

CMAQ v4.5 Adjoint User’s
Manual

An adjoint model for CMAQ to perform 4D-Var Data

Assimilation and Sensitivity Analysis

Kumaresh Singh & Adrian Sandu

Department of Computer Science
Virginia Polytechnic Institute and State University

Blacksburg, VA 24060, USA
kumaresh@cs.vt.edu
asandu7@cs.vt.edu

Amir Hakami & John Seinfeld

Department of Chemical Engineering
California Institute of Technology, CA

This manual is a part of the electronic supplement of the report submitted to Houston Research Council, H59
for project evaluation purposes. All rights reserved to the authors of this manual.

Date: 07/05/2007

Contents

1 Installation 3

2 Running CMAQ Adjoint model 3

2.1 Mode Selection 4
2.1.1 Forward mode (comes with standard model). 4
2.1.2 Sensitivity Test mode. 4
2.1.3 4D-Var Data Assimilation mode . 4
2.1.4 Finite Difference Test mode (code validation) 4

2.2 Data Directories & Files. 4
2.3 Description / Instructions about current settings. 5

3 Code Validation - Finite Difference Test 5

3.1 Mode selection 6
3.1.1 Chemistry. 6
3.1.2 Advection. 6
3.1.3 Diffusion . 6
3.1.4 All science processes. 7

3.2 FD Validation Results . 7

4 Sensitivity Test 7

4.1 Settings. 8
4.2 Test Details and Analysis. 8

4.2.1 Sensitivity Results. 8
4.3 More than one-day simulations. 10

5 4D-Var Data Assimilation 10

5.1 Experiment details and settings . 11
5.2 4D-Var Data Assimilation Results. 13

6 New Subroutines in CMAQ Adjoint 15

6.1 Drivers . 15
6.2 Subdrivers . 17
6.3 Transport processes . 18
6.4 Chemistry . 20
6.5 Checkpoint Files . 21
6.6 Others . 22

CMAQ_ADJv4.5

1. Installation

The CMAQ_ADJv4.5 adjoint package comes in the same format as CMAQv4.5. To install the
adjoint package,

(i) Download the CMAQv4.5 package from CMAS center’s website:

http://cmascenter.org/help/documentation.cfm?MODEL=cmaq&VERSION=4.5.

(ii) Replace the tar files M3MODELS.CMAQv4.5.tar and M3SCRIPTS.CMAQv4.5.tar of

CMAQv4.5 package with those of the adjoint package.

(iii) Follow the $M3HOME/docs/README file for instructions on installing the package.
Instructions for subdirectories icon, bcon, jproc, and others in $M3HOME/scripts/ directory
remain the same, except for the cctm directory where bldit.cctm.pgf and run.cctm scripts
should be executed based on the mode required.

(iv) Follow section 2 on installing and running various modes of adjoint operations provided with

this CMAQ_ADJ4.5 package.

The visible changes in the adjoint package as compared to the basic CMAQ package are:

• The addition of an adjoint directory in $M3HOME/models/CCTM/src/ which contains all
the adjoint files. These files are extracted by setting some flags in the bldit.cctm.pgf
script in $M3HOME/scripts/cctm directory, as discussed in Section 2. A brief description
about each of these adjoint files is provided in Section 6.

• Makefile provided explicitly in the $M3HOME/scripts/cctm directory to produce
executables, to be used by the run.cctm script based on user’s mode selection.

2. Running CMAQ Adjoint model

There are several adjoint run modes provided to the users to select from, based on their needs. First
of all, in “$M3HOME/scripts/cctm/bldit.cctm.pgf” file one can choose not to extract the adjoint files
if they are planning to run only the forward mode of CMAQ similar to the basic package. To do so,
make sure the *ADJOINT MODE* (lines 372-373) is commented out. However, for sensitivity
analysis, 4D-Var data-assimilation and finite-difference test modes, adjoint files are required.
Executing the bldit.cctm.pgf script creates the BLD_e2a and MOD_DIR directories.

