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APPROACH 
 
Patients suffering from COVID-19 and influenza-like illnesses (ILI) are a significant and immediate burden on 
the healthcare system. It is important to forecast the dynamics of each of these co-evolving diseases to design 
effective healthcare policies and minimize devastating effects. 
 
Forecasting the spread of COVID-19 is complex due to insufficient representative data and inconsistency in 
dynamics due to policy effects. On the other hand, forecasting ILI (co-evolving with COVID-19) is also 
challenging due to its symptomatic similarities with COVID-19 (​Zipfel & Bansal 2020​) and the change in 
healthcare seeking behavior of people afflicted with ILI. In fact, during the current pandemic, ILI counts have 
been useful for estimating unreported COVID cases in the US (​Kou et al., 2020​) also demonstrated in other 
countries, e.g. (​Castrofino et al., 2020​) in Italy, (​Boëlle et al.,2020​) in France. For the current season, the ILI 
curve is clearly been affected by the shift in healthcare seeking behavior of outpatients and it is not clear if it 
will capture the actual influenza activity; however, forecasting this metric gives us important information about 
the expected burden to the healthcare system, which is relevant for resource planning in these trying times. 
Thus, to improve situational awareness regarding these two diseases, we propose ​DeepOutbreak​, a 
framework for concurrently forecasting both COVID-19 and ILI activity during the pandemic. 
 
To motivate research into epidemic forecasting, the CDC has been organizing epidemic forecasting 
challenges in recent years. The Flusight challenge for influenza and COVID-19 Forecast hub for COVID 
are the two challenges relevant to our work. The Flusight challenge seeks point and probabilistic forecasts 
for various targets including future incidence and peak value. Similarly, the COVID-19 Forecast hub seeks 
point and probabilistic predictions for COVID induced mortality and hospitalizations. Both challenges seek 
forecasts at multiple geographic resolutions including the US national, state-level, and HHS regional level. 
We now describe the specific sub-tasks addressed en route to addressing each aforementioned 
challenge.  
 

1. COVID-19 Forecast Hub target tasks:  
a. Incidence and cumulative weekly deaths.​ Specifically, it involves forecasting newly 

reported COVID induced deaths and the cumulative deaths for all US states and the US 
national region. Here, the data reported by Johns Hopkins University (JHU) serves as the 
gold standard for the CDC. 

b. Daily Hospitalizations.​ Here the goal is to forecast the reported new hospitalizations for 
US states and the US overall. CDC recently released a ground truth dataset for this. 
 

Given these two targets, the problem we solve for COVID-19 Forecast hub for a specific 
geography can be formally stated as follows.  
Covid-19 Forecast hub problem statement: ​Given​: an observed multivariate time series of 
COVID-related signals X for N weeks and corresponding values for the forecasting target Y for the 
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same N weeks. ​Predict​: next k values of forecasting target, i.e. Y[N+1: N+k] where k=4 for the first 
target (four weeks) and k=28 for the second target (28 days ahead).  

 
Approach Summary: ​We solve the problem above by designing a deep neural approach with 
autoregressive inputs which trains on bootstrap samples of the input data. We leverage several 
data signals including symptomatic survey data, mobility, and testing data to name a few. We 
describe our methods in more detail in the following section.  

 
 

2. Weighted influenza-like-illness (wILI) forecasting target tasks: 
a. On the other hand, the Flusight challenge has targets in terms of wILI (weighted ILI) counts. 

The wILI counts are a proxy to the influenza incidence (total of influenza cases in any given 
region). One of the key targets in the challenge is to forecast the next four wILI values. 

 
wILI forecasting problem statement:​ ​Given:​ the wILI incidence `Y` (also our forecasting target) 
till week N in the form of a multivariate time series of wILI (and in our case COVID-related signals 
X), ​predict:​ wILI values for weeks N+1 to N+k, where k = 4.  
 
Approach Summary:​ Predicting wILI values in the presence of COVID is a challenging task. Due 
to symptomatic similarities between influenza and COVID and changes in health-care seeking 
behavior of the general public, the wILI values become 'contaminated' due to COVID. This 
contamination results in the wILI curve exhibiting unseasonal dynamics and peaking at unexpected 
times. Hence, leveraging an out-of-the-box wILI forecasting approach trained on historical wILI 
data does not work well. In an effort to model this novel unseasonal behavior, we propose to 
`steer` a historical wILI forecasting model with covid related signals by leveraging transfer learning. 
In addition to the historical wILI values, we use several types of data signals such as symptomatic 
surveillance, mobility, line-lists and so on to train our model. The approach is described in more 
detail below. 

