-infected node i 2 V-V
I

.
Let ~P(t) = [P1(t),P2(t), . . . ,P

N

(t)]T (over all the nodes in V). Then we can write:

~P(t+ 1) 6 �(I-
1
�
M)~P(t) (9.9)

where, the matrix M (size N⇥N) is:

M =

����
0
N-N

I

,N-N

I

0
N-N

I

,N
I

0
N

I

,N-N

I

L
A

����

where we write 0
N,M for an all-zeros matrix of size N⇥M. Let the subvector of ~P(t+ 1)

corresponding to the infected nodes be written as ~P
I

(t+ 1). Then continuing from above
and using the upper bound as an approximation, we get:

~P
I

(t+ 1) ⇡ �(I-
1
�
L
A

)~P
I

(t) (9.10)

= �(I-
1
�
L
A

)t~P
I

(0) (9.11)

= �
X

i

�t

i

~u
i

~uT

i

~P
I

(0) (9.12)

where, �
i

and ~u
i

are the eigenvalues and eigenvectors of the matrix I- 1
�

L
A

. We have
the following two lemmas:

Lemma 9.1. The largest eigenvalue �1 and eigenvector ~u1 of the matrix I- 1
�

L
A

are all positive
and real.

160

Proof. (Details omitted for brevity) The matrix I- 1
�

L
A

is non-negative, and imagining
I - 1

�

L
A

as an adjacency matrix, the corresponding graph is irreducible, as graph G
I

(adjacency matrix A) is connected. We then get the lemma due to the Perron-Frobenius
theorem [McC00].

Lemma 9.2. The largest eigenvalue of matrix I - 1
�

L
A

and the smallest eigenvalue of L
A

are
related as �1(I-

1
�

L
A

) = 1 - 1
�

�
N

(L
A

).

Proof. (Details omitted for brevity) It is easy to see that any eigenvalue eig(I- 1
�

L
A

) =
1-eig(1

�

L
A

). As the matrices are symmetric, all the eigenvalues involved are real. By the
Cauchy eigenvalue interlacing theorem [Str88] applied to L(G), all the eigenvalues of any
co-factor C

LG

of L(G) are positive. By the famous Kirchhoff’s matrix theorem [CDS98],
the determinant of any co-factor C

LG

is also non-zero as it counts the number of spanning
trees of G. Also, it is well-known that the determinant of any matrix is just the product
of its eigenvalues [Str88]. Hence, all eigenvalues of any co-factor matrix C

LG

of L(G)
are strictly positive. We can similarly apply eigenvalue interlacing successively to a
suitable C

LG

and so on till we get to L
A

(a principal submatrix of L(G)), and get that all
eigenvalues of L

A

are strictly positive. The lemma follows then.

Hence, the eigenvector ~u1 is also the eigenvector corresponding to the smallest
eigenvalue of L

A

.
Now, from Equation 9.12 and Lemma 9.1, we have:

~P
I

(t+ 1) = ��t

1

X

i

�t

i

�t

1
~u
i

~uT

i

~P
I

(0) (9.13)

⇡ ��t

1~u1~u
T

1
~P
I

(0) (9.14)

assuming a substantial eigen-gap or ‘big-enough’ t. Now assuming that ~P
I

(0) is all
zero except for a single seed s for which it is 1, we can conclude that ultimately in our
‘constrained’ epidemic,

8i 2 V
I

, Pr(X
i

= 1|s) /⇠ ~u1(i)~u1(s) (9.15)
8i 2 V- V

I

, Pr(X
i

= 1|s) = 0 (9.16)

Clearly the most likely single seed s⇤ would be:

s⇤ = arg max
s

"
X

i2V
I

Pr(X
i

= 1|s)

+
X

i2V-V
I

(1 - Pr(X
i

= 1|s))

#

161

Using Equations 9.15 and 9.16,

s⇤ ⇡ arg max
s

~u1(s)
X

i2V
I

~u1(i)

= arg max
s

~u1(s) (9.17)

Hence, for a single seed, we just need to find the node with the largest score in ~u1 (which
is also the smallest eigenvector of the laplacian submatrix L

A

from Lemma 9.2).

9.4.4 Finding best k-seed set

Note that simply taking the top-k in the above eigenvector will not give good k-seed-sets
due to lack of diversity. This is because the error in the upper-bound approximation used
in Equation 9.11 will become larger due to increase in the norm of ~P

I

(0). Hence, we treat
the newly chosen seed, say s⇤, as un-infected, effectively exonerating its neighbors and
boosting diversity. We redo our computation on the resulting smaller infected graph, but
a potentially larger frontier set—hence, we take the next best seed given the s⇤ that has
already been chosen. So for any given k, we successively find the best next seed, given
the previous choices, by removing the previously chosen seeds from the infected set and
solving Equation 9.17. For example, in Figure 9.1, the top suspect (Red on the right) will
have a lot of suspicious neighbors as well. Thus, using our exoneration technique, the
algorithm will be forced away from them towards the remaining Red seed.

9.4.5 Finding a good ripple

As discussed before, once we find the best seed-set S
k

for a given k, we optimize the
propagation ripple of S

k

to G
I

to minimize the total encoded size. Recall from Section 9.3
that this involves minimizing L(R | S), which consists of two terms. First, we have the
cost of encoding the length of the ripple, the number of time-steps. While LN does grow
for higher values of T , in practice this term will be dwarfed by the actual encoding of
the subsequent frontier sets. As such, minimizing L(R | S) essentially comes down to
minimizing -

P
T

t

L(Ft), or, in other words, maximizing the likelihood of the ripple R.
Further recall that the SI model has a natural scaling invariance, 1/�. As our score takes
this into account, the ripple with the smallest description length should too.

Hence, we design the following procedure. For each attack-degree set F
d

, at any
iteration we scale the number of attacks by 1/� i.e. a set of size f

d

is equivalent to a set
of size f

d

/�. Then, to get the overall MLE ripple, we adopt the following heuristic. We
assume that the overall MLE ripple always performs a locally optimal next step. Hence
this boils down to choosing the most-likely nodes to get infected at any given step, for a
given frontier set F.

It is well-known that a Binomial distribution B(n,p) has its mode at b(n+1)pc. Using
this fact, at any iteration t, taking into account the scaling, we can see that the most likely

162

Algorithm 6 NETSLEUTH

Input: G(V,E) ⌘ G⇤
I

[F⇤, G⇤
I

(V
I

,E
I

) (the infected graph) and F⇤ (the frontier set).
Output: S = the set of seeds (culprits).

1: L(G) = D(G)-A(G), the Laplacian matrix corresponding to graph G.
2: S = {}

3: G
I

= G⇤
I

4: while L(G
I

, S,R) decreases do
5: L

A

= the submatrix of L(G) corresponding to G
I

.
6: v = eigenvector of L

A

corresponding to the smallest eigenvalue.
7: next = arg max

i

v(i)
8: S = S [{next}
9: R = ripple maximizing likelihood of G

I

from S

10: G
I

= G
I

\{next} (Graph G
I

with node next removed)
11: end while
12: return S

number of nodes infected in an attack-degree set F
d

would be n
d

= b(f
d

/�+ 1)⇥ p
d

c—
where p

d

as defined before in Section 9.3 is the attack probability in the set F
d

. As such,
we can simply uniformly choose this number of nodes from the F

d

, as each node in F
d

is
equally likely to be infected. We do this for every non-empty attack-degree set, for every
iteration, until we have infected exactly the observed snapshot. This way, we obtain a
most likely propagation ripple for any given seed-set S

k

and can subsequently score it
using MDL.

Finally, we stop getting more seeds when the MDL score for S
k

increases as we
increase k. Algorithm 6 gives the pseudo-code and Lemma 9.3 shows the running time
for our algorithm NETSLEUTH.

Lemma 9.3 (Running Time of NETSLEUTH). The time complexity of NETSLEUTH is O(k⇤(E
I

+
E
F

+ V
I

)).

Proof. We keep finding S
k

for each seed-set size until MDL tells us to stop. Hence the
running time is O(k⇤(E

I

+ TRIPPLE + TMDL)), if k⇤ is the optimal seed-set size and TMDL

is the running time of computing the MDL score given the seed set size is k⇤. Here we
used the fact that calculating the eigenvector using the Lanczos method is approximately
O(E) (# edges) for sparse graphs.

The worst-case complexity TMDL of calculating L(G
I

, S,R) for a given G
I

, S, and R, is
O(E

I

+E
F

+V
I

). The L(S) term is O(1). For the L(R | S) term, we need to iterate over the
ripple, which is at most V

I

steps long. We only have to update the frontier set F when
one or more nodes got infected, for which we then have to update the attack degrees of
the nodes connected to the nodes infected at time t. Hence we traverse every edge in
E
I

+ E
F

, and every node in V
I

, which gives it the complexity of O(E
I

+ E
F

+ V
I

).

163

Finally, the running time TRIPPLE of computation of the MLE ripple for a given S
k

is
also O(E

I

+ E
F

+ V
I

).
So the overall complexity of NETSLEUTH is O(k⇤(E

I

+ E
F

+ V
I

)).

Hence NETSLEUTH is linear in the number of edges and vertices of the infected
sub-graph and the frontier set, which makes our method scalable for large graphs (as
compared to the methods in [SZ11, LTGM10] which, even for detecting a single seed, are
O(N2)).

9.5 Experiments

Here we experimentally evaluate NETSLEUTH, in particular its effectiveness in finding
culprits—whether it correctly identifies (a) how many as well as (b) which ones—and its (c)
scalability.

9.5.1 Experimental Setup

We implemented NETSLEUTH in Matlab, and in addition we implemented the SI model as
a discrete event simulation in C++. All reported results are averaged over 10 independent
runs (so we generate 10 graphs for each seed set).

In our study we use both synthetic and real networks—we chose synthetic networks
exemplifying different types of situations. We consider the following networks:

1. GRID is a 60⇥60 2D grid as shown in Figure 9.1.
2. CHAIN-STAR It is a graph of total 107 nodes. The first 7 nodes form a linear chain

and the middle node has 100 additional neighbors.
3. AS-OREGON The Oregon AS router graph which is a network graph collected from

the Oregon router views. It contains 15 420 links among 3 995 AS peers.2

For the experiments on AS-OREGON, we ran the experiments for true-seed count
k⇤ = 1, 2, 3. So for each seed-set, we run a simulation till at least 30% of the graph is
infected, and give the resulting footprint as input to NETSLEUTH. Note that, the larger
the number of infections, the tougher it is to find the true seeds, as in the SI model any
seed will eventually infect the whole graph with certainty. Finally, we make sure that the
infected sub-graph was connected—otherwise, we just have separate problem instances.

As discussed in the introduction and Section 9.6, the existing proposals for identifying
culprits consider significantly different problems settings than we do (see Table 9.1); the
Rumor Centrality of Shah and Zaman [SZ10, SZ11] can only discover one seed node,
while Effectors of Lappas et al. [LTGM10] even consider a completely different infection
model. As such we can not meaningfully compare performances, and hence here only
consider NETSLEUTH.

2For more information see http://topology.eecs.umich.edu/data.html.

164

http://topology.eecs.umich.edu/data.html

(a) k⇤ = 1 (b) Scatter plot of Jaccard scores (c) Average QMDL and QJD

(d) k⇤ = 2 (e) Scatter plot of Jaccard scores (f) Average QMDL and QJD

(g) k⇤ = 3 (h) Scatter plot of Jaccard scores (i) Average QMDL and QJD

Figure 9.3: Effectiveness of NETSLEUTH in answering both How many and Which ones - Results of
our experiments on the AS-OREGON graph for true-seed-count k⇤ = 1, 2, 3 (rows, subfigures (a-c),
(d-f), (g-i) respectively). First column, (a),(d),(g), MDL scores as a function of k found by NET-
SLEUTH are near-convex; also we recover the true number in all cases. Second column, (b),(e),(h),
scatter plots of Jaccard scores (JD

x

(V
I

)) of NETSLEUTH seeds (y-axis) and the corresponding true
seeds (x-axis). On or below the 45-degree line is better. Each point average of 10 runs. Note that
for many runs the seeds identified by NETSLEUTH score exactly or even better than the true seeds.
Third column, (c),(f),(i), average QMDL and QJD scores for the seeds returned by NETSLEUTH.
Each bar represents the average over 90 different seed-sets. Note that all the bars are close to 1,
indicating that we consistently find high-quality seed sets both with the Jaccard measure, and
with the MDL measure.

165

Evaluation Function—a subtle issue

How to evaluate the goodness of a seed set? That is, in Figure 9.1, how close are the
red seeds (recovered) from the blue seeds (true)? Notice that the recovered seeds may
actually have better score than the actual ones, for the same reason that the sample
mean of a group of 1D Gaussian instances gives lower sum-squared-distances than the
theoretical mean of the distribution. Moreover, even for evaluation, it is intractable to
compute the exact probability of observing the footprint from a given seed-set.

Thus we propose two quality measures. The first, QMDL, is based on our MDL: we
report the ratio of the MDL score of our seeds, vs. the MDL score of the actual seeds i.e.

QMDL =
L(G

I

, S,R)
L(G

I

, S⇤,R⇤)
(9.18)

Clearly, the closer to 1, the better.
The second QJD intuitively measures the overlap of the footprint produced by a seed-

set S and the input footprint G
I

(V
I

,E
I

). Clearly, the candidate seed-set S can produce n
footprints, when we run n simulations; so we compute E[JDS(VI

)], the average Jaccard
distance3 of all these n footprints, w.r.t. the true input footprint V

I

. As with QMDL, we
normalize it with the corresponding score E[JDS⇤(V

I

)] for the true seed-set, and thus
report the ratio,

QJD =
E[JDS(VI

)]

E[JDS⇤(V
I

)]
(9.19)

Again, the closer to 1, the better.

9.5.2 Effectiveness of NETSLEUTH in identifying How Many

In short, NETSLEUTH was able to find the exact number of seeds for all the cases.
Figures 9.3(a),(d),(g) show the MDL score as a function of k = 1, 2, . . . , 6 seeds found by
NETSLEUTH before stopping, for true seed-sets with (a) k⇤ = 1, (b) k⇤ = 2 and (c) k⇤ = 3
respectively on the AS-OREGON network. Note that the plots show near-convexity, with
the minimum at the true k⇤, justifying our choice of stopping after j = 6 iterations of
increasing scores. It also shows the power of our approach, as we can easily recover the
true number of seeds using a principled approach.

9.5.3 Effectiveness of NETSLEUTH in identifying Which Ones

In short, in addition to finding the correct number of seeds, NETSLEUTH is able to identify
good-quality seeds with high accuracy. For our synthetic graphs, NETSLEUTH is able to
point out that there must have been exactly 2 seeds for both the GRID and CHAIN-STAR

3We use the standard definition of Jaccard Distance between two sets A and B = 1 - |A\B|
|A[B| .

166

examples—respectively identified as the Red circles in Figure 9.1, and the Blue nodes in
Figure 9.2(b)), agreeing with the ground-truth and intuition.