To select various adjoint run modes, follow the instructions provided as follows:

2.1 Mode Selection

File to be edited: $M3HOME/scripts/cctm/run.cctm

SIMULATION MODES (lines 190-212) in this run.cctm script provide various adjoint run
modes to choose from. Following are the setting details for each individual mode:

2.1.1 Forward mode

Uncomment *BUILD FORWARD* mode (lines 194-195) and comment out rest of the
modes. This will create the fwd executable which is for the forward mode of simulations,
similar to the basic CMAQ model run.

2.1.2 Sensitivity Test mode

Uncomment *BUILD SENSITIVITY* mode (lines 199-200) and comment out the rest of the
modes. This will create the snst executable which is to perform sensitivity analysis.

2.1.3 4D-Var Data Assimilation mode

Uncomment *BUILD 4D-VAR* mode (lines 204-205) and comment out the rest of the
modes. This will create the 4dv executable which is to perform 4D-Var data assimilation
experiment.

2.1.4 Finite Difference Test mode

Uncomment *BUILD FINITE-DIFF* mode (lines 209-210) and comment out rest of the
modes. This will create the fd executable which is to perform finite difference test for adjoint
code validation.

2.2 Data Directories and Files

The important output directories and useful data files (including new adjoint files) are listed as
follows:

$M3HOME/data/cctm/

CCTM_e2aCONC.e2a | - concentration file for basic CMAQv4.5 run.

CCTM_e2aCHK.e2a |
CCTM_e2aL3CHK.e2a | - checkpoint files for sensitivity test and data assimilation.
CCTM_e2aL5CHK.e2a |
CCTM_e2aL6CHK.e2a

$M3HOME/scripts/cctm/

cost_fun.m, rms_value.m | - cost function values, rms values and model runs are saved to
model_runs.m | these files at each iteration during the 4D-Var data assimilation.

2.3 Description / Instructions about current settings

The checkpoint files listed above are used to save different datasets in different adjoint run
modes. Thus to maintain consistency, all the output data files and executables are deleted each
time the run script is executed. It is advisable to save the checkpoint files elsewhere for future
use. However, if you are running the same mode and would like to keep the data files, then
comment out “make dataclean” (line 188, run.cctm file). Also, if you are making changes in the
files for the same adjoint run mode and do not want to recompile everything, then comment out
“make clean” (line 186, run.cctm file). It is recommended to clear the data files and executables
during transitions from one mode to the other. Individual setting details for each mode will be
provided in the following sections.

3. Code Validation – Finite Difference (FD) Test

To obtain consistent data assimilation and sensitivity results, it is necessary to validate all the
adjoint science process subroutines. The validation test is designed to compare the adjoint
variable with its finite-difference approximation. A detailed description of the test setup is
provided as follows.

The CTM model is first run with original concentration values (say c0) and an observation grid is
extracted. The original concentration field (c0) is then perturbed at the initial time and a run with
the new concentration (say c01) in forward and reverse mode is carried out. A similar run with
different perturbation on the original concentration field is carried out next. Let c02 be the
perturbed concentration at initial time for the second run.

In reverse mode of each run, the adjoint variable λ is initialized with zero concentration values at
the final time and is updated with the gradient (g) of the cost function (f) at each dynamic time
step during the adjoint calculations.

f = (1/2)∑(cop
k,m- cobs

k,m)TRk
-1(cop

k,m- cobs
k,m)

g = ∑Rk
-1

(cop
k,m- cobs

k,m)

λ = λ + gk

where, Rk
 is the misfit covariance matrix, k=1, 2,…,istep*nsteps, is the total number of science

process iterations in the forward mode and m is a 4-tuple observation grid.

Based on this setup, adjoint model for each CMAQ science process is validated separately. The
validation procedure is based on the fact that the value of adjoint variable (≡ g) should be close
enough to its finite difference approximation calculated with the objective cost functions for the
two runs with concentrations c01 and c02, i.e.,

f(c02) − f(c01) = λ2
T.(c02 − c01)

3.1 Mode Selection

To test the adjoint of each science process individually, one can choose one of the modes
discussed as follows:

Caution:

• The files extracted and kept in the BLD_e2a directory are read-only. Thus, to
comment/uncomment the science processes one needs to chmod a+w filenames. The
PING, CLDPROC, AERO and ADJADV processes should remain commented, since the
adjoint for these subroutines are not available with this package.