 
METHODS 
Our approach is based on two forecasting modules:​  

1. DeepCOVID: Covid-19 forecasting using Covid-related signals.​  
 
i. ​ ​Forecasting tasks​: Covid-related mortality and hospitalizations 
ii. Challenges​: Coping with heterogeneous, scarce and noisy data.  
 



 

 
iii. Solution​: A deep learning (DL)-based model can ingest many heterogeneous signals that are 
more sensitive to what is happening on the ground, without laborious feature engineering. To fully 
take advantage of this, our framework is designed with careful consideration of data and modeling 
challenges faced in robust real-time forecasting with principled uncertainty estimation. Secondly, 
uncertainty estimation also enables effective communication of predictions to domain-experts by 
giving explanations for model forecasts, which are very important for communication and 
interpretation by both the public and decision makers.  
DeepCOVID (architecture depicted in Fig. 1) is an operational DL driven framework for real-time 
COVID forecasting, whose predictions have been submitted to the CDC via the hub on a weekly 
basis since April 2020. Our method exhibits interpretability, encouraging short-term and trend 
performance, principled uncertainty estimation, correlation between forecasts, and ingestion of 
several data sources despite the chaotic and fast-moving pandemic scenario which naturally brings 
with it several modeling and data challenges. This was the first purely data driven and deep 
learning approach to be submitted to the COVID-19 Forecasts hub.  
 

2. CALI-Net: Covid-ILI forecasting using historical influenza data + Covid-related signals  
i. Forecasting task: ​wILI incidence forecast   
ii. Challenges​: The first challenge is to capture the atypical trends that occur as a result of 
COVID-19 contamination of wILI. In modeling this novel wILI trend, we propose to leverage 

 
Figure 1​: Schematic of DeepCOVID framework for real-time COVID-19 forecasting. The 
data module is dedicated to pre-processing including imputation of missing values and 
aggregating at the right temporal and spatial resolution. The prediction module generates 
probabilistic forecasts based on the curated data. Finally, the explainability module (with 
interface) allows both the real-time and retrospective analysis of forecasts to build an 
intuitive explanation of forecasts. 



 
historical knowledge and recent COVID-related data signals. Hence, the second challenge is how 
to effectively model the COVID-ILI (wILI contaminated by COVID) curve by appropriately 
leveraging both historical and recent data. Note that these COVID-related data signals are not 
available for historical wILI seasons. How do we address the imbalance in data to leverage both of 
these data sources? Further, as the contaminated COVID-ILI is a very new phenomenon which 
suddenly emerged, there is limited data regarding the same from external signals and hence, a 
significant challenge is also to learn to model it effectively under data paucity.  
 

 
iii​. ​Solution​: As mentioned above, one of the challenges we face is the atypical nature of the 
current influenza season because of contamination by COVID related dynamics resulting in the 
COVID-ILI trends. Since this feature is exclusive to the current introduction of the pandemic into 
the wILI season, using only the historical wILI data is insufficient. Hence we propose to leverage 
external COVID-related signals such as confirmed cases, hospitalizations, and emergency room 
visits as well and propose a novel transfer learning framework with novel loss functions and 
specifically design DL model architectures to deal with the data paucity issue. We propose 
CALI-Net (COVID Augmented ILI deep Network), a principled way to 'steer' flu-forecasting models 
to adapt to new scenarios where flu and COVID co-exist. The full CALI-Net architecture is detailed 
in Fig. 2. We employ transfer learning and knowledge distillation approaches to ensure effective 
transfer of knowledge of historical wILI trends. We incorporate multiple COVID-related data signals 
all of which help capture the complex data contamination process showcased by COVID-ILI. 
Finally, in order to alleviate the data paucity issue, we train a single global architecture with explicit 
spatial constraints to model COVID-ILI trends of all regions as opposed to previous approaches 
which have modeled each region separately leading to a superior forecasting performance. 

 
Figure 2:​ Our heterogeneous transfer learning architecture is designed to transfer knowledge 
from EpiDeep-CN (source model trained on historical wILI data) about historical wILI trends to 
the CAEM module (target model trained on COVID-related exogenous signals) for COVID-ILI 
forecasting while addressing the challenges of data paucity.  