Figures 9.3(b-c),(e-f),(h-i) show the results of our experiments for different number
k⇤ = 1, 2, 3 of true seeds on the AS-OREGON graph. We randomly selected 90 seed-sets of
each size. We made sure that the seed-sets contained both well-connected and weakly
connected nodes. Each point is an average of 10 runs.

Firstly, although not shown in the figures, NETSLEUTH was able to perfectly recover
the true number of seeds in almost all cases. For each seed-set, we calculate JDS(VI

)
for the seeds returned by NETSLEUTH and the true seeds and give the scatter plot in
Figures 9.3(b)(e)(h) for true-seed count k⇤ = 1, 2, 3 respectively (rows). Hence points
on or below the 45-degree line (solid blue) are better. Clearly, almost all points are
concentrated near the diagonal, showing high quality. In fact, many points are exactly
on the line, meaning we are able to recover the true seeds perfectly for many cases. We do
not show similar plots with our MDL score due to lack of space.

Next, we calculate QMDL and QJD averaged over all the different seed-sets (of the
same size for k⇤ = 1, 2, 3). Results are shown in the bar plots (third column) of Fig-
ures 9.3(c)(f)(i). The true-seed scores are represented by the dotted line at 1, for both
QMDL and QJD. Clearly, all of bars are close to 1, demonstrating that NETSLEUTH consis-
tently finds very good culprits. Moreover, both QMDL and QJD quality metrics are similar
in magnitude for all k⇤’s — increasing our confidence in our results.

9.5.4 Scalability

Figure 9.4: NETSLEUTH Scalability: Wall-clock running time (in seconds) for increasingly larger
infected snapshots of AS-OREGON (as the complexity just depends on the size of the snapshot)
k⇤ = 1. Each point average of 10 runs. Note that, as expected, the running time scales linearly.

Figure 9.4 demonstrates the scalability of NETSLEUTH after running it on increasingly
larger infected snapshots of AS-OREGON (as the complexity just depends on the size
of the snapshot). As expected from our Lemma 9.3, the running-time is linear on the
number of edges of the infected graph.

167

9.6 Related Work

As mentioned in the introduction, although diffusion processes have been widely studied,
the problem of ‘reverse engineering’ the epidemic has not received much attention,
except papers by Shah and Zaman [SZ10, SZ11] and Lappas et al. [LTGM10]. Shah and
Zaman [SZ10, SZ11] formalized the notion of rumor-centrality for identifying the single
source node of an epidemic under the SI model, and showed an optimal algorithm for
d-regular trees. Lappas et al. [LTGM10] study the problem of identifying k seed nodes,
or effectors of a partially activated network, which is assumed to be in steady-state under
the IC (Independent-Cascade) model. In contrast, we allow for (a) multiple seed nodes,
(b) a snapshot from any time during the infection, and (c) find the number of seeds
automatically, even for general graphs. Finally we are also more efficient with linear time
on edges of the infected graph.

Rest of the related work into areas deals with epidemic/cascade-style processes
and problems related to them like epidemic thresholds, immunization and influence
maximization (most of which we have already seen previously).

Influence Maximization An important problem under the viral marketing setting is
the influence maximization problem [RD02, KKT03, GLL11, CWW10, HBW11]. Another
remotely related work is outbreak detection [LKG+07] in the sense that we aim to select
a subset of ‘important’ nodes on graphs.

MDL We are not the first to use the Minimum Description Length principle [Gr7]
for a data mining purpose. Faloutsos and Megalooikoumou [FM07] argue many data
mining problems are related to Kolmogorov Complexity, which means they can be
practically solved through compression—examples include clustering [CV05], pattern
mining [VvS11], and community detection [CPMF04]. We are, to the best of our knowl-
edge, however, the first to employ MDL with the goal of identifying culprits.

9.7 Conclusions

In this chapter we discussed finding culprits, the challenging problem of identifying the
nodes from which an infection in a graph started to spread. We proposed to employ
the Minimum Description Length principle for identifying that set of seed nodes from
which the given snapshot can be described most succinctly. We introduced NETSLEUTH
(based on a novel ‘submatrix-laplacian’ method), a highly efficient algorithm for both
identifying the set of seed nodes that best describes the given situation, and automatically
selecting the best number of seed nodes—in contrast to the state of the art.

Experiments showed NETSLEUTH attains high accuracy both in detecting the seed
nodes, and correctly identifying their number. Importantly, NETSLEUTH scales linearly
with the number of edges of the infected graph, O(E

F

+ E
I

+V
I

), making it applicable on
large graphs.

168

Part III

Models

169

Overview

In this part, we turn our attention to building expressive models from real-data for vari-
ous propagation scenarios, using insights gained so-far. Apart from having explanatory
power, we will see how these models can also perform challenging tasks like forecasting
and anomaly detection. We address two main settings here:

• Models for Information Diffusion: How quickly does a piece of news spread
over these media? Do the rise and fall activity patterns in online media have any
underlying ‘laws’? After analyzing numerous real datasets, we present SPIKEM,
a general, accurate and succinct model that explains such rise-and-fall patterns,
unifies previous models and patterns, is interpretable enabling effective forecasting
of trends, and answering ‘what-if’ scenarios.

• Models for Competing Tasks: If ‘Alice’ has n
A

=50 contacts and did n
B

=100 phone-
calls to them, what should we expect for ‘Bob’, who has twice the contacts? One
would expect a linear relationship (double the contacts, double the phone-calls).
However, we show that in numerous settings (like tweets vs re-tweets), the rela-
tionship is a power law, being sub- or super-linear. We also present a simple model,
CTM, based on competing species which succinctly explains the prevalence of such
power-laws, and then subsequently use to spot outliers like telemarketers as well.

170

Chapter 10

Rise and Fall in Information Diffusion

The recent explosion in the adoption of search engines and new media such as blogs
and Twitter have facilitated faster propagation of news and rumors. How quickly does a
piece of news spread over these media? How does its popularity diminish over time?
Does the rising and falling pattern follow a simple universal law?

In this chapter, we propose SPIKEM, a concise yet flexible analytical model for the rise
and fall patterns of influence propagation. Our model has the following advantages: (a)
unification power: it generalizes and explains earlier theoretical models and empirical
observations; (b) practicality: it matches the observed behavior of diverse sets of real
data; (c) parsimony: it requires only a handful of parameters; and (d) usefulness: it
enables further analytics tasks such as forecasting, spotting anomalies, and interpretation
by reverse-engineering the system parameters of interest (e.g. quality of news, count of
interested bloggers, etc.).

Using SPIKEM, we analyzed 7.2GB of real data, most of which were collected from
the public domain. We have shown that our SPIKEM model accurately and succinctly
describes all the patterns of the rise-and-fall spikes in these real datasets.

10.1 Introduction

How do spikes behave in social media? Online social media is spreading news and
rumors in new ways and search engines have facilitated such spreading magnificently,
creating bursts and spikes. Some rumors (or memes, hashtags) start slowly and linger;
others spike early and then decay; others show more complicated behavior, as we show
in Figure 10.1.

Do real rise-and-fall patterns have any qualitative differences? Do they form dif-
ferent classes? If yes, how many? Earlier work on Youtube data claims there are four
classes [CS08]. Empirical work found six classes [YL11]. How many classes are there
after all?

Our answer is: one. We provide a unifying model, SPIKEM, that requires only a
handful of parameters, and we show that it can generate all patterns found in real data

171

20 40 60 80 100 120
0

50

100

Time

V
a

lu
e

Original
SpikeM

20 40 60 80 100 120
0

50

100

Time

V
a

lu
e

Original
SpikeM

(a) Pattern C1 (b) Pattern C2

20 40 60 80 100 120
0

50

100

Time

V
a
lu

e

Original
SpikeM

20 40 60 80 100 120
0

50

100

Time

V
a

lu
e

Original
SpikeM

(c) Pattern C3 (d) Pattern C4

20 40 60 80 100 120
0

50

100

Time

V
a

lu
e

Original
SpikeM

20 40 60 80 100 120
0

50

100

Time

V
a

lu
e

Original
SpikeM

(e) Pattern C5 (f) Pattern C6

Figure 10.1: Modeling power of SPIKEM: six types of spikes (K-SC from [YL11]) shown as dots,
and our model fit in solid red line. Data sequences span over 120 time-ticks, while SPIKEM
requires only seven parameters. The fit is so good, that the red line is often invisible, due to
occlusion.

172

simply by changing the parameter values.
Figure 10.1 shows six representative spikes of online media (memes) from K-SC [YL11],

as gray circles, as well as our fitted model, as a solid red line. Notice that the fitting is
very good, despite the fact that our SPIKEM model requires only seven parameters, and
that the time-sequences span 120 intervals.

Informally, the problem we want to solve is to model/predict an activity (e.g., number
of blog postings), as a function of time, given some breaking-news at a given timetick.
We will use a blogger example for brevity and clarity, but many other processes could be
also modeled (people buying products, computer viruses infecting machines, rumors
spreading over Twitter, etc). Thus, we have:

Informal Problem 1 (what-if). Given a network of bloggers (/hosts/buyers), a shock (e.g.,
event) at time n

b

, the interest/quality of the event, the count S
b

of bloggers that immediately (=
time n

b

) blog about the event, find how the blogging activity will evolve over time.

A closely related problem is to develop a parsimonious model, that can be made to fit
several spikes observed in the past (as we do in Figure 10.1). That is,

Informal Problem 2 (model design). Given the behavior of several spikes in the past, find
an equation/model that can explain them, with as few parameters as possible.

It would be good if the parameters had an intuitive explanation (like, ‘number of
bloggers’, ‘quality of news’, etc, as opposed to, say, a1, a2 of an autoregressive model
(AR/ARIMA)).

In this work, we propose SPIKEM model to solve both of the aforementioned problems.
Our SPIKEM has the following advantages:

• Unification power: it includes earlier patterns and models as special cases ([YL11,
LBK09]),

• Practicality: it matches the behavior of numerous, diverse, real datasets, including
power-law decay

• Parsimony: our model requires only a handful of parameters
• Usefulness: thanks to the SPIKEM model, we can answer ‘what-if’ questions (see

subsection 10.5.1), spot outliers, reverse-engineer the system parameters (quality of
news, count of interested bloggers, time-of-day behavior of bloggers)

Our SPIKEM model is enabled by a careful design to incorporate (a) the power-law
decay in infectivity, (b) a finite population, and (c) proper periodicities. Earlier models
ignored one or more of the above issues.

Thanks to the practicality of SPIKEM, we can make forecasting, analysis of ’what-if’
scenarios, and detection of anomalies, as we show in section 10.4 and section 10.5. We
should highlight that traditional AR, ARIMA and related linear models are fundamen-
tally unsuitable, because they are linear (and can diverge to infinity) and because they
lead to exponential decays (as opposed to the power law that reality seems to obey).
Table 10.1 illustrates the relative advantages of our method: the C-S method (Crane and

173

C-S K-SC SI AR SPIKEM
System identification

p p

Non-linear
p p

Power law decay
p p

Periodicity
p p

Forecasting
p p

Table 10.1: Capabilities of approaches. Only our approach meets all specs.

Sornette) [CS08] assumes an infinite population of bloggers; the clusters in K-SC [YL11]
(repeated in Figure 10.1) are non-parametric and are incapable of forecasting. The SI
model (closely related to the Bass model [Bas69] of the market penetration of new prod-
ucts) leads to exponential decay, as opposed to the power-law decay that we observe in
real data.
Outline The rest of the chapter goes as follows: Section 10.2 presents an overview of
the related work and Section 10.3 the proposed model. Sections 10.4 and 10.5 show our
experimental results on a variety of datasets. We conclude in section 10.7.

10.2 Background

In this section, we present the fundamental concepts.
Epidemiology fundamentals. The most basic epidemic model is the so-called

‘Susceptible-Infected’ (SI) model. Each object/node is in one of two states - Susceptible (S)
or Infected (I). Each infected node attempts to infect each of its neighbors independently
with probability �, which reflects the strength of the virus. Once infected, each node
stays infected forever. If we assume that the underlying network is a clique of N nodes,
and use our notation (‘B’ for blogged = infected) the most basic form of the model is:

dB(t)

dt
= � ⇤ (N- B(t))B(t) (10.1)

where the time t is considered continuous, dB/dt is the derivative, and the initial
condition reflects the external shock (say, B(0) = b externally infected people). The
justification is as follows: � is the strength of the virus, that is, the probability that
an encounter between an infected person (‘B’) and an uninfected one, will end up in
an infection - and we have B ⇤ (N - B) such encounters. The solution for B() is the
sigmoid, and its derivative is symmetric around the peak, with an exponential rise and
an exponential fall (we discuss later in Figure 10.2). There we also show the weakness of
the SI model: real data have a power-law ‘fall’ pattern.

Self-excited Hawkes process. Crane et al. [CS08] used a self-excited Hawkes con-
ditional Poisson process [HO74] to model YouTube views per day, showing that spikes
in the activity have a power-law rise pattern, and a power-law fall pattern, depending

174

on the model parameters. Roughly, the Hawkes process is a Poisson process where
the instantaneous rate is not constant, but depends on the count of previous events,
whose effect drops with the age ⌧ of the event. That is, if there were a lot of events
(viewings/bloggings) recently, we will have many such events today.

The base model states that the rate of spread of infection depends on (a) the external
source S(t) and (b) self-excitation, that is, on earlier-infected nodes (i = 1, . . .); these
nodes spread the infection with decaying virus strength �(⌧), their age ⌧ grows, times
some constant µ

i

. The constant µ
i

is equivalent to the degree of the infected node i.

dB(t)

dt
= S(t) +

X

i,t
i

6t

µ
i

�(t- t
i

) (10.2)

The model typically assumes that the µ
i

values are equal, namely that all nodes have the
same degree (‘homogeneous’ graph). It also silently assumes that there are infinite nodes
available for infection, and it may actually diverge to infinity.

Next we present our SPIKEM model, which avoids the shortcomings of the SI and
Hawkes models, and has several more desirable properties.

10.3 Proposed Method

In this section we present our proposed method, analyze it, and we provide the reader
with several interesting -at least in our opinion- observations.

Our model tries to capture the following behaviors, that we observed with several of
our real data

• P1: power-law fall pattern
• P2: periodicities

and at the same time we want to

• P3: avoid the divergence to infinity

that other models may have. To handle P3 (divergence), we force our model to have a
finite population, and adjust the equations accordingly. To handle P1 (power-law fall
pattern), we assume that the infectivity of a node (= popularity of a blog post) decays
with the INFLUENCE EXPONENT, which we set at -1.5. The handling of periodicities is
discussed in subsection 10.3.2.

We describe our model in steps, adding complexity, and we start with the base model.
Preliminaries We assume there are N bloggers, and none of them is yet blogging
about the topic of interest. At time n

b

, an event happens (such as the 2004 Indonesian
tsunami, or a controversial political speech such as ‘lipstick on a pig’), and S

b

bloggers
immediately blog about it. We refer to this external event as a shock, and n

b

and S
b

are
the birth-time and the initial magnitude of the shock.

