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Real-time COVID-19 Forecasting

Incidence death counts

Oklahoma Incidence Mortality
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Possible near future:
W Goes down

= Stays still

" Goes up

Depends on:
— Interventions in place

— Current number
of infections

— Contact patterns
— Exposure to disease
— Etc
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Real-time COVID-19 Forecasting
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Why Forecasting?

An outlook to the future allow communities to
* Allocate resources/budget

— Ventilators, enable more ICU beds
* Inform public policy
— E.g., mandate shelter in place?

* Improve preparedness

Rodriguez, et al., 2020
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Data-driven Models for COVID-19
Forecasting

e Most methods in COVID Forecast Hub were mechanistic or
agent-based models.

e Qur approach's goal: explore performance and utility
of purely data-driven models in short-term forecasting

— Give a different perspective
* Pros:
— See what the data says with minimal assumptions
— Update very quickly
— Ingest multiple signals
— Techniques for robustness

* Challenges: interpretability; principled uncertainty
estimation; data quality issues; nontrivial for what-if
forecasting

e Past success in forecasting other infectious diseases

Rodriguez, et al., 2020
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Our Participation in CDC
Forecasting Initiatives

Target 1: Weighted influenzalike iliness (wiLl) count per week
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Feedback
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Rationale of the Framework

* Separate noisy data

from the learning process
Data module
* Explainability is a challenge
in data-driven models
e Understand and connect

fO recasts Wlth Explainability Prediction
epidemiological reasons module module
~

* Feedback to
improve performance

Rodriguez, et al., 2020 11
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Why Deep Learning?

Flexible, scalable, efficient technology
Excellent choice to model non-linearities

Able to incorporate different knowledge
representations

Very active research area

Rodriguez, et al., 2020
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— Prediction module
. o Explainability Prediction
— Explainability module module

e Results and discussion
e Conclusion and future work

Rodriguez, et al., 2020 13
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Data Challenges: Don't /- \
Underestimate! -

(C1) Multiple data sources and formats
— Format varies over time
(C2) Select signals with epidemiological significance
(C3) Temporal misalignment
— Delays, pause in reporting, differ in granularity
(C4) Spatial misalignment
— Differ in granularity: county vs state vs national

(C5) Data quality and missing data
— Noisy and unreliable for some states
— New hospitalizations (target) is not reported by all states

Rodriguez, et al., 2020 14
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Data

Signals

Type/Rationale

Signals

(DS1) Line list. Traditional
surveillance for tracking
patients and symptoms

1. Confirmed cases; 2. UCI beds cur-
rently occupied; 3. People on ventila-
tion; 4. Recovered; 5. Hospitalization
rate (COVID-Net); 6. ILI% ER visits;
7. CLI% ER visits; 8. Excess Deaths;

(DS2) Testing: Capture
changing screening arti-
facts

9. People tested; 10. Negative cases;
11. Emergency facilities reporting;
12. Number of providers;

(DS3) Crowdsourced.
Symptomatic surveillance

13. Digital thermometer readings pro-
vide IL1%;

(DS4) Mobility: Evidence
of changing contact pat-
terns

14. Retail and recreation; 15. Grocery
and pharmacy; 16. Parks; 17. Transit
stations; 18. Residential; 19. Work-
places; 20. Overall-region-based

(DSS) Exposure: Measure
social contacts

21-22. Device exposures (normal &
adjusted);

(DS6) Social Surveys: Mea-
sure symptomatic burden

23. CLI%:; 24. ILI%

Rodriguez, et al., 2020

Details in

Paper &
Appendix
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— Prediction module
— Explainability module

e Results and discussion
e Conclusion and future work
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tchi No historical data!
Problem Formulation

¢ Given input
_ PartiaIIy observed mortality Observed incidence Exogenous data

and hospitalization
pitalizat +- Al

incidence curve till day t.
— Exogenous data sources

* Predict

— Future weekly mortality '
incidence and output
cumulative for next four Forecasts
weeks o

— Future daily hospitalization Ji
incidence for next four 't
weeks

Rodriguez, et al., 2020 18
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Separate project w/ V7~

If Historical Data Ex1sts. ..

This is the scenario for Covid-ILI

Steer an existing historical ILI model
with new Covid-related signals

Able to train large deep learning

models
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Current Situation: No historical data

* Unableto steer an existing model
* Use only Covid-related data sources.
* Covid data signhals observed only since March.