 
Research questions: 
Our goal for the challenge is to investigate different facets of the contribution of survey signals in our 
COVID and wILI (aka. COVID-ILI) predictions. 
 
Q1: Should survey signals be used in conjunction with other data or by itself? 
Q2: Are survey signals confirming or orthogonal when used in conjunction with others? 
Q3: Do survey signals help in forecasting trend changes with some weeks of anticipation? 
Q4: Do survey signals capture important differences between geographical regions?  
 
RESULTS 
Summarize your results:  
In this section we first focus on the research questions introduced in the previous section to 
emphasize the contribution of symptom survey signals; later showcase the competitiveness of our 
method in the two forecasting tasks. 
 
For results addressing research questions from above, our forecasts start at epidemic week 25 (June) 
to week 42 (October); therefore, these results are considering predictions over a period of 4 months. 
The predictions labeled as “Without-survey” are our actual weekly submissions to the CDC, while 
“Adding-survey” and “Only-survey” were recently performed emulating a real-time forecasting 
scenario (using only data available until the prediction week).  
 
The specific survey signals we added were the raw_cli and raw_wili, both available in COVIDCast. 
 
Q1: Should survey signals be used in conjunction with other data or by itself? 
 

For this question, we tested the usefulness of symptom survey data independently and in 
conjunction with other signals for COVID-19 mortality forecasting and found that symptom 
survey data is more effective when used in conjunction with other signals. In short-term 
forecasting cases (1- 2-week ahead forecasting), models using only symptom survey data 
performed comparably well with respect to models using symptom survey signals in 
conjunction with other signals as observed in the left column of Fig. 3. However, we noticed a 
pattern of overestimation in longer-term forecasting of COVID-19 mortality (see right column of 
Fig. 3). This suggests that we should use the symptom survey signals in conjunction with 
others.  
 
It is useful to observe that short-term forecasts from only using survey data might be especially 
useful when there is an uptrend occurring. We found that they may lead to a better estimation 
than when using them in conjunction, as it happens in California and Nevada (see Fig. 3e and 
3g).  
 
Conclusion: ​In general, survey signals should be used in conjunction with other data, but their 
standalone use should be considered when there are uptrends as it may lead to better 
short-term​ predictions of the disease evolution during this critical stage. 
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                                 (g)                                                                         (h) 
 
Figure 3:​ Symptom survey data employed independently and in conjunction with 
other signals for COVID-19 mortality forecasting in the US National region. Left 
is 1-week ahead forecasting, and right is 3-weeks ahead. We found using it 
independently exhibits good short-term performance but usually leads to 
overestimation of longer-term predictions. From top to bottom: US National (X), 
Arizona (AZ), California (CA), and Nevada (NV). 



 
Q2: Are survey signals confirming or orthogonal when used in conjunction with others? 
 

For this question, we compared our CDC submissions for COVID forecasting against the 
predictions of our model as we would have included the symptom survey signals during the 
forecasting period (i.e. “Adding-survey”). At US National level, we found that including the 
survey signals led to a decrease in performance by 39%, however, at state-level, the results 
are more diverse, as noted in Fig. 4. In total, predictions on 29 of the 51 regions (US National + 
50 states) were benefited by the incorporation of survey signals. 
 
Conclusion: ​When used in conjunction with others, survey signals have a different role per 
geographical region. Nevertheless, in general, they are orthogonal and can benefit forecasting 
in the majority of regions. 

 

 
  

 
Figure 4: Percentage of change in performance per state (measured with 
MAE) after adding symptom survey data (i.e. using survey data in 
conjunction with other data signals). Green (positive) represents increase 
in performance; brown (negative) decrease. 

 



 
Q3: Do survey signals help in forecasting trend changes with some weeks of anticipation? 
 

For this question our main focus is in predictions with and without survey signals, but we also 
found some interesting observations when using only survey signals. 

 
Positive findings:  
In COVID forecasting, we found several cases where adding survey signals (i.e. using them in 
conjunction with other data signals) has been beneficial to predict important trend changes as 
the ones in Fig. 5. 

 

 
                                (a)                                                                         (b) 

 
                                 (c)                                                                         (d) 



 

 
 
 

 
                                 (e)                                                                         (f) 
 
Figure 5:​ Left: Without survey signals; right: adding survey signals. We can 
appreciate that the contribution of survey signals is also reflected helping to 
anticipate changes in trend. From top to bottom: California (CA), Oklahoma 
(OK) and Idaho (ID). 