• The results provided for the current test setup are produced with 24 hours of simulation.
Hence, make sure that NSTEPS = 240000 in run.cctm script, line 42.

3.1.1 Chemistry

 filenames:

sciproc_cadj.F – Uncomment *CHEM_ADJ* subroutine (line 178) and comment out rest of the
processes (lines 188-220).

modsciproc.F – Uncomment *CHEM* subroutine (lines 334-336) and comment out rest of the
processes (lines 252-323).

3.1.2 Advection

filenames:

sciproc_cadj.F – Uncomment *rhoj checkpoint reading*, *XADV_CAD*, *YADV_CAD*,
ZADV_CAD subroutines (lines 193-218) and comment out the rest of the processes (lines
178,188,220).

modsciproc.F – Uncomment *couple*, *decouple*, *XADV*, *YADV*, *ZADV* subroutines
(lines 258-300, 317-322) and comment out the rest of the science processes (lines 252-254, 311-
313, 334-336).

3.1.3 Diffusion

filenames:

sciproc_cadj.F – Uncomment *HDIFF_ADJ*, *VIDFF_ADJ* subroutines (lines 188, 220) and
comment out the rest of the science processes (lines 178, 193-218).

modsciproc.F – Uncomment *VDIFF*, *DIFF* subroutines (lines 252-254, 311-313) and
comment out the rest of the processes (lines 258-300, 317-336).

3.1.4 All science processes

filenames:

sciproc_cadj.F - Uncomment all the science process adjoints, *VDIFF_ADJ*, *HADV_ADJ*,
ZADV_ADJ, *HDIFF_ADJ*, *CHEM_ADJ*.

modsciproc.F – Uncomment all the science processes, *VDIFF*, *HADV*, *ZADV*,
HDIFF, *CHEM*.

 3.2 FD Validation Results

In the current code-validation setup, the test parameters have following values:

Variable Value
Eps 0.001

Tf 24 hrs

C01 CGRID*(1.1+9*eps)

C02 CGRID*(1.1+10*eps)

Table 1: Test Parameter Values

The test parameters presented in Table 1 can be varied according to individuals need. However
for the current setup, the validation results for different modes are as follows:

Process F(c02) − F(c01) λ2
T.(c02 − c01) Relative Difference

Chemistry 587.15439 589.84952 0.456918 %

Advection 390.95876 390.36101 -0.153130 %

Diffusion 624.34778 630.00552 0.898046 %

All 340.66521 329.15051 -3.498310 %

Table 2: CMAQ Adjoint Validation Results

4. Sensitivity Test

Sensitivity analysis is an approach to quantify the changes in output due to different sources of
variation. Since adjoint calculations are receptor based, one can calculate the sensitivity of an
output with respect to large number of parameters.

In order to perform adjoint sensitivity tests on the validated CMAQ adjoint model, it is required
to perform one forward and one reverse mode of simulation. In the forward run, the
concentration values and air densities are checkpointed and in the reverse mode they are read to
be utilized for adjoint calculations. A receptor (cost-function) measuring certain species (say x)
is defined at a given location at the final time in the reverse mode. At the end of the simulation,
we obtain sensitivities of x with respect to the grid species and emission species.

 4.1 Settings

filenames:

sensitivity_driver.F – main driver file to initialize CGRID, open checkpoint files and call
subdriver to perform forward and backward runs.

senstdriver_bwd.F – subdriver to perform one forward and one backward run with adjoint
variable defined by calling subroutine DEFINE_RECEPTOR and emission adjoint variable
initialized with zero concentration.

define_receptor.F – subroutine to initialize the adjoint variable LGRID.

Note:
 Adjoint variable LGRID(1:ncols, 1:nrows, 1:nlays, 1:spc) has 4 dimensions. In order to
change the species number for which sensitivity test has to be performed, change the spc index at
the initialization step in define_receptor.F (line 50).

4.2 Test details and Analysis

 filename:

CCTM_e2aL5CHK.e2a – checkpoint file for LGRID values for every dynamic time step.
CCTM_e2aL6CHK.e2a – checkpoint file for cumulative emission adjoint variable.