175

Our model needs a few more parameters: the first is the quality/interestingness of
the news, which we refer to as �, since this is the standard symbol for the infectivity of a
virus in epidemiology literature. If � is zero, nobody cares about this specific piece of
news; the higher the value, the more bloggers will blog about it.

Finally, we have the decay function f(n), which models how infective/influential
a blog posting is, at age n. Standard epidemiology models assume that f() is constant
(once sick, you have the same probability of infecting others); recent analysis has shown
that the influence drops with age, following a power law.

The above are the parameters of the base model. Before we list the equations, we
want to briefly mention a derived quantity, � ⇤ N; this quantity roughly corresponds
to the R0 (‘R-naught’) found in the epidemiology literature. This tells us the size of the
“first burst”: if only one person was infected, how many would be infected in the next
time-tick?1

In summary, the scenario we model is as follows:

• nothing happens, until a news-event appears, at birth-time n
b

.
• S

b

bloggers immediately blog about it.
• other bloggers visit the initial S

b

(or follow-up) bloggers, and occasionally get
‘infected’ and blog about the event, too.

We also assume that

• each blogger blogs at most once about the event
• no other related event occurs - that is, the shock function S() has only one spike.

Without loss of generality, we also assume that once an un-informed blogger sees an
infected/informed blog, he/she always blogs about the event (if he/she blogs with
probability ⇢ < 1, we could absorb ⇢ in the infectivity factor �)

Our goal is to find an equation to describe the number �B(n) of people blogging
at time-tick n, as a function of n and of course the system parameters (total number of
bloggers N, strength of infection � etc).

10.3.1 Base model - SPIKEM-BASE

The model we propose has nodes (=bloggers) of two states:

• U: Un-informed of the rumor
• B: informed, and Blogged about it

For those who just got informed at time-tick n, we’ll use the symbol �B(n), and we
assume that, once informed, a person will blog about the rumor immediately.

Let U(n) be the number of un-informed people at time n, and let �B(n) the number
of people that just found out about the rumor at time n, and blogged immediately about
it.

1yes, it should be N- 1, but we sacrifice accuracy, for intuition.

176

Model 1 (SPIKEM-Base). Our base model is governed by the equations

�B(n+ 1) = U(n) ·
nX

t=n

b

�
�B(t) + S(t)

�
· f(n+ 1 - t) + ✏ (10.3)

U(n+ 1) = U(n)- �B(n+ 1) (10.4)

where
f(⌧) = � ⇤ ⌧-1.5 (10.5)

and initial conditions:
�B(0) = 0, U(0) = N

In addition, we add an external shock S(n), a spike generated at birth-time n
b

. Mathematically,
it is defined as follows:

S(n) =

�
0 (n 6= n

b

)
S
b

(n = n
b

)
(10.6)

Justification of the model We do it in steps:

• The term �B(t)+ S(t) captures the count of bloggers plus external sources, that got
activated at time-tick t; their infectivity is modulated by the f() infectivity function,
since we assume that the infectivity of a source/blogger decays with time. The
summation is over all past time-ticks since the birth-time n

b

of the shock.
• The infectivity function f() exactly follows a power law with exponent -1.5 as

discovered by earlier work on read data: real bloggers [LMF+07], and response to
mails by Einstein and Darwin [Bar05].

• The meaning of the summation is the available stimuli at time-tick n; the available
targets are the un-informed bloggers U(n), and the product gives the number of
new infections.

• We add a noise term ✏ to handle cases such as hashtag ‘egypt’ on Twitter: some
people tweet about Egypt anyway, but a large shock occurred during the events in
Tahrir square. Very often, ✏ ' 0.

This completes the justification of our base model.
We also mention some facts that our model obeys: by definition

B(n) =
nX

t=0

�B(t)

and of course we have the invariant

B(n) +U(n) = N

where N is the total number of people/bloggers.

177

Symbol Definition
N total population of available bloggers
n
d

duration of sequence
n time-tick (n = 0, . . . ,n

d

)
U(n) count of un-informed bloggers
B(n) count of informed bloggers
�B(n) delta: count of informed bloggers

at exactly time n

f(n) infectiveness of a blog-post, at age n
� strength of infection
� ⇤N “first-burst” size of infection
S(n) volume of external shock at time n
n
b

starting time of breaking news
S
b

strength of external shock at birth (time n
b

)
✏ background noise
P
a

strength of periodicity
P
p

period
P
s

phase shift of periodicity
Table 10.2: Symbols and definitions

10.3.2 With periodicity - SPIKEM

Bloggers may modulate their activity following a daily cycle (or weekly, or yearly). For
example, among the U(n) uninformed bloggers at time n, a fraction of them are not
paying attention (say, because they are tired or asleep). How can we reflect this in our
equations? We propose an answer below, and then we provide the justification.

Model 2 (SPIKEM). We can capture the periodic behavior of bloggers with the following equa-
tions:

�B(n+ 1) = p(n+ 1)·
⇣
U(n) ·

nX

t=n

b

�
�B(t) + S(t)

�
· f(n+ 1 - t) + ✏

⌘
(10.7)

p(n) = 1 - 1
2Pa

⇣
sin
� 2⇡
P

p

(n+ P
s

)
�
+ 1
⌘

(10.8)

where U(n), S(t) and f(n) are defined in Model 1.

Justification The model is identical to SPIKEM-base, with the addition of the periodic-
ity factor p(·). This captures the fact that bloggers tone down their activity, say, during
the night, or even stop it altogether. The idea is that U(·) is the count of victims available

178

for infection, and the summation is the number of attacks. Under normal circumstances,
each victim-attack pair would lead to a new victim; however, since the victims are not
paying full attention (tired/asleep), the attacks are not so successful, and thus we prorate
them by the p() periodic function.

• P
p

stands for the period of the cycle (say, 24 hours).
• P

s

stands for the phase shift: if the peak activity is at noon, and the period is P
p

=24
hours, then P

s

=18.
• P

a

depends on the amplitude of the fluctuation, and specifically it gives the relative
value of the off-time (say, midnight), versus peak time (say, noon). Thus, if P

a

=0,
we have no fluctuation.

10.3.3 Additional details

Model extensions We could easily extend our model so that it has several shocks as
opposed to just one as considered here. We could also extend it to have multiple cycles
(daily, weekly, yearly). We do not elaborate on these extensions for two reasons: (a) for
clarity and (b) because the current model fits real data very well, anyway.

Learning the parameters Our model consists of a set of seven parameters:

✓ = {N,�,n
b

,S
b

, ✏,P
a

,P
s

}.

Given a real time sequence X(n) of bloggers at time-tick n (n = 1, . . . ,n
d

), we use
Levenberg-Marquardt (LM) [Lev44] to minimize the sum of the errors:

D(X,✓) =
n

dX

n=1

(X(n)- �B(n))2.

Analysis - exponential rise, power-law fall It is not obvious from the equations of
our model, but its rise pattern is exponential, while the fall pattern obeys a power
law. This is desirable, because this behavior seem to be prevailing in real data, as we
show in Figure 10.2. Let n

mode

denote the time-tick at which the wave �B() reached its
maximum volume. By rise plot we mean the plot of values from the birth-time n

b

until
n
mode

(and reversing time abs(n - n
mode

)) The fall-plot is defined similarly: activity
�B() versus delay from the peak n- n

mode

. Notice that there is a power law for the fall,
and an exponential shape for the rise. We also show the traditional ‘SI’ model, which, as
expected, exhibits exponential behavior for both rise and fall.

10.4 Experiments

To evaluate the effectiveness of SPIKEM, we carried out experiments on real datasets.
The experiments were designed to answer the following questions:

179

30 40 50 60 70 80 90 100 110 120
0

50

100

Time

V
a
lu

e

SI

spikeM

Original

(a) Whole sequence (linear-log scale) duration=120, peak at n
mode

= 42

10 20 30 40
10

0

Time

V
a
lu

e

exponential

0 20 40 60 80

10
0

Time

V
a

lu
e

(b) Rise-plot (linear-log scale) (c) Fall-plot (linear-log)
Time n:42, 41, ... 1 Time n:42, 43, ...120

10
0

10
1

10
0

Time

V
a

lu
e

10
0

10
1

10
0

Time

V
a
lu

e

power law

(d) Rise-plot (log-log scale) (e) Fall-plot (log-log)
Time n:42, 41, ... 1 Time n:42, 43, ...120

Figure 10.2: Fitting results of SPIKEM vs. SI for pattern C1 in Figure 10.1. The original sequence
(in gray circles), and our model (red line) have an exponential rise and a power-law drop; the SI
model (blue dashed line) is exponential on both and thus unrealistic. Top row: full interval; left
column: only the rise part; right column: only the ‘fall’ part.

180

• Q1: Can we explain the cluster centers of K-SC?
• Q2: How well do we match MemeTracker data?
• Q3: How does it compare with other data?
• Q4: How well do we forecast future patterns?

Dataset description We performed experiments on the following three real datasets.

• MemeTracker: This dataset covers three months of blog activity from August 1 to
October 31 20082, It contains short quoted textual phrases (“memes”), each of which
consists of the number of mentions over time. We choose 1,000 phrases in blogs
with the highest volume in a 7-day window around their peak volume.

• Twitter: We used more than 7 million Twitter3 posts covering an 8-month period
from June 2011 to January 2012. We selected the 10,000 most frequently used
hashtags.

• GoogleTrends: This dataset consists of the volume of searches for various queries
(i.e., words) on Google4. Each query represents the search volumes that are related
to keywords over time.

10.4.1 Q1: Explaining K-SC clusters

The results on this dataset were already presented in section 10.1 (see Figure 10.1). Our
model correctly captures the six patterns of K-SC. Table 10.3 gives a further description
of the SPIKEM fitting. Our model consists of seven parameters, each of which describes
the behavior of spikes. Note that the total populations N are almost the same for all
patterns, (around 2,000 to 3,000). This is because these six patterns are scaled on the
y-axis so that they all have a peak volume of 100. We can see that � ⇤ N is between
0.7- 1.0 for these six patterns. We also see that Pattern C3 has an extreme shock S

b

= 114
at time n

b

= 40, which means that this spike is strongly affected by the external burst of
activity (see Figure 10.1 (c)). On the other hand, Patterns C4-C6 have several peaks about
24 hours apart with a strength P

a

' 0.4.
We also evaluated our fitting accuracy by using the root mean square error (RMSE)

between estimated values and real values: RMSE =
q

1
n

d

P
n

d

n

(X(n)- �B(n))2. Table 10.4
shows the fitting accuracy result for six patterns of K-SC. We compared SPIKEM with SI
model. As discussed in section 10.3 (see Figure 10.2), SI cannot model the tail parts of
the spikes. On the other hand, our solution, SPIKEM achieves high accuracy for every
pattern of K-SC.

2http://memetracker.org/
3http://twitter.com/
4http://www.google.com/insights/search/

181

C1 C2 C3 C4 C5 C6
N 2407 1283 1466 3079 4183 3435

� ⇤N 0.95 1.00 0.86 0.92 0.79 0.69
n
b

26 17 40 35 0 34
S
b

4.73 0.06 114.13 23.24 2.58 45.58
✏ 0.36 0.01 0.43 1.48 0.32 13.97
P
a

0.18 0.06 0.22 0.38 0.28 0.39
P
s

12 5 7 6 2 2

Table 10.3: The model parameters of our SPIKEM best fitting on six patterns of K-SC (see
Figure 10.1).

Pattern C1 C2 C3 C4 C5 C6
SPIKEM 1.84 1.61 0.97 4.08 3.33 5.89

SI 15.64 6.78 19.65 25.29 20.36 21.76
Table 10.4: Fitting accuracy of SI vs. SPIKEM on six patterns of K-SC. SPIKEM consistently
outperforms SI with respect to accuracy (RMSE) between the original values and the models.

10.4.2 Q2: Matching MemeTracker patterns

Figure 10.3 shows the results of model fitting on the MemeTracker dataset. We selected
six typical sequences according to the K-SC clusters. That is, each sequence corresponds
to each pattern (C1-C6). We show the original sequences (black dots) and SPIKEM fitting,
�B(n) (red line) in both linear-linear (top) and log-log (bottom) scales. In the log-log
scale, we also show the count of un-informed bloggers, U(n). In Figure 10.3, the bottom
table shows the short phrases (memes) of each sequence. All of the phrases are sourced
from U.S. politics in 2008. We obtained several observations for each sequence:

• Patterns C1 and C2: almost the same size of population, N ' 500, except that C2 has
a quicker rise and fall (i.e., stronger infection, � ⇤N = 1.4) than C1 (� ⇤N = 0.94).

• Pattern C3: this sequence has a sudden rise and a power law decay. There is a
slight daily periodicity.

• Patterns C4 and C5: there are clearly daily periodicities. Pattern C6, “lipstick on a
pig” has the largest population of all six sequences (i.e., N = 6259).

• Pattern C6: the sequence: “yes we can” consists of huge spikes around n = 40, and
constant periodic noise. This is because the bloggers mention this phrase as Barack
Obama’s slogan as well as with more general meanings. We can also find that there
are several extreme points (i.e., missing values) around n = 120 (see blue circle in
log-log scale).

182

50 100 150
0

20

40

60

Time

V
a
lu

e

N =562, beta*N=0.94

∆ B(n)
Original

50 100 150
0

50

100

Time

V
a

lu
e

N =405, beta*N=1.42

∆ B(n)
Original

50 100 150
0

100

200

300

400

Time

V
a

lu
e

N =3529, beta*N=0.81

∆ B(n)
Original

10
2

10
0

10
1

10
2

10
3

Time

V
a

lu
e

N =562, beta*N=0.94

∆ B(n)

U(n)

Original

10
1

10
2

10
0

10
1

10
2

10
3

Time

V
a

lu
e

N =405, beta*N=1.42

∆ B(n)

U(n)

Original

10
2

10
0

10
2

10
4

Time

V
a

lu
e

N =3529, beta*N=0.81

∆ B(n)
U(n)
Original

(a) Pattern C1: Meme #109 (b) Pattern C2: Meme #34 (c) Pattern C3: Meme #13

50 100 150
0

20

40

60

80

Time

V
a

lu
e

N =772, beta*N=1.04

B(n)
Original

50 100 150
0

50

100

150

200

Time

V
a

lu
e

N =6259, beta*N=0.73

∆ B(n)
Original

50 100 150
0

50

100

150

Time
V

a
lu

e

N =3234, beta*N=0.69

∆ B(n)
Original

10
2

10
0

10
2

Time

V
a

lu
e

N =772, beta*N=1.04

∆ B(n)

U(n)

Original

10
2

10
0

10
2

10
4

Time

V
a

lu
e

N =6259, beta*N=0.73

∆ B(n)
U(n)
Original

10
2

10
0

10
2

10
4

Time

V
a

lu
e

N =3234, beta*N=0.69

∆ B(n)

U(n)

Original

(d) Pattern C4: Meme #87 (e) Pattern C5: Meme #9 (f) Pattern C6: Meme #3
#109 the most serious financial crisis since the great depres-

sion
#87 what is required of us now is a new era of responsibility

#34 i love this country too much to let them take over another
election

#9 you can put lipstick on a pig

#13 hope over fear, unity of purpose over conflict and dis-
cord

#3 yes we can yes we can

Figure 10.3: Results of SPIKEM fitting on six patterns from MemeTracker dataset. The figures
show in both ‘linear-linear’(top) and ‘log-log’(bottom) scales. The bottom table lists the phrase
(“meme”) of each patterns.