 
                                (a)                                                                         (b) 

 
                                 (c)                                                                         (d) 



 

 
 

In ILI forecasting, in Fig. 7, we notice that in each case, the symptom survey data helps yield 
better forecasts compared to the model trained without the survey data which is found to either 
overestimate or underestimate the trends in the ground truth ILI curve. The model trained with 
the survey data on the other hand is able to anticipate trend changes (Region 6 1-week ahead) 
and also able to adapt quickly to the rise and fall in ILI dynamics (Region 9 1-week ahead). 
Models trained without the survey data also tend to overestimate peaks in addition to generally 
underestimating dynamics for ILI forecasting. Interestingly we also notice that models trained 
with the survey data are able to adapt quickly to changes in trend (rising, falling) of the ILI 
dynamics compared to the models trained sans the survey data. 
 

 
 
Negative findings: ​In our CDC submission, our model predicted the second peak value and 
time for US National three weeks early (Fig. 8a). However, when adding the survey signals 
(Fig. 8b), our estimation of the peak height suffered because the model underestimated the 
peak. Other examples of adversarial effects are illustrated in Fig. 8. 
 

 
Figure 6:​ Left: adding survey signals; right: only survey signals. We also found 
that, in some cases, some important trend predictions that can be made with 
only survey signals are hindered by the other signals in our dataset. From top 
to bottom: US National and Iowa (IA).  

         
(a) Region 6, 1-week ahead                                  (b) Region 9, 1-week ahead 

 
Figure 7: We notice in figure 8a. that the model trained with FB survey data is able to 
anticipate trend changes (like the peak) in region 6 a week in advance utilizing signals 
in FB survey data. In both figure 8a, 8b, we notice that the model trained with FB 
survey data is able to adapt much better to the decreasing wILI trend starting around 
epidemiological week 27. 



 

 
 
Conclusion: ​We have demonstrated the capability of the survey signals to help in anticipating 
important trend changes in the epidemic curve. However, there are also some negative cases 

 
                                (a)                                                                         (b) 

 
                                 (c)                                                                         (d) 

 
                                 (e)                                                                         (f) 
 
Figure 8:​ Left: without survey signals; right: adding survey signals. We found a 
few cases where survey signals hindered the trend prediction made by the 
model without the survey signals. From top to bottom: US National, California 
(CA), and Iowa (IA). 



 
that may appear when using it. It is reasonable to believe there might be some learnable 
patterns that can warn us from these negative cases, for which we may require more history of 
data to capture. 

  



 
Q4: Do survey signals capture important differences between geographical regions? 
 

For COVID, this ability was showcased with the map presented for Question 2. The positive 
contribution of survey signals is dispersed across several states in the US. The variety of these 
states goes from some with lower-than-average epidemic activity as Kentucky to states with 
high epidemic activity as Florida. 
 
In ILI forecasting, we found that models employing the survey data for forecasting ILI dynamics 
yield better forecasts compared to models trained without the survey data which tend to 
underestimate the true ILI progression dynamics. Results shown for HSS Region 1* (Fig. 9b) 
and HSS Region 2** (Fig. 9a) which are regions with different levels of epidemic activity 
(thereby different levels of ILI contamination). This showcases the usefulness of the survey 
data across regions with differences in demographic and epidemic activity.  
 
*HSS Region 1 contains Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, 
and Vermont.  
**HSS Region 2 contains New Jersey, New York, Puerto Rico, and the Virgin Islands. 
 
Conclusion: ​Yes, they do capture and help us in forecasting in regions with important 
differences such as epidemic activity. 

 

 
 

 
 

         
(a) Region 2: Medium epidemic activity. ​                ​(b) Region 1: Low Epidemic activity 

 
Figure 9: We notice that in the aforementioned two regions showcased, with varying 
levels of pandemic activity affecting the ILI dynamics, the models with symptom 
survey data are able to better forecast the ILI dynamics than the models that do not 
employ the survey data which usually tend to underestimate the future ILI trends. 



 
 
Competitiveness and distinctive features of our approach with respect to other state-of-the-art 
models 
 

Excellence in short-term COVID forecasting:​ We compare against the official ensemble of all 
contributing models in the COVID-19 Forecast Hub (including ours). The ensemble has been 
regarded as one of the best performing models by different independent assessments 
published on the Web. Needless to say, national-level forecasts are crucial for federal decision 
makers and are the most visible forecasts in national media. Our approach DeepCOVID clearly 
outperforms this very strong baseline in 1- and 2-week ahead across three months (see Fig. 
10).  
 