In order to calculate the sensitivity with respect to grid species and emissions, set the parameters
according to your needs using the files described in section 4.1. Choose the snst mode in
run.cctm for sensitivity calculations and perform the run. The adjoint variable for grid species
initialized at the final time undergoes all the science process adjoints while the emission adjoint
variable is accumulated with the gradient of emissions over time.

 4.2.1 Sensitivity Results

In order to produce the adjoint trajectory for sensitivities with respect to grid species, PAVE the
CCTM_e2aL5CHK.e2a checkpoint file. Then from the list of species in formula popup window,
add the ones with respect to which sensitivities has to be performed. Then create the tile plot.
Similar procedure is followed for sensitivities with respect to emissions. PAVE the
CCTM_e2aL6CHK.e2a checkpoint file and select the emission species with respect to which the
sensitivities have to be performed. A major difference between the two plots is the time length.

The emissions plot is for the final time step so it has no time series involved, while the grid
species plot has NSTEPS*(dynamic time steps) time length.

Grid-species:

In the sample test case, we consider a receptor measuring ozone at the final time at a given
location (defined in define_receptor.F). We compute its sensitivity with respect to changes in
various grid species at earlier times. A tile plot for dO3/dNO2 is provided as follows:

 T = 24hrs T = 18hrs T = 12hrs T = 6hrs

Fig 1: Sensitivity plots for dO3/dNO2 backwards in time every 6hrs.

In figures 1, the receptor is O3 at location ncols=18:22, nrows=18:22 and nlays=1 at time
T=24hrs.

Emissions:

Under the same settings, the sensitivity of ozone is calculated with respect to various emission
species. Tile plots for dO3/dNOx emissions are provided as follows:

Fig 2: Sensitivity plots for dO3/dNOx emissions for 47 hours of simulation

In figures 2, the receptor is O3 at location ncols=18:22, nrows=18:22 and nlays=1 at time
T=47hrs.

 4.3 More than one-day simulations:

To perform sensitivity test for N (> 1) days, a set of instructions are provided as follows:

• Set the fwd mode in run.cctm script and run the forward mode for N-1 days. The current
setup will run the code for 24hours. However, for rest of the N-2 days we need to make
the following changes:

(i) Change the STDATE in run.cctm (line 39) for each day’s simulation.
(ii) Set the EMISfile to the emission file of that day. The current run script has two

emission file names.
(iii) Uncomment set GC_ICpath = $OUTDIR and set GC_ICfile =

$EXEC"CONC".$APPL (lines 119,120) and comment out earlier settings with
ICON (lines 121,122).

Caution: Comment out the “make dataclean” mode (line 188, run.cctm file)

Settings (i) and (ii) are done for each day, while (iii) remains the same for all N-1 days
including the Nth day.

This will create the CCTM_e2aCONC.e2a file for all the N-1 days which acts as the
initial condition file for the Nth day simulation. The adjoint calculations are then done
backwards for each day N-1, N-2, …, 2, 1.

• For the last day, set the snst mode in run.cctm script and follow steps (i),(ii) and (iii)
described above. Make sure the flag “LASTDAY” in senstdriver_bwd.F (line 104) is set
to TRUE. The simulation hours for the last day must be less than 24 hours, since
interpolation for an extra hour is performed inside the model.

Caution: Keep the “make dataclean” mode (line 188, run.cctm file) commented.

For the rest of the previous days, follow steps (i),(ii) and (iii) and change the flag
“LASTDAY” in senstdriver_bwd.F (line 104) to FALSE.

This will create the necessary checkpoint files for all the days required.

5. 4d-Var Data Assimilation

4D-Var data assimilation allows the optimal combination of three sources of information: an a
priori (background) estimate of the state of the atmosphere, knowledge about the physical and
chemical processes that govern the evolution of pollutant fields as captured in the chemistry
transport model (CTM), and observations of some of the state variables.