183

10.4.3 Q3: Matching other data

50 100 150
0

50

100

Time

V
a

lu
e

N =992, beta*N=1.41

∆ B(n)
Original

50 100 150
0

500

1000

1500

Time

V
a

lu
e

N =6475, beta*N=2.00

∆ B(n)
Original

50 100 150
0

50

100

150

Time

V
a

lu
e

N =1266, beta*N=1.41

∆ B(n)
Original

10
1

10
2

10
0

10
2

Time

V
a

lu
e

N =992, beta*N=1.41

∆ B(n)

U(n)

Original

10
2

10
0

10
2

10
4

Time

V
a

lu
e

N =6475, beta*N=2.00

∆ B(n)

U(n)

Original

10
2

10
0

10
2

10
4

Time

V
a

lu
e

N =1266, beta*N=1.41

∆ B(n)

U(n)

Original

(a) #assange (b) #stevejobs (c) #arresteddevelopment

Figure 10.4: Results of SPIKEM fitting on three hashtags from Twitter dataset. The top and bottom
rows show in linear-linear scale, and log-log scale, respectively.

We also demonstrate the effectiveness of our model for other types of spikes.

Fitting on Twitter data. Figure 10.4 describes our fitting results on the hashtags of
Twitter data. In this figure, we can see that Twitter data behave similarly to MemeTracker
data. Due to space limitations, we show only three major hashtags. Note that the top
and bottom rows are in linear-linear and log-log scales, respectively. Our model captures
the following characteristics: (a) #assange: this is a topic about Julian Assange, the
founder of WikiLeaks. There are several mentions before the peak point (December
5, 2011). (b) #stevejobs: there is a sudden peak on October 5, 2011, with a long heavy
tail (see Figure 10.4(b) in log-log scale). This was caused by the death of Steve Jobs. (c)
#arresteddevelopment: this a topic about the movie “Arrested Development”. There is a
clear daily periodicity with a peak point.

Fitting on GoogleTrend data. We can also observe influence propagation in queries
on internet search engines. Figure 10.5 shows two different types of spikes on Google-
Trends. For an external catastrophic event (a) “tsunami”, we see that there is a super quick
rise immediately after the Indian Ocean earthquake and tsunami in 2005. In contrast, (b)
“harry potter” has a slower rise, which is because this spike was generated by “word-
of-mouth” activity surrounding the release of a Harry Potter movie in 2007. SPIKEM
evidently captures both types of spikes successfully.

184

20 40 60
0

50

100

Time

V
a

lu
e

Original

SpikeM

10 20 30 40 50
0

50

100

Time

V
a

lu
e

(a) “tsunami” (2005) (b) “Harry Potter” (2007)

Figure 10.5: SPIKEM fitting on GoogleTrends dataset: the volume of searches for the keyword (in
black dots) and fitting results (in red lines). Note that the window size is per week.

10.4.4 Q4: Tail-part forecasts

So far we have seen how SPIKEM captures the pattern dynamics for various spikes.
Here, we answer a more practical question: given the first part of the spike, how can we
forecast the future behavior of the tail part? Figure 10.6 shows results of our forecasts
on MemeTracker data. We selected two the highest population phrases (#9 and #13 in
Figure 10.3). We trained our models by using the values obtained over a period of 54
hours (solid black lines in the figure), and then forecasted the following days (solid red
lines, about five days). Note that the vertical axis uses a logarithmic scale. We compared
SPIKEM with the auto regressive model (AR). For a fair comparison, we used seven
regression coefficients, which was the same size as our model parameters.

Our method achieves high forecasting accuracy while AR failed to forecast future
patterns. More specifically, the reconstruction errors of SPIKEM are RMSE = 9.26 and
8.93 for #9 and #13, while AR has errors of 13.98 and 14.19. Similar trends are observed
in other phrases, however we omit the results due to space limitations. More importantly,
our model can forecast the rise part of spikes as well as the tail part (discussed in
Section 10.5).

10.5 Discussion - SPIKEM at work

Our proposed model, SPIKEM is capable of various applications. Here, we describe
important applications and show some usefulness examples of our approach.

10.5.1 “What-if” forecasting

We have discussed tail-part forecasting in subsection 10.4.4. Ideally, we want to forecast
not only the tail-part, but also the rise-part of a spike. This is much more difficult, because
we usually have very few points in the rise-part of a spike. However, if this is a repeating

185

0 50 100 150
10

0

10
2

Time (per hour)

V
a

lu
e

 N =5960, beta*N=0.7

spikeM
AR
Original

0 50 100 150
10

0

10
2

Time (per hour)

V
a

lu
e

 N =3481, beta*N=1.2

spikeM
AR
Original

(a) Meme #9 (b) Meme #13

Figure 10.6: Results of tail-part forecasting on MemeTracker data. We train spikes from n = 0 to 54,
and then, start forecasting at time n = 54. Our SPIKEM reflects reality better, while AR quickly
converges to the zero.

event, like, say, the spikes induced by ‘Harry Potter’ movies releases, can we forecast
future spikes if we know the release date of the next movie? It turns out that our SPIKEM
model can help with this (difficult) task, too.

Thus, the problem we address in Figure 10.7 is as follows: we are given (a) the first
spike in 2009, “Harry Potter and the Half-Blood Prince” (n = 185); (b) the release dates
of the two sequel movies (blue text with as arrows pointed at n = 255 and 289), and (c)
the access volume before the release dates (and specifically from 8 to 2 weeks before).
Can we forecast the rise and fall shapes of upcoming spikes and their peak points?

Solution and results. SPIKEM can predict the potential population N of users who
are interested in “Harry Potter”, and the strength of ‘word-of-mouth’ infection: �. Our
solution is to assume that these values are fixed for all of the sequel spikes. The only
difference is the strength of the “external shock”, i.e., n

b

and S
b

. Our solution consists of
the following three-step process:

1. Train the parameter set ✓ by using the first spike (solid black line in the figure).
2. With the fixed parameters ✓, infer the new values of ñ

b

and S̃
b

by using the
beginning part of the next spike (blue lines between double arrows at n = 250 and
280).

3. Generate the spikes using ✓ and ñ
b

and S̃
b

(red lines).

In conclusion, Figure 10.7 shows that our model successfully captures the two sequel
spikes and peak points n

mode

.

186

150 200 250 300
0

20

40

60

80

Time (per week)

V
a

lu
e

July 15, 2009
"Harry Potter and

the Half−Blood Prince"

November 19 , 2010
"Deathly Hallows part 1" July 15, 2011

"Deathly Hallows part 2"

Figure 10.7: Results of “what-if” forecasting for the Harry
Potter series. We trained parameters by using (a) the
first spike around July 15, 2009 (black solid line), and (b)
access volume two months before the release (blue lines
with double arrows around time n = 250, 280) and then,
forecasted the following two spikes (red lines).

10
0

10
1

10
1

10
2

Time (per week)

V
a
lu

e

Dec. 26
Indian Ocean
earthquake

Mar. 29
Scientists puzzled

no tsunami
after quake

Dec. 26
World marks

tsunami
anniversary

Figure 10.8: Outlier detection on
GoogleTrends dataset (in log-log
scale). Notice that the biggest spike,
“world marks tsunami anniversary”
occurred after one year (i.e., 52
weeks later).

10.5.2 Outlier detection

Since SPIKEM has a very high fitting accuracy on real datasets (described in section 10.4),
another natural application would be anomaly detection. Figure 10.8 shows the fitting
result of Figure 10.5 (a), in a log-log scale. Note that the black circles are the original
sequence, and the pink line is our model fitting. We can visually observe that there are
several points that do not overlap the model. For example, (a) on March 29, there is
one spike, since another earthquake occurred on March 28. (b) There is a huge spike on
December 26, 2005, which is exactly one year after the Indian Ocean earthquake.

10.5.3 Reverse engineering

Most importantly, our model can provide an intuitive explanation such as the potential
number of interested bloggers, and the quality of news. Here we report our discoveries
on MemeTracker and Twitter datasets (see Figure 10.9).

Observation 10.1 (Total population of bloggers). The total populations of potential blog-
gers/users N are almost same for both datasets (around N = 1, 000 - 2, 000).

We also note that they are skewed to the right, i.e., there is a long tail of larger values.

Observation 10.2 (Strength of first infection). The strength of the “first burst” is � ⇤N ' 1.0
for each dataset.

The above two observations agree with the intuition: we can see common behavior
for MemeTracker and Twitter, which means that they have similar characteristics in terms
of social activities.

187

0 5000 10000
0

0.1

0.2
P

D
F

N

0 1 2
0

0.05

0.1

P
D

F

β*N

0 10 20
0

0.1

0.2

P
D

F

P
s

(a) MemeTracker

0 5

x 10
4

0

0.2

0.4

P
D

F

N

0 1 2
0

0.05

0.1

P
D

F

β*N

0 10 20
0

0.1

0.2

P
D

F

P
s

(b) Twitter
Figure 10.9: Reverse engineering: pdf of three parameters: N,� ⇤ N,P

s

over 1,000
memes/hashtags. (a) MemeTracker: total potential bloggers N ' 1, 000, and strength of “first
burst” � ⇤N ' 1.0. More than 90% of the memes have clear daily periodicity with high activities
around 6pm (i.e., P

s

' 0). (b) Twitter: similar trends except more spread in P
s

, possibly, due to
multiple time zone. Also see the text for more observations.

Observation 10.3 (Common activity and periodicity). Typical user behavior is to have a
daily periodicity with (a) phase shift P

s

= 0 (small population during early morning, large
population at peak point, 6pm) for MemeTracker, while (b) more spread in P

s

.

Note that more than 90% of all spikes have a daily periodicity in both datasets. The
only the difference between the two datasets is that Twitter has several P

s

values. This is
because Twitter has multiple time zones (e.g., US, UK, Australia, and India).

10.6 Related Work

We present the related work, in three areas: time series analysis, influence propagation,
and burst detection.

Time series Analysis. This is an old topic, that has attracted huge interest, and that
is dealt with in well-regarded textbooks [BJR94]. Traditional approaches applied to data
mining include Auto-Regression (AR) and variations [LLL+11], or Linear dynamical
systems (LDS), Kalman filters (KF) and variants [JCW04, LPF10?] but they are all linear
methods. Non-linear methods for forecasting tend to be hard to interpret, because they
rely on nearest-neighbor search [CF02], or artificial neural networks [WG94]. Similarity
search, indexing and pattern discovery in time sequences have also attracted huge interest

188

[FRM94, KS01, GKMS01, KPZ+04, LKL+04, VKY09, PAP+11, SFY07, SPF05, MSY09], but
none of these methods specifically focused on modeling bursts.

Influence propagation. The canonical text-book for epidemiological models like SI
is Anderson and May [AM91]. The power-law decay of influence has been reported in
blogs [MLF+07], with a exponent of -1.5. Barabasi and his colleagues reported exponents
of -1 and -1.5, for the response time in correspondence [Bar05]. Analyses of epidemics,
blogs, social media, propagation and the cascades they create have attracted much
interest [LBK09, YL10, KMM10, PCF+11, PBRF12, KKT03, TPT+10, GLMF09, GLNGT04,
GKRT04, LAH06], and recently the reverse problem (‘find who started it’) [LTGM10,
SZ11].

Burst detection. Remotely related to our work are the efforts to spot bursts. This
includes the work of Kleinberg [Kle02], the algorithm of Zhu and Shasha [ZS03], and
the algorithm of Parikh et al. [PS08]. None of the above gives a parsimonious model for
describing the activity in a network.

10.7 Conclusions

We studied the rise-and-fall patterns in information diffusion process through online
medias in this chapter. We presented SPIKEM, a general, accurate and succinct model that
explains the rise-and-fall patterns. Our proposed SPIKEM has the following appealing
advantages:

• Unification power: it includes earlier patterns and models as special cases (K-SC,
as well as the SI model);

• Practicality: it matches the behavior of numerous, diverse, real datasets, including
the power-law decay and much more beyond;

• Parsimony: our model requires only a handful of parameters;
• Usefulness: we showed how to use our model to do ‘short-term’ forecasting, to

answer what-if scenarios, to spot outliers, and to learn more about the mechanisms
of the spikes.

189

Chapter 11

Patterns amongst Competing Tasks

If Alice has double the friends of Bob, will she also have double the phone-calls (or
wall-postings, or tweets)? We show that the answer to the question is a power-law:
sub-linear, or super-linear, for a wide variety of diverse settings: tasks in a phone-call
network, like count of friends, count of phone-calls, total count of minutes; tasks in a
twitter-like network, like count of tweets, count of followees etc.

Why are there so many super-linear relationships? We answer this question through
our proposed “competing tasks” model (CTM), that leads exactly to power-law relation-
ships between task-frequencies. In a nutshell, the harder the task, the exponentially less
frequently it will happen. Our model is inspired from population ecology, competing
viruses (Chapter 4), using a generalization of the famous Volterra-Lotka prey-predator
model. We illustrate our observations on two large, real datasets, spanning ⇠ 2.2M and
⇠ 3.1M individuals with 5 features each. We show how to use our observations to spot
clusters and outliers, like, e.g., telemarketers in our phone-call network.

11.1 Introduction

If ‘Alice’ has n
A

=50 contacts and did n
B

=100 phone-calls to them, what should we expect
for ‘Bob’, who has twice the contacts? One would expect a linear relationship (double
the contacts, double the phone-calls). However, we show that in numerous settings, the
relationship is a power law, being sub- or super-linear.

The questions we want to answer here are the following:

1. Q1: Why: what is the reason that super-linear relationships are so prevalent?
2. Q2: Practical use: Can we answer ’what-if’ scenarios? Can we find anomalies?

Our contributions are exactly the answers to the above questions:

• A1: We propose the CTM model inspired from population ecology, with tasks
competing for resources (person’s time). Then, we show that the relative frequency
of tasks is exponentially related to the task’s difficulty.

190

Figure 11.1: Illustration of super-linearity:Power-law relationship between count of tweets and
count of retweets for each user in the Tencent-Weibo dataset. Log-log scales, each red square is
the conditional average of tweets, for the given count of retweets. The last few points are noisy,
because of extreme-value effects.

• A2: We show that our SURF fits several, diverse real datasets, and present how to
spot outliers, and how to answer what-if questions.

