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Impact of a Pandemic in Modern 
Society
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Possible near future:
Goes down
Stays still
Goes up

Depends on:
– Interventions in place
– Current number 

of infections
– Contact patterns
– Exposure to disease
– Etc

Real-time COVID-19 Forecasting
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Why Forecasting?

An outlook to the future allow communities to

• Allocate resources/budget

– Ventilators, enable more ICU beds

• Inform public policy

– E.g., mandate shelter in place?

• Improve preparedness

• …
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Data-driven Models for COVID-19 
Forecasting

• Most methods in COVID Forecast Hub were mechanistic or 
agent-based models.

• Our approach's goal: explore performance and utility 
of purely data-driven models in short-term forecasting
– Give a different perspective

• Pros: 
– See what the data says with minimal assumptions
– Update very quickly
– Ingest multiple signals
– Techniques for robustness

• Challenges: interpretability; principled uncertainty 
estimation; data quality issues; nontrivial for what-if 
forecasting

• Past success in forecasting other infectious diseases
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Our Participation in CDC 
Forecasting Initiatives

Target 2: Weekly reported Covid Mortality Target 3: Daily Covid-induced Hospitalizations

Target 1: Weighted influenza like illness (wILI) count per week

Since April End 2020
Rodríguez, et al., 2020

Multiple years
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Our Operational Framework
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Rationale of the Framework
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Data module

Prediction 
module

Explainability 
module
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• Separate noisy data 
from the learning process

• Explainability is a challenge 
in data-driven models

• Understand and connect 
forecasts with 
epidemiological reasons

• Feedback to 
improve performance



Why Deep Learning?

• Flexible, scalable, efficient technology

• Excellent choice to model non-linearities

• Able to incorporate different knowledge 
representations

• Very active research area
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Data Challenges: Don't 
Underestimate!

(C1) Multiple data sources and formats
– Format varies over time

(C2) Select signals with epidemiological significance

(C3) Temporal misalignment 
– Delays, pause in reporting, differ in granularity

(C4) Spatial misalignment
– Differ in granularity: county vs state vs national

(C5) Data quality and missing data
– Noisy and unreliable for some states

– New hospitalizations (target) is not reported by all states
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Data Sources
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• Line-list based
• Testing
• Crowdsourced
• Mobility
• Exposure
• Social Media surveys
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Data Signals
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Details in 
Paper & 
Appendix
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Problem Formulation
• Given

– Partially observed mortality 
and hospitalization 
incidence curve till day t.

– Exogenous data sources 

• Predict
– Future weekly mortality

incidence and 
cumulative for next four 
weeks

– Future daily hospitalization
incidence for next four 
weeks

*

Forecasts

t

output

Observed incidence

t

Exogenous data

input

No historical data!
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If Historical Data Exists…
• This is the scenario for Covid-ILI

• Steer an existing historical ILI model 
with new Covid-related signals

• Able to train large deep learning 
models
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DetailsDetour

High-level 
abstraction

Accepted in 
AAAI-21 main 
track

Separate project w/

Historical ILI model

COVID model



Current Situation: No historical data

• Unable to steer an existing model

• Use only Covid-related data sources.

• Covid data signals observed only since March.

• Observed data sparse, noisy and 
heterogeneous.

Rodríguez, et al., 2020 20



Prediction Module Challenges

(C6) Data sparsity due to the novel and dynamic 
nature of the disease

– NN with small number of params to avoid overfitting

(C7) Robust point and probabilistic forecasting
– Robustness to noise via batch normalization 
– Multiple initializations of optimization 
– Principled uncertainty estimation via bootstrapping

(C8) Temporal consistency between consecutive 
forecasts

– Due to sparsity, we cannot train recurrent net
– We use self-regressive forecasting
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Schematic of Prediction Module

Rodríguez, et al., 2020
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Explainability Module
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• Why needed?

– Understand the impact of various signals

– Drive epidemiological observations

– To improve our own predictions

• Data ablation: systematic removal of signals

• Evaluate signals that impact the most 
to our predictions and make sense of them

• Insights in real-time and in retrospective

Data module

Prediction 
module

Explainability 
module



Explainability Module Challenges

(C9) Real-time insights of forecasts for decision-
making and communication

– Data ablation for current week predictions

– Use an interface to visualize signals and their 
predictive contribution

(C10) Retrospectively understand signal 
strengths

– This allows continual improvement of forecasts

– We use data ablation for past predictions
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Interface + Data Ablation
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Understand contribution to 
past performance

Retrospectice Analysis Real-time Analysis

Understand signals driving 
current predictions
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Setup

• All results are based on the real-time forecasts 
submitted during three months (June 8 to 
September 7 2020)

• Metrics: MAPE for point estimate 
performance; interval score (Bracher et al. 
2020) for probabilistic interval performance
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Obs. 1: Anticipate Trend Changes
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We anticipated trend 

change 3 weeks early

EW 23 EW 26

Accurately predict 

ramp up

+

Adapt uncertainty

CA Incidence Mortality CA Incidence Mortality



Obs. 2: Capture Finer Grained 
Reporting Patterns
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Micro-patterns:
P1. Weekend drop

P2. Rise on Monday, 
stable in weekdays

FL Incidence Hospitalizations



Obs. 3: Excels in US National 
Short-term Forecasting

Rodríguez, et al., 2020

Point estimate performance
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US National point estimate performance is better 
that the COVIDHub ensemble and close in 

probabilistic interval performance

Probabilistic interval performance
Lower is 

better



Obs. 4: Longer-term Performance is 
not Compromised
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States suffer more of data quality issues and that affects our 
performance, but overall we are competitive 

1-4 wk ahead performance 1-4 wk ahead performance



Obs. 5: Explainability of Predictions
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• Signals contributing 
to US second peak 
prediction:

– Mobility

– Testing

• Sanity check to 
have confidence in 
predictions
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Future Steps

• Model non-pharmaceutical interventions 
explicitly 

• Look at smaller geographical granularities

• Differentiate outbreaks of 
COVID and symptomatically similar diseases 
(e.g., flu)

• Handle backfill revisions
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Lessons Being Learnt: Data 
Revisions
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• Data revisions error 
has potential to 
mislead predictions.

• Evaluations in short 
term are not always 
reliable
– Validation based on 

recent data may not 
always work



Takeaways

• DeepCOVID, a purely data-driven approach

– Complementary perspective to the ensemble

– Competitive performance, excels in short-term 
forecasting

• Allows some epidemiological insights

• Capable of ingesting a large amount of signals

• Easy to adapt to target and time resolution

• Active research area with open questions
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Thanks!
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Pre-print:
https://www.medrxiv.org/content/10.1101/2020.09.28.20203109v2

Resources:
https://deepcovid.github.io/

Contact:
Alexander Rodríguez
arodriguezc@gatech.edu
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