In order to integrate 4D-Var data assimilation with the CMAQ adjoint, an interface has been
developed to run the CTM model with the optimization routine L-BFGS. This routine is used to
solve large scale nonlinear optimization problems with simple bounds. It is based on the gradient

projection method and uses limited memory BFGS matrix to approximate the Hessian of the
objective function.[R. H. Byrd, P. Lu and J. Nocedal. A Limited Memory Algorithm for Bound
Constrained Optimization, SIAM Journal on Scientific and Statistical Computing, 16, 5, pp.
1190-1208.]

The BFGS is a quasi-Newton algorithm which solves

min f(x), subject to l ≤ x ≤ u.

where f(x) is an objective cost-function in x which we are trying to minimize. l and u are the
lower and upper bounds on the values of x. The optimization routine takes as input, an initial
value x, the cost-function value f and the gradient of the cost function g and gives the next best
estimate of x. The same procedure is followed until the solution converges to a single point. The
number of iterations can be restricted based on individuals need.

For data assimilation experiments, the cost-function is defined as follows:

f = (1/2)∑(copt
k,m- cobs

k,m)TRk
-1(copt

k,m- cobs
k,m) +(1/2)∑(copt- cb)TB-1(copt- cb)

where, Rk

 is the misfit covariance matrix and B is the background covariance matrix, k=1,
2,…,istep*nsteps, is the total number of science process iterations in the forward mode and m is
a 4-tuple observation grid.

The gradient of this cost-function is then calculated as follows:

g = ∑Rk
-1

(copt
k,m- cobs

k,m) + ∑B-1
(copt- cb)

Here cb, cobs and copt are the background concentration, observations and the best estimate

respectively. In case of real data inputs, cb acts as apriori concentration and cobs is the

observation. copt acts as the current best estimate which is updated by the L-BFGS subroutine

every iteration based on the cost-function and its gradient values.

Note:
The background forcing is added only at the initial time step, while the misfit is added at each
dynamic time step. Also the misfit is calculated only on the observation grid points, while the
background is calculated at all the grid points on a layer.

5.1 Experiment details and settings

In the sample test case, the data used is the one which comes with CMAQv4.5 package. A
reference run of Tf hrs is being performed on this data in order to generate non-constant

concentration field. The concentration field thus obtained acts as an initial condition (c0
0) for our

data assimilation test. An observation grid is extracted by performing a forward CMAQ run on

the current concentration field (c0
0).

Fig 3: Checkpointing procedure during forward run

A perturbation is then introduced in c0
0 to produce cp

0.

cp
0 = c0

0 + perturbation

This perturbed concentration is then transferred to the optimization subroutine in order to obtain

the best estimate copt
0 of the original concentration c0

0 after several data-assimilation runs.

At iteration 0, x0 = cp
0

At each subsequent iteration k (k≥1),

xk+1 ← L-BFGS (xk, f, g)

copt
0 ← xk+1

(f, g) ← reverse_mode (copt
0, chk_obs)

where, f is the cost function and g is the gradient of this cost function.

Details about the subroutines involved and the corresponding files where they are defined are as
follows:

filenames:
4DVar_driver.F – main driver file to implement 4D-Var data assimilation. Calls sub drivers to
lay down observations, checkpoint perturbed data, and perform adjoint calculation to get cost
function value and its gradient for the optimization subroutine.

subdriver_fwd.F – holds subroutine to perform forward science process runs. This subdriver is
called twice in the main driver. First call produces a non-constant concentration field, required
since CMAQv4.5 data is not real data. Second call lays down the observation field.

subdriver_fwdpert.F – contains subroutine to perform forward science process similar to the
above subdriver, but lays down checkpoints for perturbed data. This checkpoint is used in the
background cost-function calculations.

subdriver_bwd.F – contains subroutine to perform one forward and one reverse run of science
processes to calculate the cost-function and its gradient to be used by the L-BFGS subroutine.

calc_obsgrad.F – calculates the cost-function due to misfit and updates the adjoint variables.

calc_bggrad.F – calculates the cost-function due to background errors and updates the adjoint
variables.

mask.dat – observation grid index file located in directory: $M3HOME/scripts/run, to be used by
OBS_GRAD_UPDATE subroutine (calc_obsgrad.F). In the current test case observation grid,
the columns and rows are linearly spaced among 10 points from x1 to x2 using Matlab’s
linspace() function. The vertical layer slices are double spaced.