Table 11.1: Symbols and definitions

Symbol Definition
d
A

, d
B

duration of task ’A’ & ’B’
r
A

,r
B

reproduction rate of species A’ & ’B’ - inverse of dura-
tion

n
A

, n
B

population of species ’A’ & ’B’ = occurrence freq. of A’
& ’B’

SURF Super-Linear Relative Frequency Observation
CTM Our Competing Tasks Model

We report results from two large, real, diverse datasets. The first spans ⇠ 3.1M users
and is on a phone-call dataset; for each customer, we study the count of distinct contacts,
the count of phonecalls, the total minutes, and the count of text messages. The second
is from Tencent-Weibo, a Chinese version of TwitterTM, with count of tweets, re-tweets,
followees etc per user. Figure 11.1 illustrates our main idea:it depicts the power-law
relationship between count of tweets and count of retweets. Both axis are logarithmic;
each red square is the conditional average of tweets, for the given count of retweets. The
last few points are noisy, because of extreme-value effects (there are very few people
with so many re-tweets, and they dominate the average).

191

Table 11.1 gives the major symbols we use and their definitions. The rest of the
sections are organized in the typical way: Proposed explanation and CTM Model;
Experiments; Related work and Conclusions.

11.2 Competing Tasks Model (CTM)

Here we focus on question Q1 of the introduction - why do we see a power-law relation-
ship between, say, tweets and retweets (Figure 11.1)?

We do a lot of tasks during each day. Let n
A

and n
B

be the frequencies of tasks ’A’
and ’B’ respectively, where, say, ’A’ stands for ’going-for-a-walk’ and ’B’ for ’clicking-on-
a-web-link’. Let d

A

and d
B

be the effort (say, time duration) that each task requires. One
might expect that if a task takes twice as long, then it should happen twice less often:
n
A

: n
B

=? d
B

: d
A

.
However, this does not seem to agree with the numerous observations of the dis-

proportionate impact of small changes in the effort to do any task. For example, the
huge difference in organ donorship between culturally similar Germany and Austria
(12% vs 99.9%), has been attributed to the difference in the ‘default’ choices - “in Austria,
the default choice is to be an organ donor, whereas in Germany the default is not to
be" [Wat11]. Similarly, the British physicist Stephen Hawking, notes in his famous
popular science book ‘A Brief History of Time’, that “an editor warned him that for every
equation in the book the readership would be halved" [Haw88]. Also, if a web form has
‘opt-in’ by default, the vast majority of people will opt-in, despite the fact that it only
takes a few seconds to find the box and click the mouse. We shall refer to this observation
as the RELATIVE EFFORT observation:

Observation 11.1 (RELATIVE EFFORT). A small change in the effort (d
A

) required for a task,
makes a big difference in n

A

, the number of times (frequency) we execute this task.

Next we give a model that simultaneously (a) agrees with the intuitive RELATIVE
EFFORT observation, and (b) also explains the super-linear relationship of frequencies
n
A

and n
B

. We shall refer to the latter as SURF: super-linear relative frequency observation.
Specifically, we conjecture that the relative frequencies n

A

and n
B

follow a power-law,
where the exponent depends on the relative effort (or time duration d

A

and d
B

) of the
two tasks.

Conjecture 11.1 (Super-linear Relative Frequency (SURF)). With n
A

, n
B

the task frequen-
cies, and d

A

, d
B

the task durations, we have

d
A

⇤ log(n
A

) = d
B

⇤ log(n
B

) = c (11.1)

or equivalently
n
A

= exp(c/d
A

) (11.2)

192

where, c is some constant. This implies that a small change in the effort d
A

of a task
(eg., through a better web interface, requiring fewer clicks), will have an exponential
impact on the frequency n

A

of the task.

Empirical Evidence: Please see Figure 11.2 for numerous pairs of attributes of our real
data, where the “super-linear relative frequency” observation (SURF) holds.

11.2.1 Justification

We can show that the conjecture holds, if we borrow the concept of competing species
from population ecology: suppose we have two species of herbivores, ’A’ and ’B’, feeding
on the same finite resource (say, R pounds of grass, on an isolated island). The species
require d

A

and d
B

amounts of grass per individual to produce one offspring. How many
members n

A

and n
B

of each species would we expect to see? This situation is equivalent
to tasks ’A’ and ’B’, each competing for user’s time, and each requiring d

A

and d
B

units
of time respectively.

We use the Lotka-Volterra-like equations [MM07] to model the competing species ’A’
and ’B’, with reproductive rate r

A

= 1/d
A

, r
B

= 1/d
B

, with d
A

, d
B

being the amount of
resource (grass) needed to create offspring. Then, we have

@n
A

@t
= r

A

n
A

(R- (d
A

n
A

+ d
B

n
B

)) (11.3)

@n
B

@t
= r

B

n
B

(R- (d
A

n
A

+ d
B

n
B

)) (11.4)

where, @n

A

@t

is the time-derivative of the population of species A, @n

B

@t

is the time-derivative
of the population of species B, and R is some maximum total units of resources for the
species compete. The equations above state that the rate of change of a species, say A,
is dependent on its reproductive rate (r

A

), its current population (n
A

), and the current
resource units remaining (R- (d

A

n
A

+ d
B

n
B

)). Given such a system of equations, we
can now prove the following theorem:

Theorem 11.1 (SURF (Super-linear Relative Frequency)). Under the setting described in
Equations (11.3) and (11.4), we have

n
A

(t) / n
B

(t)dB

/d

A (11.5)

where, n
A

(t) and n
B

(t) are the populations of the species at some time t > 0.

Proof. By dividing Equations (11.3) and (11.4), we obtain

193

@n
A

@n
B

=
r
A

n
A

r
B

n
B

)
Z
n

A

(t)

n

A

(0)

@n
A

n
A

=
r
A

r
B

Z
n

B

(t)

n

B

(0)

@n
B

n
B

) lnn
A

(t) = lnn
B

(t)
r

A

r

B + c

) n
A

= nr

A

/r

B

-cr

A

B

) n
A

(t) / n
B

(t)dB

/d

A

where c is some constant and n
A

(0) and n
B

(0) are the initial populations of the species
at time t = 0.

Thus, the longer a task takes (d
A

,d
B

), the exponentially less often it will occur.

11.3 Experiments

In the following subsections we present the experimental results that corroborate our
SURF theory. The real datasets we studied in order to check the validity of the proposed
model are the following:

• Tencent Weibo (W)1: Weibo is one of the largest micro-blogging websites in China.
We studied the behavior of ⇠ 2.2 million users; for each one we extracted five
quantities: the number of her tweets, retweets, comments, mentions and followees.

• Phonecall dataset (P): This dataset consists of phone-call records from a mobile
provider in a big Asian city. For each of the ⇠ 3.1 million customers we obtained
the number of her calls, messages, “voice” and “sms” friends, as well as the total
minutes of her phone-calls.

The extracted features from each dataset correspond to the occurrences of the tasks (n
A

,
n
B

etc.) in our SURF theory.

11.3.1 CTM at Work

In Fig. 11.2 we present the scatter plots of pairs of tasks that differ in the effort that they
require.

Observation 11.2. The SURF pattern holds in the real-world datasets; there is a power-law
relationship between tasks of different difficulty.

Here is a short explanation of the scatter plots: each user/customer is a blue point on
the plane and is characterized by the number of times she did tasks A and B. Note that

1Tencent Weibo Dataset, KDD Cup 2012. http://www.kddcup2012.org

194

(W1) tweets VS retweets (W2) tweets VS comments (W3) tweets VS mentions

Tencent

Weibo

Dataset

Phone-call

Dataset

(W4) followees VS retweets (P1) minutes VS calls

(P2) voice friends VS calls (P3) voice VS sms friends (P4) sms friends VS sms

Figure 11.2: SURF patterns in real datasets (log-log scale): observe the power-law relationship
between tasks of different difficulty. Note that for each dataset we have n = 5 features. We are
giving the plots for n- 1 pairs, instead of

�
n

2
�
. (“W”: Tencent Weibo, and “P”: Phonecall data)

195

all plots “suffer” from heavy over-plotting, especially for small values of occurrences
(not visible in the plots).

Linear regression in this cloud of points fails due to over-plotting, and so we resort
to the following solution: we group the points in logarithmic buckets and compute the
mean (red points) of Y given X. The line, E[Y|X = x], is obtained by linear regression
on the red points (ignoring the few last points, where the observations are extremely
sparse, possibly due to the “horizon effect”). As we observe, in all cases the conditional
expectation is a linear function of x.

Observation 11.3. Deviations from the SURF patterns, as shown in Fig. 11.2(P2) are due to
outliers, e.g. telemarketers.

The customers within the cyan ellipse all have about 100 contacts, and 100 phone-
calls, that is about one phone-call per contact. The rest of the population has many more
phone-calls than contacts, leading to the suspicion that the former are telemarketers.

11.4 Related Work

Population Ecology: Population ecology is an area of its own, with numerous books
and milestone papers [MM07]. The competing species analysis is discussed, among
others, in [Ste09], along with the full extension of the famous Lotka-Volterra model for
prey-predator competition. Recall that we analyzed (Chapter 4) a probabilistic competi-
tion model for competing diseases with ‘winner-takes-all’ phenomenon [PBRF12].

Power laws: Power laws have been discovered in numerous cases, often in conjunction
with fractals and self-similarities [Sch91]. Some of the most famous power laws are the
Zipf distribution [Zip49] and the Pareto distribution [Par96]. They have negative slopes,
though. Power laws with positive slopes have also been discovered (length of coastlines,
number of quad-tree blocks versus granularity [FG96]), and more recently in graphs: the
number of edges grows super-linearly on the number of nodes [LKF05], with exponents
1.6 or 1.2; the number of participating triangles of a node grows super-linearly to the
degree [Tso08], with exponent ⇠ 1.5; the total weight of a node is superlinear on the
degree [MAF08], to name a few.

However, none of the above articles provided a solution to our setting, namely,
an explanation for the super-linearity we observe, and validation on several, diverse
datasets.

11.5 Conclusions

The contributions are the answers to the questions we posed in the introductions: Q1:
why do we see super-linear relationships between counts of tasks; Q2: how can we put it
to practical use. Specifically, the contributions are:

196

1. A1: Discovery and explanation of power law (CTM) in several, real, diverse
datasets, on most of their n-choose-2 pairs of attributes/tasks.

2. A2: Illustration that SURF can be used for anomaly detection, clustering and
what-if scenarios.

Future work may include developing more expressive models to account for the
variance in the observations.

197

Part IV

Conclusion

198

Chapter 12

Conclusions and Future Directions

Networks are really ubiquitous, providing a simple yet powerful abstraction to tackle
several real-world problems. In addition though, when considering large graphs, epi-
demics are also everywhere. For social networks, infectious diseases like the flu are prime
examples, but hypes/memes are similarly epidemic in nature; whether it is friends dis-
cussing that latest gadget or phone, or sharing a funny video, there are nodes ‘infecting’
each other. Similarly, a computer virus can cause an epidemic in a computer network, as
can a contaminant in a water distribution network. Applications include cyber security,
epidemiology and public health, product marketing to information dissemination.

Many fundamental questions underlie the propagation-like processes in all these
domains, a number of which we addressed in this thesis. Many of these questions are also
inter-connected, and as this thesis demonstrates, answering some of them can be crucial
for others. We tackled multiple important questions, like understanding the tipping
point behavior of epidemics, predicting who-wins among competing viruses/products,
developing effective algorithms for immunization and marketing for several real-world
settings, and building more realistic online information-diffusion models while analyzing
numerous real-datasets.

12.1 Summary of contributions

We summarize the major contributions and impact of this thesis next. Answering
problems spanning multiple domains necessitates a multi-pronged approach. Hence, the
contributions span three inter-dependent areas:

I (Theory) Discovering the importance of eigenvalues and winner-takes-all phenomena
(Chapters 2, 3, 4, 5)

II (Algorithms) Orders of magnitude faster and substantially more effective algorithms for
immunization, and culprits detection (Chapters 6, 7, 8, 9)

III (Models) More expressive, unifying, interpretable and predictive models using numerous
real-world datasets (Chapters 10, 11)

199

We are arguably the first to present a systematic study of propagation and immuniza-
tion of single as well as multiple viruses on arbitrary, real and time-varying networks as
the vast majority of the literature focuses on structured topologies, cliques, and related
un-realistic models.

Theory

• Eigenvalues for Epidemic Threshold: We showed that the epidemic threshold for
single viruses depends on the largest eigenvalue of an ‘appropriate’ matrix for
arbitrary static and time-varying graphs. Our eigenvalue result generalizes and
unifies previous results and has broad implications and applications like faster
epidemiological simulations. We are the first to show the threshold on arbitrary
static graphs and almost any virus propagation model. In addition, ours is the first
closed formula for any set of arbitrary time-varying graphs.

• Winner-Takes-All for Competing Viruses: We are the first to show the surprising
‘winner-takes-all’ phenomenon involving competing viruses/products, spread-
ing on arbitrary graphs. Additionally, we are the first to extend this problem to
mutually-interacting viruses and show a phase-transition.

? Impact: Our paper on epidemic thresholds on static graphs [PCF+11] was selected
for one of the best papers of the conference. Our results have been used to enable
other important tasks like anomaly detection and graph modeling [AMF10], and
immunization (see Part II of this thesis). They are also being incorporated into
FRED, an epidemiological simulator developed by MIDAS.

Algorithms

• Dramatically better Immunization: Our carefully designed algorithms such as
NETSHIELD and SMART-ALLOC substantially improved the state-of-the-art in solv-
ing the complete and fractional immunization problems respectively. NETSHIELD
outperformed many methods by more than 7 orders of magnitude in running time,
and competitors like the well-known acquaintance immunization in quality of
solutions. Using task-specific structure SMART-ALLOC achieves up to 6x fewer
infections and 30,000x speed-up, over current practice and ad-hoc heuristics on
real hospital patient-transfer networks like US-MEDICARE and PENN-ALL (the
current practice has been largely focused within individual hospitals).

• Parameter-free Culprits detection: Our algorithm NETSLEUTH is the first linear-
time algorithm (in edges and nodes) for automatically identifying the set of cul-
prits which best describes a given snapshot of the epidemic (both in identity and
number)—in contrast to the state of the art (which are at least quadratic in running
time, and require the number of seeds as input).

? Impact: Our results and algorithms have been incorporated into undergraduate
courses (UPitt Summer Program) and slides sought-after for graduate courses

200

(Xifeng Yan, UCSB) in universities, and have appeared in ACM Crossroads.

Models

• Unifying models for online diffusion: We developed SPIKEM, a powerful suc-
cinct model to explain the rise and fall patterns of information diffusion which
unifies and includes earlier patterns and models, matches behavior of numerous
real datasets and can be used to forecast, answer ‘what-if’ scenarios and even
reverse-engineer epidemics.

• Explaining power-laws in competing tasks: We developed CTM, an intuitive
model to explain the prevalence of super-linear relationships between the frequen-
cies of various competing tasks observed in real-datasets, and use it to spot outliers
like telemarketers.

12.2 Vision and Future directions

Looking ahead, the long-term goal is to solve large real-world problems by building
models and understanding the dynamics of networked systems, be it social, technological,
or natural. To solve high-impact problems involving complex systems, our vision is a
multi-pronged ‘end-to-end’ research pipeline: (a) defining and collecting rich network
structure (collaborating with domain experts), (b) understanding network properties
and then abstracting/analyzing real-life processes on these networks, and (c) developing
and implementing efficient algorithms to manipulate such processes for our benefit.