 
Figure 10: DeepCOVID outperforms the official ensemble in US National short-term (1- 
2-week ahead) forecasting measured using MAPE. 
 
Epidemiological insights:​ In contrast to other COVID forecasting models, we designed our 
approach with an interpretability module also allows us to communicate to domain-experts 
about which signals are helping the most. For instance, we noticed a high contribution of 
mobility on our forecasts during May to June, when stay-at-home orders were lifted in most 
states, businesses reopened, and mobility signals increased in both US National and 
California. However, this contribution was lower or non-existing during July to August, a period 
when most mobility signals have already stabilized.  
 
Successful adaptation to wILI forecasting in times of COVID: ​The effect of contamination from 
COVID was the most pronounced during March, leading to the COVID-ILI curve exhibiting 
uncharacteristic non-trivial progression dynamics. Our method was able to adapt our historical 
ILI model to this new scenario while other methods had difficulties (see Fig. 11).  
 



 

  
More recently, we also found that in some regions there was an unusual increase in wILI 
values during the summer which led to a small peak (see. Fig. 12). As we can see in Fig. 13 
(showcasing results for HHS region 4), our model was able to adapt to this better than the 
historical ILI model EpiDeep (published at the premier conference SIGKDD 2019).  

 
 

 

 
Figure 11: Our method, CALI-Net, outperforms state-of-the-art baselines in adapting to 
the new scenario where flu and COVID co-exists.  

 
Figure 12. Region 4 wILI Season 2019-20 depicting unusual increase around weeks 

24 - 30. 



 

 
These results suggest that we are effectively adapting our historical ILI model to the novel 
scenario where Covid and influenza coexist. Our approach transfers knowledge to the 
historical model from the Covid signal when appropriate (positive transfer), and prevents 
'negative' transfer when it is better to rely on the historical data. Performance results in the 
aforementioned figures were obtained during epidemiological weeks 23 to 30. 
 
We also found that the symptom survey data was helpful in achieving good forecasting 
performance (Fig. 14).  
 

 
Figure 13: Symptom Survey data helps 
CALI-Net yield better forecasts (e.g., HHS 
Region 4), measured using RMSE. 



 

 
 
 

DISCUSSION 
Discussion and implications of findings: ​We have presented a forecasting framework that aims to 
improve the situational awareness of two infectious diseases with symptomatic similarities during a 
pandemic. We emphasized our findings on the usefulness of the symptom survey data, which helps 
both of our models yield better forecasts. 
Symptom Survey Data Usage Notable Highlights: 

● In general, survey signals should be used in conjunction with others; however, we found a few 
interesting cases when they alone offer a different and more accurate forecasting perspective. 

● In general, survey signals are orthogonal to other available signals that we included in our 
models. We found them useful to improve our performance in the majority of geographical 
regions. 

● We showed that survey signals help guide our forecasts to effectively anticipate future trends, 
which is the general case; however, there are some cases where it may lead to hinder some 
good trend predictions. 

● Survey signals capture and help us in forecasting in regions with important differences such as 
epidemic activity. In particular, we found that in ILI forecasting, not using symptom survey data 
may lead to underestimating the epidemic curve. 

 
 
  

Figure 14: Symptom Survey data helps 
CALI-Net (our model) yield better forecasts 
(e.g., HHS Region 4), measured using RMSE. 



 
LIMITATIONS AND FURTHER WORK 
 
We presented an analysis describing different facets of the contribution of survey signals in 
forecasting COVID-19 and wILI. It is reasonable to expect that some conclusions of this analysis may 
only hold for the models described, as every model may be designed to emphasize a different aspect 
of modeling, and/or the data signals included may affect the output. Still, it is important to emphasize 
that we have shown that similar contributions have been displayed in both models (which are different 
architectures). Therefore, we have good evidence to believe that other purely data-driven models as 
ours may reach similar findings. 
 
On the other hand, there are still open questions in forecasting with purely data-driven models. We 
found that forecasting in lower-level granularities, where some signals are more bursty, may lead to 
problems in predictions. This is also a good example of where mechanistic models can help. Models 
trained with symptom survey data, in general did not yield significant improvements with respect to 
better uncertainty quantification when compared to models that do not employ symptom survey data 
hence exploring avenues to better incorporate symptom survey data to aid uncertainty estimation can 
also be considered interesting future work. 
 
 