Caution:

• In our experiment we are perturbing ozone and retrieving ozone only (spc=4). To perturb
other species, change the spc index from 4 to the species number of interest in
4DVar_driver.F file(line 301, 310). To retrieve other species, change NSPCOPTSTART
and NSPCOPTEND variable values in the same file: 4DVar_driver.F (line 325,326).

• The interface for cost function calculations in files: calc_obsgrad.F and calc_bggrad.F are
designed for model data input. One should change the setup for real data intake.

In the current experimental setup, the parameter values are set as follows:

Observation Grid Perturbation amount
Columns Rows Layers Species

Linspace(x1,x2,10)
x1=1, x2 = ncols

Linspace(x1,x2,10)
X1=1, x2 = nrows

1:2:NLAYS

4
cp

0 = c0
0*(1.3+9*eps),

eps = 0.001

Table 3: Data Assimilation experiment parameter values

5.2 4D-Var Data Assimilation Results

filenames:
CCTM_e2aCHK.e2a – optimized concentration checkpoint file
CCTM_e2aL3CHK.e2a – observation checkpoint file
CCTM_e2aL5CHK.e2a – perturbed concentration checkpoint file

To validate the developed test-bed, two sets of plots are being generated; one with the difference

cp
0- c0

0 (CCTM_e2aL5CHK.e2a - CCTM_e2aL3CHK.e2a) and the second with copt
0- c0

0
(CCTM_e2aCHK.e2a - CCTM_e2aL3CHK.e2a). The idea is to illustrate the fact that data
assimilated concentration fields are the best estimates of the original concentration fields. Figure

3 reflects that copt
0 is quite close to c0

0.

a) Difference between perturbed and b) Difference between optimized and

reference concentration (cp
0- c0

0) reference concentration (copt
0- c0

0)

Fig 4: Demonstration of recovery of the original concentration field.

A cost-function and root-mean square vs. model runs plot, Figure 4, is also provided for further
validations.

Fig 5: Cost-function and root-mean square values vs. model runs.

As explained in the last section, Figure 3 shows a good recovery of the original concentration
field from the perturbed field. Figure 4 on the other hand reflects that there is a significant cost
function decrease with model runs, which means that the solution converges to the original
concentration field at the observation grid points. However, to illustrate an overall convergence
of the solution, we calculate the root-mean square (RMS) value given by:

RMS = || cop
0- c0

0||/||c0
0||

The decrease in this RMS value with model runs signifies that there is an overall convergence of
the solution.

 Caution:

The data assimilation results presented are generated with Tf = 6hrs and 16 iterations.

• Tf = 6hrs → set in $M3HOME/scripts/cctm/run.cctm script, NSTEPS = 060000, line 42.

• Number of iterations = 16 → set in $M3HOME/scripts/cctm/BLD_e2a/4DVar_driver.F,
N_CMAQ_RUNS to be changed to desired value, line 477.

6. New Subroutines in CMAQ Adjoint

All the adjoint files are CVS archived under $M3HOME/models/CCTM/src/ and when extracted
they are placed under $M3HOME/scripts/cctm/

Description:

 6.1 Drivers

Main drivers to perform 4D-Var data assimilation, sensitivity analysis and finite difference test.

• 4DVar_driver.F (Subroutine: DRIVER)

Function:

 -> CTM driver for 4D-Var DATA ASSIMILATION

 -> Uses L-BFGS optimization routine

 -> Exponential Preconditioning option available with this package.

 To invoke it, change EXP_PRECOND to 'TRUE', line = 127

CAUTION:

 -> Driver designed to perturb and retrieve ozone only

 -> To perturb other species change SPC index of CGRID in

 the Initialization, line = 297 & 302

 -> To retrieve accordingly, change NSPCOPTSTART & NSPCOPTEND

 variables, line = 318

USEFUL FILES:

 CONC_L3CHK = Reference/Base checkpoint file

 CONC_L5CHK = Initial Guess checkpoint file

 CONC_CHK = Next Best Guess concentration

Subroutines and functions called:

 SUBDRIVER_FWD - Forward Run for Reference checkpointing

 SUBDRIVER_FWDPERT - Forward Run for Best Guess checkpointing

 SUBDRIVER_BWD - Forward and Backward Run to calculate cost function

 & its gradient at each optimization iteration

• sensitivity_driver.F (Subroutine: DRIVER)

Function:

 -> CTM driver for SENSITIVITY ANALYSIS

 -> SENSITIVITY TEST: Run this driver to generate the adjoint

 trajectory for species under consideration. To change the

 specie number or the area under consideration, go to

 "define_receptor.F" file.