This thesis has made several major steps in these broad directions—we now better
understand the effect of graph topology on various propagation processes (like epidemic
thresholds), have better algorithms for many immunization and marketing tasks (like
SMART-ALLOC), and have better models for describing propagation scenarios (like
SPIKEM). Several challenges remain, some of which we describe next.

12.2.1 Long Term Challenges

Scalability: One of the major thrust areas would be continuing focusing on big-data
and computing systems. We have already used data-intensive map-reduce type archi-
tectures (Hadoop) and distributed compute-intensive systems (Condor) for our current
research. Such systems would not only allow us to perform large-scale analysis and de-
velop deployable solutions for real problems, but may also serve as a source of interesting
problems, e.g., how do failures cascade in Hadoop clusters?

Richer settings & dynamic parameters: What happens when the meme/virus evolves
over time, e.g, a flu-like virus becomes a mumps-like virus? What changes, if this hap-
pens in an adversarial manner, in a game-theoretic fashion? We studied what happens

201

when the underlying network changes with time in this thesis. We wish to further study
changes in other parameters like the evolution of viruses and memes and effect of sudden
introduction of other viruses/topics/products into the ecosystem. Similarly, how do
node attributes, like gender and age, affect the distribution of vaccines? How important
are weak social ties (as opposed to strong friendship) in dynamical phenomena? How
does additional uncertainty in edges change our answer to the culprits problem? Most
existing models and algorithms work on plain graphs, where all nodes and edges are
the same. Incorporating richer attributed network data—having auxiliary and uncertain
features like historical attributes, textual information, geographical information, can
greatly enhance models as well as algorithms.

Finally, we believe our inter-disciplinary approach is also vital here and has indeed led
to many discoveries in this thesis, spanning areas like public health, social media and
networking. We also need to use tools from Data Mining, Machine Learning, Statistical
Physics and Biology to build, and analyze the models and mechanisms. And all of these
have to be done in the context that we are trying to both understand and manage real-life
processes which are on a societal-scale. These are pretty exciting times for research in
networks.

202

Bibliography

[AA05] Azmy Ackleh and Linda Allen. Competitive exclusion in sis and sir epi-
demic models with total cross immunity and density-dependent host mor-
tality. Discrete and Continuous Dynamical Systems-Series B, 5, 2005. 4.2, 4.6

[AJB00] R. Albert, H. Jeong, and A.-L. Barabási. Error and attack tolerance of
complex networks. Nature, 407(6794):378–482, July 2000. 2.7.1

[AM82] R. M. Anderson and R. M. May. Coevolution of hosts and parasites. Para-
sitology, 85, 1982. 4.2, 4.6

[AM91] Roy M. Anderson and Robert M. May. Infectious Diseases of Humans. Oxford
University Press, 1991. 2.2.1, 2.4, 2.5.2, 3.1, 3.2, 5, 1, 7.2, 7.3, 9.2.2, 10.6

[AMF10] Leman Akoglu, Mary McGlohon, and Christos Faloutsos. OddBall: Spotting
Anomalies in Weighted Graphs. In PAKDD, 2010. 1.2, 12.1

[Bai75] Norman Bailey. The Mathematical Theory of Infectious Diseases and its Applica-
tions. Griffin, London, 1975. 3.2, 7.2

[Bar05] Albert L. Barabasi. The origin of bursts and heavy tails in human dynamics.
Nature, 435, 2005. 10.3.1, 10.6

[Bas69] Frank M. Bass. A new product growth for model consumer durables.
Management Science, 15(5):215–227, 1969. 2.1, 2.2.2, 10.1

[BB05] Hannah Brückner and Peter Bearman. After the promise: the std conse-
quences of adolescent virginity pledges. Journal of Adolescent Health, 2005.
5.6.2

[BBE+08] Christopher L. Barrett, Keith R. Bisset, Stephen G. Eubank, Xizhou Feng, and
Madhav V. Marathe. Episimdemics: an efficient algorithm for simulating
the spread of infectious disease over large realistic social networks. pages
1–12, 2008. 2.8.3, 2.9, 3, 3.1

[BBV10] A. Barrat, M. Barthélemy, and A. Vespignani. Dynamical Processes on Complex
Networks. Cambridge University Press, 2010. 2.4

[BHW92] Sushil Bikhchandani, David Hirshleifer, and Ivo Welch. A theory of fads,
fashion, custom, and cultural change in informational cascades. Journal of
Political Economy, 100(5):992–1026, October 1992. 2.2.2, 7.2

203

[BJR94] George E.P. Box, Gwilym M. Jenkins, and Gregory C. Reinsel. Time Series
Analysis: Forecasting and Control. Prentice Hall, Englewood Cliffs, NJ, 3rd
edition, 1994. 10.6

[BKS07] S. Bharathi, D. Kempe, and M. Salek. Competitive influence maximization
in social networks. WINE, 2007. 4.2

[BLP03] Linda Briesemeister, Patric Lincoln, and Philip Porras. Epidemic profiles
and defense of scale-free networks. WORM 2003, Oct. 27 2003. 6.2, 7.2

[BPP+10] Sergey V. Buldyrev, Roni Parshani, Gerald Paul, H. Eugene Stanley, and
Shlomo Havlin. Catastrophic Cascade of Failures in Interdependent Net-
works. Nature, 464(7291):1025–1028, April 2010. 2.2.3

[BPRF12] Alex Beutel, B. Aditya Prakash, Roni Rosenfeld, and Christos Faloutsos.
Interacting viruses in networks: can both survive? In Proceedings of the 18th
ACM SIGKDD international conference on Knowledge discovery and data mining,
KDD ’12, pages 426–434, 2012. 1.1.2

[BS11] A. N. Bishop and I. Shames. Link operations for slowing the spread of
disease in complex networks. EPL, 95(1), 2011. 8.6

[CCF+10] Caroline Colijn, Ted Cohen, Christophe Fraser, William Hanage, Edward
Goldstein, Noga Givon-Lavi, Ron Dagan, and Marc Lipsitch. What is the
mechanism for persistent coexistence of drug-susceptible and drug-resistant
strains of streptococcus pneumoniae? Journal of The Royal Society Interface,
7(47):905–919, 2010. 5.1

[CCHL96] Carlos Castillo-Chavez, Wenzhang Huang, and Jia Li. Competitive exclu-
sion in gonorrhea models and other sexually transmitted diseases. SIAM J.
Appl. Math, 56, 1996. 4.2, 4.6

[CCHL99] Carlos Castillo-Chavez, Wenzhang Huang, and Jia Li. Competitive exclu-
sion and coexistence of multiple strains in an sis std model. SIAM J. Appl.
Math, 59, 1999. 4.2, 4.6

[CDS98] Dragos M. Cvetković, Michael Doob, and Horst Sachs. Spectra of Graphs: The-
ory and Applications, 3rd Revised and Enlarged Edition. Vch Verlagsgesellschaft
Mbh, December 1998. 9.4.3

[CF02] Deepay Chakrabarti and Christos Faloutsos. F4: Large-scale automated
forecasting using fractals. CIKM 2002, November 2002. 10.6

[CHbA03] Reuven Cohen, Shlomo Havlin, and Daniel ben Avraham. Efficient immu-
nization strategies for computer networks and populations. Physical Review
Letters, 91(24), December 2003. 2.8.1, 6.2, 6.7.2, 6.8.2, 7.2

[CLF+07] Deepayan Chakrabarti, Jure Leskovec, Christos Faloutsos, Samuel Madden,
Carlos Guestrin, and Michalis Faloutsos. Information Survival Threshold in
Sensor and P2P Networks. In IEEE INFOCOM, 2007. 2.2.3

204

[CLV03] Fan Chung, Linyuan Lu, and Van Vu. Eigenvalues of random power law
graphs. Annals of Combinatorics, 7(1), 2003. 2.7.1

[CPMF04] D. Chakrabarti, Spiros Papadimitriou, D. S. Modha, and Christos Faloutsos.
Fully automatic cross-associations. In Proceedings of the 10th ACM Interna-
tional Conference on Knowledge Discovery and Data Mining (SIGKDD), Seattle,
WA, pages 79–88, 2004. 9.6

[CPS10] Claudio Castellano and Romualdo Pastor-Satorras. Thresholds for epidemic
spreading in networks. Phys. Rev. Let., 105, December 2010. 2.2.1

[CS08] R. Crane and D. Sornette. Robust dynamic classes revealed by measuring
the response function of a social system. In PNAS, 2008. 10.1, 10.1, 10.2

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-
Interscience New York, 2006. 9.3.2

[CV05] Rudi Cilibrasi and Paul Vitányi. Clustering by compression. IEEE Transac-
tions on Information Technology, 51(4):1523–1545, 2005. 9.6

[CWW+08] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos. Epidemic
thresholds in real networks. ACM TISSEC, 10(4), 2008. 2.1, 2.2.1, 3.1, 3.2, 3.1,
3.5, 4.4.4, 5.6.1, 6.4.2

[CWW10] W. Chen, C. Wang, and Y. Wang. Scalable influence maximization for
prevalent viral marketing in large-scale social networks. KDD, 2010. 2.2.2,
9.6

[DLJ08] Chris H. Q. Ding, Tao Li, and Michael I. Jordan. Nonnegative matrix
factorization for combinatorial optimization: Spectral clustering, graph
matching, and clique finding. In ICDM, pages 183–192, 2008. 6.2

[DW04] Peter S. Dodds and Duccan J. Watts. A generalized model of social and
biological contagion. Journal of Theoretical Biology, 232:587–604, September
2004. 2.1

[DWG10] T. Donker, J. Wallinga, and H. Grundmann. Patient referral patterns and
the spread of hospital-acquired infections through national health care
networks. PLoS Comput Biology, 6(3):e1000715, 2010. 7.1

[EGAK+04] Stephen Eubank, Hasan Guclu, V. S. Anil Kumar, Madhav V. Marathe,
Aravind Srinivasan, Zoltan Toroczkai, and Nan Wang. Modelling disease
outbreaks in realistic urban social networks. Nature, 429(6988):180–184, May
2004. 2, 2

[EK10] D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning About a
Highly Connected World. Cambridge University Press, 2010. 2.1, 2.4, 2.5.2

[EPL09] N. Eagle, A. Pentland, and D. Lazer. Inferring social network structure
using mobile phone data. Proc. of the National Academy of Sciences, 106(36),
2009. 3.6, 6.8.3

205

[FFF99] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law
relationships of the internet topology. SIGCOMM, pages 251–262, Aug-Sept.
1999. 2.2.1

[FG96] Christos Faloutsos and Volker Gaede. Analysis of the z-ordering method
using the hausdorff fractal dimension. VLDB, September 1996. 11.4

[Fie73] M. Fiedler. Algebraic connectivity of graphs. 1973. 6.2
[FM07] Christos Faloutsos and Vasilis Megalooikonomou. On data mining, compres-

sion and Kolmogorov complexity. In Data Mining and Knowledge Discovery,
volume 15, pages 3–20. Springer-Verlag, 2007. 9.6

[Fre77] L. C. Freeman. A set of measures of centrality based on betweenness.
Sociometry, pages 35–41, 1977. 6.2, 6.7.2, 8.6

[Fre79] L. C. Freeman. Centrality in social networks: Conceptual clarification. Social
Networks, 1:215–239, 1979. 7.1

[FRM94] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. Fast subse-
quence matching in time-series databases. In Proc. ACM SIGMOD, pages
419–429, Minneapolis, MN, May 25-27 1994. 10.6

[GGLNT04] D. Gruhl, R. Guha, D. Liben-Nowell, and A. Tomkins. Information diffusion
through blogspace. In WWW ’04, 2004. 2.2.2, 7.2

[GJ83] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1983. 7.3.2

[GKMS01] Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, and Martin Strauss.
Surfing wavelets on streams: One-pass summaries for approximate aggre-
gate queries. In VLDB, pages 79–88, 2001. 10.6

[GKRT04] R. Guha, Ravi Kumar, Prabhakar Raghavan, and Andrew Tomkins. Propa-
gation of trust and distrust. In WWW ’04: Proceedings of the 13th international
conference on World Wide Web, pages 403–412, New York, NY, USA, 2004.
ACM. 10.6

[GL96] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns
Hopkins University Press, 1996. 8.3.2

[GLL11] Amit Goyal, Wei Lu, and Laks V. S. Lakshmanan. Simpath: An efficient
algorithm for influence maximization under the linear threshold model.
ICDM, 2011. 9.6

[GLM01] Jacob Goldenberg, Barak Libai, and Eitan Muller. Talk of the network: A
complex systems look at the underlying process of word-of-mouth. Market-
ing Letters, 2001. 2.2.2, 7.2

[GLMF09] Michaela Goetz, Jure Leskovec, Mary McGlohon, and Christos Faloutsos.
Modeling blog dynamics. In ICWSM, 2009. 10.6

[GLNGT04] D. Gruhl, David Liben-Nowell, R. Guha, and A. Tomkins. Information

206

diffusion through blogspace. SIGKDD Explor. Newsl., 6(2):43–52, December
2004. 10.6

[GMT05] Ayalvadi Ganesh, Laurent Massoulié, and Don Towsley. The effect of
network topology on the spread of epidemics. In IEEE INFOCOM, Los
Alamitos, CA, 2005. IEEE Computer Society Press. 2.2.1, 3.2, 5.6.1, 7.2, 7.3.1

[Gr7] Peter Grünwald. The Minimum Description Length Principle. MIT Press, 2007.
9.1, 9.2.3, 9.6

[Gra78] M. Granovetter. Threshold models of collective behavior. Am. Journal of
Sociology, 83(6):1420–1443, 1978. 2.1, 2.2.2, 4.2, 7.2

[GRLK10] Manuel Gomez Rodriguez, Jure Leskovec, and Andreas Krause. Inferring
networks of diffusion and influence. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD ’10,
pages 1019–1028, New York, NY, USA, 2010. ACM. 2.2.2

[GVL89] G. H. Golub and C. F. Van-Loan. Matrix Computations. The Johns Hopkins
University Press, Baltimore, 2nd edition, 1989. 3.4.2, 7.5.2

[Haw88] Stephen Hawking. A Brief History of Time. Bantam Dell Publishing, 1988.
11.2

[HBW11] Habiba and Tanya Berger-Wolf. Working for influence: effect of network
density and modularity on diffussion in networks. ICDM DaMNet, 2011.
9.6

[Het00] H. W. Hethcote. The mathematics of infectious diseases. SIAM Review, 42,
2000. 2.1, 2.2.1, 2.4, 2.4, 2.5.2, 2.2, 3.1, 3.2, 3.3, 4.3.1, 5, 5.3.1, 1

[HJ91] Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cambridge
University Press, 1991. 2.E.1, 2

[HKYH02] Petter Holme, Beom Jun Kim, Chang No Yoon, and Seung Kee Han. Attack
vulnerability of complex networks. Phys. Rev. E, 2002. 8.6