* Observed data sparse, noisy and
heterogeneous.

Rodriguez, et al., 2020 20
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Prediction Module Challenges

(C6) Data sparsity due to the novel and dynamic
nature of the disease

— NN with small number of params to avoid overfitting

(C7) Robust point and probabilistic forecasting

— Robustness to noise via batch normalization

— Multiple initializations of optimization

— Principled uncertainty estimation via bootstrapping
(C8) Temporal consistency between consecutive
forecasts

— Due to sparsity, we cannot train recurrent net

— We use self-regressive forecasting

Rodriguez, et al., 2020 21
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Schematic of Prediction Module

Individual Probabilistic
Input Data Bootstrapping Neural Models Predictions

> 5=~/

Self-regressive
forecasting

Rodriguez, et al., 2020

22



Georgia
Tech

=

3

Outline

Motivation
Approach

— Data module
— Prediction module

— Explainability module

Results and discussion
Conclusion and future work
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Explainability Module

* Why needed?

— Understand the impact of various signals
— Drive epidemiological observations

— To improve our own predictions
e Data ablation: systematic removal of signals

* Evaluate signals that impact the most
to our predictions and make sense of them

* |nsights in real-time and in retrospective

Rodriguez, et al., 2020 24
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Explainability Module Challenges

(C9) Real-time insights of forecasts for decision-
making and communication

— Data ablation for current week predictions

— Use an interface to visualize signals and their
predictive contribution

(C10) Retrospectively understand signal
strengths

— This allows continual improvement of forecasts
— We use data ablation for past predictions

Rodriguez, et al., 2020
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Interface + D

Retrospectice Analysis

DeepCOVID Interface

Retrospective analysis of signals
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e Results and discussion
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Setup

e All results are based on the real-time forecasts

submitted during three months (June 8 to
September 7 2020)

 Metrics: MAPE for point estimate
performance; interval score (Bracher et al.
2020) for probabilistic interval performance
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Obs. 1: Anticipate Trend Changes

CA Incidence Mortality CA Incidence Mortality
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Obs. 2: Capture Finer Grained
Reporting Patterns

FL Incidence Hospitalizations
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Obs. 3: Excels in US National
Short-term Forecasting

Lower is
better
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US National point estimate performance is better
that the COVIDHub ensemble and close in
probabilistic interval performance

Rodriguez, et al., 2020
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not Compromised

1-4 wk ahead performance 1-4 wk ahead performance
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States suffer more of data quality issues and that affects our
performance, but overall we are competitive

Rodriguez, et al., 2020
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Obs. 5: Explainability of Predictions

* Signals contributing

16000 1 —— Ground truth data from JHU tO US Second peak
» 14000 - —h— Obser.ved Groun_d Truth . . ]
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500 — Mobility
E 8000
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T o o o070 have confidencein
predictions
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Outline

* Conclusionand future work

Rodriguez, et al., 2020
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Future Steps

* Model non-pharmaceutical interventions
explicitly
* Look at smaller geographical granularities

* Differentiate outbreaks of
COVID and symptomatically similar diseases

(e.g., flu)
e Handle backfill revisions
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Revision error

0.150 A

0.125 A

0.100 A

0.075 A

0.050 1

0.025 A

0.000 A

Lessons Being Learnt: Data

e Data revisions error

has potential to

Revisions
— US — MO

NY — TX
— AZ — M|

0

é ﬁll é EI3 1I0 1I2 1I4 1[6
Revision week (week since first release)

Rodriguez, et al., 2020

mislead predictions.

Evaluationsin short
term are not always
reliable

— Validation based on

recent data may not
always work

36
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Takeaways

* DeepCOVID, a purely data-driven approach
— Complementary perspective to the ensemble

— Competitive performance, excels in short-term
forecasting

* Allows some epidemiological insights

e Capable of ingesting a large amount of signals
* Easy to adaptto target and time resolution

* Active research area with open questions
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Thanks!

Pre-print:
https://www.medrxiv.org/content/10.1101/2020.09.28.20203109v?2

Resources:
https://deepcovid.github.io/

Contact:
Alexander Rodriguez
arodriguezc@gatech.edu
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