CAUTION:

 -> Driver designed to perform Sensitivity test with ozone

CHECKPOINT FILES:

 CONC_CHK = Current concentration

Subroutines and functions called:

 INITSCEN, ADVSTEP, M3EXIT, WRITE3

 STDRIVER_BWD -> performs adjoint model run to create the trajectory

• fd_driver.F (Subroutine: DRIVER)

Function:

 -> CTM driver for FINITE DIFFERENCE TESTS

 -> FD TEST: Introduce different perturbations and run the adjoint

 model twice to calculate respective cost funtions f1

 and f2 and validate the model with the following eqn:

 "Costfunc2-Costfunc1 = LGRID2'.(CGRID2-CGRID1);"

CAUTION:

 -> Driver designed to perform FD test with ozone

 -> To perturb other species change SPC index of CGRID in

 Finite-Difference Initialization, line = 327

CHECKPOINT FILES:

 ->Relevant output Files

 CONC_L3CHK = Reference/Base checkpoint file

 CONC_CHK = Current CGRID

 ->Irrelevant intermediate checkpoint files

 CONC_L2CHK = CGRID before starting chemistry

 CONC_L4CHK = Checkpoint air density in forward science process

Subroutines and functions called:

 SUBDRIVER_FWD -> lay down observation grid

 FDDRIVER_BWD -> calculate cost function

 RD_CHK -> read checkpoint file

 6.2 Subdrivers

Called from the main drivers, these subdrivers are responsible for forward and reverse science
process runs and checkpoint CGRID and LGRID concentrations.

• subdriver_fwd.F (Subroutine: SUBDRIVER_FWD)

Function:

 Subroutine to perform forward run and lay down the observation grid.

CHECKPOINT FILES:

 CONC_L3CHK = Reference/Base checkpoint file

INPUT:

 CGRID

Subroutines and functions called:

 science processes -> SCIPROC

 write checkpoint files -> WR_L3CHK

• subdriver_fwdpert.F (Subroutine: SUBDRIVER_FWD)

Function:

 Subroutine to perform forward run to lay down the best initial

 guess/background.

CHECKPOINT FILES:

 CONC_L5CHK = initial guess/background conc checkpoint file

INPUT:

 CGRID

Subroutines and functions called:

 science processes -> SCIPROC

 write checkpoint files -> WR_L5CHK

• subdriver_bwd.F (Subroutine: SUBDRIVER_BWD)

Function:

 Subroutine to perform one forward and one backward run to calculate the

 observation and background parts of cost function and update LGRID.

CHECKPOINT FILES:

 CONC_L3CHK = Reference/Base checkpoint file

 CONC_CHK = Current concentration CGRID

 CONC_L5CHK = Initial conc checkpoint file for First perturbation

INPUT:

 CGRID

OUTPUT:

 f,LGRID

Subroutines and functions called:

 science processes -> SCIPROC, SCIPROC_CADJ

 OBS_GRAD_UPDATE,BG_GRAD_UPDATE -> calculate cost function & update LGRID

 WR_CHK,RD_CHK,RD_L5CHK -> Read and write checkpoint files

• fddriver_bwd.F (Subroutine: FDDRIVER_BWD)

Function:

 Subroutine to perform one forward and one backward run to calculate the

 cost function and update LGRID for observation misfit only.

CHECKPOINT FILES:

 CONC_L3CHK = Reference/Base checkpoint file

 CONC_CHK = Current concentration

INPUT:

 CGRID

OUTPUT:

 f,LGRID

Subroutines and functions called:

 SCIPROC, SCIPROC_CADJ -> science processes and their adjoint

 OBS_GRAD_UPDATE -> calculate cost function & update LGRID

 WR_CHK,RD_CHK -> Read and write checkpoint files

• senstdriver_bwd.F (Subroutine: STDRIVER_BWD)

Function:

 Subroutine to perform one forward and one backward run to generate

 adjoint trajectory.