[HMM03] Yukio Hayashi, Masato Minoura, and Jun Matsukubo. Recoverable preva-
lence in growing scale-free networks and the effective immunization.
arXiv:cond-mat/0305549 v2, Aug. 6 2003. 2.1, 6.2, 7.2

[HO74] A. G. Hawkes and D. Oakes. A cluster representation of a self-exciting
process. J. Appl. Prob., 11:493–503, 1974. 10.2

[HS74] M. W. Hirsch and S. Smale. Differential Equations, Dynamical Systems and
Linear Algebra. Academic Press, 1974. 2.2, 3.1, 4.4.1, 2

[HT08] Nagamochi H. and Ibaraki T. Algorithmic Aspects of Graph Connectivity.
Cambridge University Press, 2008. 6.2, 6.4.1

[HW97] C. He and G. A. Watson. An algorithm for computing the numerical radius.
IMA Journal of Numerical Analysis, 17, 1997. 2

207

[HY84] H. W. Hethcote and J. A. Yorke. Gonorrhea transmission dynamics and
control. Springer Lecture Notes in Biomathematics, 46, 1984. 2.1, 2.4

[ICM+09] T. J. Iwashyna, J. D. Christie, J. Moody, J. M. Kahn, and D. A. Asch. The
structure of critical care transfer networks. Medical Care, 47(7):787–793, 2009.
7.1, 7.2

[IW02] Eitan Israeli and R. Kevin Wood. Shortest-path network interdiction. Net-
works, 40(2):97–111, 2002. 8.6

[JCW04] Ankur Jain, Edward Y. Chang, and Yuan-Fang Wang. Adaptive stream
resource management using kalman filters. In SIGMOD, pages 11–22, 2004.
10.6

[Kar72] Richard M. Karp. Reducibility Among Combinatorial Problems. New York,
1972. 8.3.1

[KG07] Andreas Krause and Carlos Guestrin. Near-optimal observation selection
using submodular functions. In AAAI, pages 1650–1654, 2007. 6.6.3

[KKT03] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence
through a social network. In KDD ’03, 2003. 2.1, 2.2.2, 4.2, 7.2, 9.6, 10.6

[Kle98] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. In
ACM-SIAM Symposium on Discrete Algorithms, 1998. 6.2, 6, 7.4.2, 8.6

[Kle02] Jon M. Kleinberg. Bursty and hierarchical structure in streams. In KDD,
pages 91–101, 2002. 10.6

[Kle07] Jon Kleinberg. The wireless epidemic. Nature, Vol. 449, Sep 2007. 2.1, 2.4
[KMM10] Ravi Kumar, Mohammad Mahdian, and Mary McGlohon. Dynamics of

conversations. In SIGKDD, pages 553–562, 2010. 10.6
[KMST10] Alexandra Kolla, Yury Makarychev, Amin Saberi, and Shang-Hua Teng.

Subgraph sparsification and nearly optimal ultrasparsifiers. In STOC, pages
57–66, 2010. 8.6

[KNRT03] Ravi Kumar, Jasmine Novak, Prabhakar Raghavan, and Andrew Tomkins.
On the bursty evolution of blogspace. In WWW ’03: Proceedings of the 12th
international conference on World Wide Web, pages 568–576, New York, NY,
USA, 2003. ACM Press. 2.2.2, 7.2

[KOW08] J. Kosta, Y. A. Oswald, and R. Wattenhofer. Word of mouth: Rumor dis-
semination in social networks. 15 Intl. Coll. on Struct. Inform. and Comm.
Complexity SIROCO, 2008. 4.2

[KPST11] U. Kang, Spiros Papadimitriou, Jimeng Sun, and Hanghang Tong. Cen-
tralities in large networks: Algorithms and observations. In SDM, pages
119–130, 2011. 8.6

[KPZ+04] Eamonn J. Keogh, Themis Palpanas, Victor B. Zordan, Dimitrios Gunopulos,
and Marc Cardle. Indexing large human-motion databases. In VLDB, pages

208

780–791, 2004. 10.6
[KS01] Tamer Kahveci and Ambuj K. Singh. An efficient index structure for string

databases. In Proceedings of VLDB, pages 351–360, September 2001. 10.6
[KW93] J. O. Kephart and S. R. White. Measuring and modeling computer virus

prevalence. IEEE Computer Society Symposium on Research in Security and
Privacy, 1993. 2.1, 2.2.1, 2.4, 7.2

[LAH06] Jure Leskovec, Lada A. Adamic, and Bernardo A. Huberman. The dynamics
of viral marketing. In EC ’06: Proceedings of the 7th ACM conference on
Electronic commerce, pages 228–237, New York, NY, USA, 2006. ACM Press.
2.2.2, 7.2, 10.6

[LBK09] Jure Leskovec, Lars Backstrom, and Jon M. Kleinberg. Meme-tracking and
the dynamics of the news cycle. In KDD, pages 497–506, 2009. 2.1, 10.1, 10.6

[LCC+09] Marc Lipsitch, Caroline Colijn, Ted Cohen, William P. Hanage, and
Christophe Fraser. No coexistence for free: Neutral null models for multi-
strain pathogens. Epidemics, 1(1):2 – 13, 2009. 5.1, 5.2

[Lev44] K. Levenberg. A method for the solution of certain non-linear problems in
least squares. Quarterly Journal of Applied Mathmatics, II(2):164–168, 1944.
10.3.3

[Liv03] D. M. Livermore. Bacterial resistance: Origins, epidemiology, and impact.
Clinical Infectious Diseases, 36(S1), 2003. 7.1

[LKF05] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graphs over time:
densification laws, shrinking diameters and possible explanations. In KDD,
pages 177–187, 2005. 11.4

[LKG+07] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne
VanBriesen, and Natalie S. Glance. Cost-effective outbreak detection in
networks. In KDD, pages 420–429, 2007. 6.2, 9.6

[LKL+04] Jessica Lin, Eamonn J. Keogh, Stefano Lonardi, Jeffrey P. Lankford, and
Donna M. Nystrom. Visually mining and monitoring massive time series.
In KDD, pages 460–469, 2004. 10.6

[LLL+11] Lei Li, Chieh-Jan Mike Liang, Jie Liu, Suman Nath, Andreas Terzis, and
Christos Faloutsos. Thermocast: A cyber-physical forecasting model for
data centers. In KDD, 2011. 10.6

[LMF+07] Jure Leskovec, Mary McGlohon, Christos Faloutsos, Natalie S. Glance, and
Matthew Hurst. Patterns of cascading behavior in large blog graphs. In
SDM, 2007. 10.3.1

[LPF10] Lei Li, B. Aditya Prakash, and Christos Faloutsos. Parsimonious linear
fingerprinting for time series. Proc. VLDB Endow., 3:385–396, September
2010. 10.6

209

[LSH00] Weifa Liang, Xiaojun Shen, and Qing Hu. Finding the most vital edge for
graph minimization problems on meshes and hypercubes. International
Journal of Parallel and Distributed Systems and Networks, 2000. 8.6

[LSN96] Marc Lipsitch, Steven Siller, and Martin A. Nowak. The evolution of viru-
lence in pathogens with vertical and horizontal transmission. Evolution, 50,
1996. 5.1

[LTGM10] Theodoros Lappas, Evimaria Terzi, Dimitrios Gunopulos, and Heikki Man-
nila. Finding effectors in social networks. In Proceedings of the 16th ACM
International Conference on Knowledge Discovery and Data Mining (SIGKDD),
Washington, DC, pages 1059–1068, 2010. 2.2.2, 7.2, 9.1, 9.4.5, 9.5.1, 9.6, 10.6

[LV93] M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and its Appli-
cations. Springer, 1993. 9.2.3

[LZZ+03] M. Lad, X. Zhao, B. Zhang, D. Massey, and L. Zhang. Analysis of BGP
Update Surge during Slammer Worm Attack. In 5th International Workshop
on Distributed Computing (IWDC), 2003. 1

[MAF08] Mary McGlohon, Leman Akoglu, and Christos Faloutsos. Weighted graphs
and disconnected components: patterns and a generator. In Proceedings of
the 14th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 524–532, Las Vegas, Nevada, USA, 2008. 11.4

[McC00] C. R. McCuler. The many proofs and applications of perron’s theorem.
SIAM Review, 42, 2000. 2.F.2, 3.4.1, 4.4.4, 7.3.2, 7.5.1, 9.4.3

[McK25] A G McKendrick. Applications of mathematics to medical problems. In
Proceedings of Edin. Math. Society, volume 44, pages 98–130, 1925. 2.2.1, 7.2

[Mea12] Paul R. McAdam and et. al. Molecular tracing of the emergence, adaptation,
and transmission of hospital-associated methicillin-resistant staphylococcus
aureus. Proc. of Natl. Acad. of Sciences of USA (Early Edition), 2012. 7.1

[Mil63] Harold Willis Milnes. Conditions that the zeros of a polynomial lie in the
interval [-1, 1] when all zeros are real. The American Mathematical Monthly,
70, No. 7, Aug. - Sept. 1963. 2.F.2

[MK09] Jose Marcelino and Marcus Kaiser. Reducing influenza spreading over the
airline network. PLoS, 2009. 8.6

[MKC+04] Nilly Madar, Tomer Kalisky, Reuven Cohen, Daniel ben Avraham, and
Shlomo Havlin. Immunization and epidemic dynamics in complex net-
works. Eur. Phys. J. B, 38(2):269–276, 2004. 6.2

[MLF+07] Mary McGlohon, Jure Leskovec, Christos Faloutsos, Matthew Hurst, and
Natalie Glance. Finding patterns in blog shapes and blog evolution. In
International Conference on Weblogs and Social Media, Boulder, Colo., March
2007. 10.6

210

[MM02] Petar Maymounkov and David Mazières. Kademlia: A Peer-to-Peer In-
formation System Based on the XOR Metric. In Revised Papers from the
First International Workshop on Peer-to-Peer Systems, IPTPS ’01, pages 53–65,
London, UK, 2002. Springer-Verlag. 2.8.4

[MM07] Robert May and Angela McLean. Theoretical Ecology: Principles and Applica-
tions. Oxford University Press, 3rd edition, 2007. 11.2.1, 11.4

[MNP06] Lauren Ancel Meyers, M.E.J. Newman, and Babak Pourbohloul. Predict-
ing epidemics on directed contact networks. Journal of Theoretical Biology,
240(3):400 – 418, 2006. 7.2

[MSN10] Attilio Milanese, Jie Sun, and Takashi Nishikawa. Approximating spectral
impact of structural perturbations in large networks. Phys. Rev. E, 81, 2010.
3

[MSP+12] Yasuko Matsubara, Yasushi Sakurai, B. Aditya Prakash, Lei Li, and Christos
Faloutsos. Rise and fall patterns of information diffusion: model and
implications. In Proceedings of the 18th ACM SIGKDD international conference
on Knowledge discovery and data mining, KDD ’12, pages 6–14, 2012. 1.1.4

[MSY09] Yasuko Matsubara, Yasushi Sakurai, and Masatoshi Yoshikawa. Scalable
algorithms for distribution search. In ICDM, pages 347–356, 2009. 10.6

[MW03] James Moody and Douglas R. White. Social cohesion and embeddedness: A
hierarchical conception of social groups. American Sociological Review, pages
1–25, 2003. 6.2, 8.6

[MW08] J. Ian Munro and Dorothea Wagner. Better approximation of betweenness
centrality. 2008. 6.2

[NDS07] NDSSL. Synthetic Data Products for Societal Infrastructures and Protopop-
ulations: Data Set 2.0. NDSSL-TR-07-003, 2007. 2, 2

[New02] M. E. J. Newman. Spread of epidemic disease on networks. Phys. Rev. E,
66(1):016128, Jul 2002. 2.2.1

[New05a] Mark E. J. Newman. Threshold effects for two pathogens spreading on a
network. Physical Review Letters, 95(10):108701, September 2005. 2.2.1, 2.9

[New05b] M.E.J. Newman. A measure of betweenness centrality based on random
walks. Social Networks, 27:39–54, 2005. 6.2, 6.7.2, 8.6

[NJW01] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering:
Analysis and an algorithm. In NIPS, pages 849–856, 2001. 6.2

[PAP+11] Panagiotis Papapetrou, Vassilis Athitsos, Michalis Potamias, George Kollios,
and Dimitrios Gunopulos. Embedding-based subsequence matching in
time-series databases. ACM Trans. Database Syst., 36(3):17, 2011. 10.6

[Par96] V. Pareto. Oeuvres Completes. Droz, Geneva, 1896. 11.4
[PBG11] Manos Papagelis, Francesco Bonchi, and Aristides Gionis. Suggesting ghost

211

edges for a smaller world. In CIKM, pages 2305–2308, 2011. 8.6
[PBMW98] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The

PageRank citation ranking: Bringing order to the web. Technical report,
Stanford Digital Library Technologies Project, 1998. Paper SIDL-WP-1999-
0120 (version of 11/11/1999). 6.2, 6.7.2, 8.6

[PBRF12] B. Aditya Prakash, Alex Beutel, Roni Rosenfeld, and Christos Faloutsos.
Winner takes all: Competing products or ideas on fair-play networks. pages
1037–1046, 2012. 2.2.2, 5.5.2, 10.6, 11.4

[PBS10] Nishith Pathak, Arindam Banerjee, and Jaideep Srivastava. A generalized
linear threshold model for multiple cascades. ICDM, 2010. 2.2.2, 4.2

[PCF+11] B. Aditya Prakash, Deepayan Chakrabarti, Michalis Faloutsos, Nicholas
Valler, and Christos Faloutsos. Threshold conditions for arbitrary cascade
models on arbitrary networks. In ICDM, 2011. 1.2, 4.4.4, 4.6, 5.6.1, 6.4.2,
6.7.2, 7.2, 7.3.1, 10.6, 12.1

[Phi93] Cynthia A. Phillips. The network inhibition problem. In STOC, pages
776–785, 1993. 8.6

[PS08] Nish Parikh and Neel Sundaresan. Scalable and near real-time burst detec-
tion from ecommerce queries. In KDD, pages 972–980, 2008. 10.6

[PSV01] R. Pastor-Santorras and A. Vespignani. Epidemic spreading in scale-free
networks. Physical Review Letters 86, 14, 2001. 2.1, 2.2.1, 2.4, 2.7.1

[PSV02] Romualdo Pastor-Satorras and Alessandro Vespignani. Epidemic dynamics
in finite size scale-free networks. Physical Review E, 65:035108, 2002. 3.1, 7.2

[PTV+10] B. Aditya Prakash, Hanghang Tong, Nicholas Valler, Michalis Faloutsos, and
Christos Faloutsos. Virus propagation on time-varying networks: Theory
and immunization algorithms. ECML-PKDD, 2010. 2.9

[PVF12] B. Aditya Prakash, Jilles Vreeken, and Christos Faloutsos. Spotting culprits
in epidemics: How many and which ones? In ICDM, 2012. 1.1.3

[RD02] M. Richardson and P. Domingos. Mining knowledge-sharing sites for viral
marketing, 2002. 2.2.2, 7.2, 9.6

[Ris83] Jorma Rissanen. Modeling by shortest data description. The Annals of
Statistics, 11(2):416–431, 1983. 9.3.1

[Rog03] Everett M. Rogers. Diffusion of Innovations, 5th Edition. Free Press, August
2003. 2.2.2, 3.1, 7.2

[Sch91] Manfred Schroeder. Fractals, Chaos, Power Laws: Minutes from an Infinite
Paradise. W.H. Freeman and Company, New York, 1991. 11.4

[SFY07] Yasushi Sakurai, Christos Faloutsos, and Masashi Yamamuro. Stream mon-
itoring under the time warping distance. In Proceedings of the 23rd Inter-
national Conference on Data Engineering, ICDE 2007, April 15-20, 2007, The

212

Marmara Hotel, Istanbul, Turkey, pages 1046–1055, 2007. 10.6
[She95] Hong Shen. Finding the k most vital edges with respect to minimum

spanning tree. Acta Informatica, 36:405–424, 1995. 8.6
[SKOM12] Kazumi Saito, Masahiro Kimura, Kouzou Ohara, and Hiroshi Motoda.

Efficient discovery of influential nodes for sis models in social networks.
Knowledge and Information Systems (KAIS), 30(3):613–635, 2012. 2.2.2

[SM97] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation.
In CVPR, pages 731–737, 1997. 6.2

[SMHH11] Christian M. Schneider, Tamara Mihaljev, Shlomo Havlin, and Hans J. Her-
rmann. Restraining epidemics by improving immunization strategies. CoRR,
abs/1102.1929, 2011. 8.6

[SPF05] Yasushi Sakurai, Spiros Papadimitriou, and Christos Faloutsos. BRAID:
Stream mining through group lag correlations. In SIGMOD Conference,
pages 599–610, Baltimore, MD, USA, 2005. 10.6

[SQCF05] Jimeng Sun, Huiming Qu, Deepayan Chakrabarti, and Christos Faloutsos.
Neighborhood formation and anomaly detection in bipartite graphs. In
ICDM, pages 418–425, 2005. 6.2, 6.7.2

[SS90] G. W. Stewart and Ji-Guang Sun. Matrix Perturbation Theory. Academic
Press, 1990. 6.5.2, 6.5.2, 8.3.3, 8.3.3

[Ste09] M. Henry H. Stevens. A Primer of Ecology with R. Springer Press, 2009. 5, 1,
11.4

[Str88] Gilbert Strang. Linear Algebra and its Applications. Harcourt Brace Jonanovich,
San Diego, 3rd edition, 1988. 9.4.3

[SZ10] Devavrat Shah and Tauhid Zaman. Detecting sources of computer viruses
in networks: theory and experiment. In Proceedings of the ACM International
Conference on Performance Evaluation (SIGMETRICS), pages 203–214, 2010.
9.1, 9.5.1, 9.6

[SZ11] Devavrat Shah and Tauhid Zaman. Rumors in a network: Who’s the culprit?
IEEE Transactions on Information Technology, 57(8):5163–5181, 2011. 9.1, 9.3.3,
9.4.5, 9.5.1, 9.6, 10.6

[TPT+10] Hanghang Tong, B. Aditya Prakash, Charalampos E. Tsourakakis, Tina
Eliassi-Rad, Christos Faloutsos, and Duen Horng Chau. On the vulnerability
of large graphs. In ICDM, 2010. 7.2, 8.5.2, 8.8, 10.6

[Tso08] Charalampos E. Tsourakakis. Fast counting of triangles in large real net-
works without counting: Algorithms and laws. In ICDM, pages 608–617,
2008. 11.4

[TTL05] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed comput-
ing in practice: the condor experience. Concurrency - Practice and Experience,

213

17(2-4):323–356, 2005. 7.6.1
[VGKG08] Milan Vojnovic, Varun Gupta, Thomas Karagiannis, and Christos Gkantsidis.

Sampling strategies for epidemic-style information dissemination. IEEE
INFOCOM, 2008. 2.1

[VKY09] Michail Vlachos, Suleyman Serdar Kozat, and Philip S. Yu. Optimal distance
bounds on time-series data. In SDM, pages 109–120, 2009. 10.6

[VV04] N.K. Vereshchagin and P.M.B. Vitanyi. Kolmogorov’s structure functions
and model selection. IEEE Transactions on Information Technology, 50(12):3265–
3290, 2004. 9.3.1

[VvS11] Jilles Vreeken, Matthijs van Leeuwen, and Arno Siebes. KRIMP: Mining
itemsets that compress. Data Mining and Knowledge Discovery, 23(1):169–214,
2011. 9.6

[Wat11] Duncan Watts. Everything is obvious: Once you know the answer. Random
House, 2011. 11.2

[WCWF03] Yang Wang, Deepayan Chakrabarti, Chenxi Wang, and Christos Faloutsos.
Epidemic spreading in real networks: An eigenvalue viewpoint. In Sympo-
sium on Reliable Distributed Systems, pages 25–34, Los Alamitos, CA, 2003.
IEEE Computer Society Press. 3.2, 7.2, 7.3.1, 8.5.2

[(We11] (Website). Mainline bittorrent website. November 15, 2011. 2.8.4
[WG94] Andreas S. Weigend and Neil A. Gerschenfeld. Time Series Prediction: Fore-

casting the Future and Understanding the Past. Addison Wesley, 1994. 10.6
[Woo93] R. Kevin Wood. Network interdiction problem. Mathematical and Computer

Modeling, 17(2):1–18, 1993. 8.6
[WS98] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-

world’ networks. Nature, 393:440–442, 1998. 2.7.1
[YL10] Jaewon Yang and Jure Leskovec. Modeling information diffusion in implicit

networks. In ICDM, pages 599–608, 2010. 10.6
[YL11] Jaewon Yang and Jure Leskovec. Patterns of temporal variation in online

media. In WSDM, pages 177–186, 2011. 10.1, 10.1, 10.1
[Zac77] W. W. Zachary. An information flow model for conflict and fission in small

groups. pages 452–473, 1977. 6.7.1
[ZHD+01] Hongyuan Zha, Xiaofeng He, Chris H. Q. Ding, Ming Gu, and Horst D.

Simon. Spectral relaxation for k-means clustering. In NIPS, pages 1057–1064,
2001. 6.2

[ZIM+09] W. Zingg, A. Imhof, M. Maggiorini, R. Stocker, E. Keller, and C. Ruef.
Impact of a prevention strategy targeting hand hygiene and catheter care
on the incidence of catheter-related bloodstream infections. Crit Care Med.,
37(7):2167–2173, 2009. 7.1, 7.3, 7.6.1

214

[Zip49] G.K. Zipf. Human Behavior and Principle of Least Effort: An Introduction to
Human Ecology. Addison Wesley, Cambridge, Massachusetts, 1949. 11.4

[ZS03] Yunyue Zhu and Dennis Shasha. Efficient elastic burst detection in data
streams. In KDD, pages 336–345, 2003. 10.6

[ZWF+11] Jichang Zhao, Junjie Wu, Xu Feng, Hui Xiong, and Ke Xu. Information
propagation in online social networks: a tie-strength perspective. Knowledge
and Information Systems, pages 1–20, 2011. 2.2.2

215

	1 Introduction
	1.1 Motivation and Overview
	1.1.1 Thesis Statement
	1.1.2 [Part I] Theory: Chapters 2, 3, 4, 5
	1.1.3 [Part II] Algorithms: Chapters 6, 7, 8, 9
	1.1.4 [Part III] Models: Chapters 10, 11

	1.2 Contributions and Impact

	I Theory
	2 Epidemic Thresholds: Static Graphs and Arbitrary Models
	2.1 Introduction
	2.2 Related Work
	2.2.1 Epidemic Thresholds
	2.2.2 Information Diffusion
	2.2.3 Cyber-physical infrastructures

	2.3 Problem Formulation
	2.4 Results
	2.5 Proof Overview
	2.5.1 Our Terminology
	2.5.2 Our General Model
	2.5.3 Proof Sketch

	2.6 Experiments
	2.7 Implications
	2.7.1 Vulnerability of Networks–focus on eigenvalues
	2.7.2 Counter-intuitive Results

	2.8 Impact
	2.8.1 Effective Immunization
	2.8.2 Evaluating `What-if' Scenarios
	2.8.3 Accelerating Simulations
	2.8.4 Applications to Computer Networking

	2.9 Conclusion
	2.A Notation
	2.B System Equations
	2.C Fixed point
	2.D The Jacobian
	2.E Eigenvalues of the Jacobian
	2.E.1 Eigenvalues of B1
	2.E.2 Eigenvalues of B3

	2.F Stability
	2.F.1 Case C1
	2.F.2 Case C2

	3 Epidemic Thresholds: Time-varying Graphs
	3.1 Introduction
	3.2 Related Work
	3.3 Problem Definitions
	3.4 Epidemic Threshold on Time-varying Graphs
	3.4.1 The NLDS
	3.4.2 The Threshold

	3.5 Salient Points
	3.6 Experiments
	3.7 Discussion—Generality of our results
	3.8 Conclusion

	4 Competing Viruses: Winner Takes All
	4.1 Introduction
	4.2 Related Work
	4.3 Problem Formulation
	4.3.1 The propagation model
	4.3.2 Problem Statement

	4.4 WTA: Results and Proofs
	4.4.1 Proof roadmap
	4.4.2 Special case: Clique Topology
	4.4.3 Special Case: Barbell Graph
	4.4.4 General Arbitrary Graph

	4.5 Experiments
	4.5.1 Setup
	4.5.2 Simulation Results
	4.5.3 Case-Studies using Real Data

	4.6 Discussion
	4.7 Conclusions

	5 Competing Viruses: Co-existence
	5.1 Introduction
	5.2 Related Work
	5.3 Problem Formulation
	5.3.1 The propagation model
	5.3.2 Problem Statement
	5.3.3 Model Formulation for a Clique

	5.4 Results and Proofs
	5.4.1 Formulating the problem
	5.4.2 Results

	5.5 Experiments
	5.5.1 Setup
	5.5.2 Simulation Results
	5.5.3 Case-Studies using Real Data

	5.6 Discussion
	5.6.1 A general upper bound
	5.6.2 Case-Study: Qualitative Analysis
	5.6.3 Subtle Points

	5.7 Conclusions

	II Algorithms
	6 Complete Node-Removal
	6.1 Introduction
	6.2 Related Work
	6.3 Problem Definitions (Static Graphs)
	6.4 Background: Our Solution for Problem 1
	6.4.1 `Vulnerability' Score
	6.4.2 Justifications

	6.5 Our Solution for Problem 2
	6.5.1 Proposed `Shield-value' Score
	6.5.2 Justifications

	6.6 Our Solution for Problem 3
	6.6.1 Preliminaries
	6.6.2 Proposed NetShield Algorithm
	6.6.3 Analysis of NetShield

	6.7 Experimental Evaluations (Static Graphs)
	6.7.1 Data sets
	6.7.2 Effectiveness
	6.7.3 Efficiency

	6.8 Immunization under time-varying graphs
	6.8.1 Quality Metric
	6.8.2 Proposed immunization policies
	6.8.3 Experimental Setup
	6.8.4 Results
	6.8.5 Discussion

	6.9 Conclusion

	7 Fractional Immunization
	7.1 Introduction
	7.2 Related Work
	7.3 Problem Formulation and Hardness result
	7.3.1 Our proposed problem—MIN-CONN
	7.3.2 MIN-CONN is NP-complete

	7.4 Proposed Method—Overview
	7.4.1 Algorithm Exhaustive
	7.4.2 Algorithm Smart-Alloc

	7.5 Proposed Method—Theorems and proofs
	7.5.1 Best single allocation—Details
	7.5.2 Batched allocation—Details

	7.6 Experiments
	7.6.1 Setup
	7.6.2 Effectiveness for MIN-CONN problem
	7.6.3 Effectiveness for MAX-HEALTH problem
	7.6.4 Scalability
	7.6.5 Generality

	7.7 Conclusion

	8 General Edge Placement
	8.1 Introduction
	8.2 Problem Definitions
	8.3 Proposed Algorithm for NetMelt
	8.3.1 Edge Deletion vs. Node Deletion
	8.3.2 Proposed K-EdgeDeletion Algorithm
	8.3.3 Proofs and Analysis

	8.4 Proposed Algorithm for NetGel
	8.4.1 Proposed K-EdgeAddition Algorithm
	8.4.2 Proofs and Analysis

	8.5 Experimental Evaluations
	8.5.1 Experimental Setup
	8.5.2 Effectiveness of K-EdgeDeletion
	8.5.3 Effectiveness of K-EdgeAddition
	8.5.4 Scalability

	8.6 Related Work
	8.7 Conclusion

	9 Finding Culprits
	9.1 Introduction
	9.2 Preliminaries
	9.2.1 Notation
	9.2.2 The Susceptible-Infected Model
	9.2.3 Minimum Description Length Principle

	9.3 Our Problem Formulation
	9.3.1 Cost of the Model
	9.3.2 Cost of the Data given the Model
	9.3.3 The Problem

	9.4 Proposed Method
	9.4.1 Best seed-set given number of seeds — `Exoneration'
	9.4.2 Finding best single seed—Our Main Idea
	9.4.3 Finding the best single seed—Justification
	9.4.4 Finding best k-seed set
	9.4.5 Finding a good ripple

	9.5 Experiments
	9.5.1 Experimental Setup
	9.5.2 Effectiveness of NetSleuth in identifying How Many
	9.5.3 Effectiveness of NetSleuth in identifying Which Ones
	9.5.4 Scalability

	9.6 Related Work
	9.7 Conclusions

	III Models
	10 Rise and Fall in Information Diffusion
	10.1 Introduction
	10.2 Background
	10.3 Proposed Method
	10.3.1 Base model - SpikeM-Base
	10.3.2 With periodicity - SpikeM
	10.3.3 Additional details

	10.4 Experiments
	10.4.1 Q1: Explaining K-SC clusters
	10.4.2 Q2: Matching MemeTracker patterns
	10.4.3 Q3: Matching other data
	10.4.4 Q4: Tail-part forecasts

	10.5 Discussion - SpikeM at work
	10.5.1 ``What-if'' forecasting
	10.5.2 Outlier detection
	10.5.3 Reverse engineering

	10.6 Related Work
	10.7 Conclusions

	11 Patterns amongst Competing Tasks
	11.1 Introduction
	11.2 Competing Tasks Model (CTM)
	11.2.1 Justification

	11.3 Experiments
	11.3.1 CTM at Work

	11.4 Related Work
	11.5 Conclusions

	IV Conclusion
	12 Conclusions and Future Directions
	12.1 Summary of contributions
	12.2 Vision and Future directions
	12.2.1 Long Term Challenges

	32CCDDB2-7B2F-47F5-887F-9742EF211A9E: Off
	1B414616-C4DF-4E1F-9BD4-46DF67FF2EAD: Off