CHECKPOINT FILES:

 CONC_CHK = CGRID concentration

 CONC_L5CHK = LGRID values

 CONC_L6CHK = EMGRID (emission grid) values

Subroutines and functions called:

 science processes -> SCIPROC, SCIPROC_CADJ

 Initializing LGRID -> DEFINE_RECEPTOR

 WR_CHK,RD_CHK,WR_L5CHK -> Read and write checkpoint files

 6.3 Transport Processes

Subroutines involved in reverse transportation of the adjoint concentrations – horizontal
diffusion, vertical diffusion, horizontal advection and vertical advection.

• hdiff_adj.F (Subroutine: HDIFF_ADJ)

Function:

 Subroutine to perform discrete horizontal diffusion adjoint

 calculations

INPUT:

 LGRID

OUTPUT:

 LGRID

Subroutines and functions called:

 RHO_J,HCDIFF3D

• vdiffim_adj.F (Subroutine: VDIFF_ADJ)

Function:

 -> Discrete adjoint of VDIFF subroutine that comes with CMAQv4.5

 -> calculates discrete vertical diffusion adjoint

 controlled by flag THETA, using Crank-Nicolson difference scheme

 THETA : Crank-Nicolson index [1, fully implicit | 0, fully explicit]

Associated tri-diagonal system is stored in 3 arrays

 DI: diagonal

 LI: sub-diagonal

 UI: super-diagonal

 BI: right hand side function

 XI: return solution from tridiagonal solver

 [DI(1) LI(2) 0 0 0 ... 0]

 [UI(1) DI(2) LI(3) 0 0]

 [0 UI(2) DI(3) LI(4) 0]

 [. ] XI(i) = BI(i)

 [. . . . 0]

 [. . . .]

 [0 UI(n-1) DI(n)]

 where n = NLAYS

• modvdiffim_adj.F (Subroutine: VDIFF_ADJ)

Function:

 -> Discrete adjoint of VDIFF subroutine that comes with CMAQv4.5

 -> calculates discrete vertical diffusion adjoint

 controlled by flag THETA, using Crank-Nicolson difference scheme

 THETA : Crank-Nicolson index [1, fully implicit | 0, fully explicit]

 -> designed specially for sensitivity tests

Associated tri-diagonal system is stored in 3 arrays

 DI: diagonal

 LI: sub-diagonal

 UI: super-diagonal

 BI: right hand side function

 XI: return solution from tridiagonal solver

 [DI(1) LI(2) 0 0 0 ... 0]

 [UI(1) DI(2) LI(3) 0 0]

 [0 UI(2) DI(3) LI(4) 0]

 [. ] XI(i) = BI(i)

 [. . . . 0]

 [. . . .]

 [0 UI(n-1) DI(n)]

 where n = NLAYS

INPUT:

 LGRID, EMGRID

OUTPUT:

 LGRID, EMGRID

• xadvppm_cad.F (Subroutine: XADV_CAD)

Function:

 Advection CONTINUOUS ADJOINT in the horizontal plane; x1-direction:

 The process time step is set equal to TSTEP(2). Boundary concentrations

 are coupled in RDBCON with SqRDMT = Sq. Root [det (metric tensor)]

 = Jacobian / (map scale factor)**2

 where Air Density X SqRDMT is loaded into last BCON slot for advection.

INPUT:

 CGRID

OUTPUT:

 CGRID

• yadvppm_cad.F (Subroutine: YADV_CAD)

Function:

 Advection CONTINUOUS ADJOINT in the horizontal plane; x2-direction:

 The process time step is set equal to TSTEP(2). Boundary concentrations

 are coupled in RDBCON with SqRDMT = Sq. Root [det (metric tensor)]

 = Jacobian / (map scale factor)**2

 where Air Density X SqRDMT is loaded into last BCON slot for advection.

INPUT:

 CGRID

OUTPUT:

 CGRID

• zadvppm_cad.F (Subroutine: ZADV_CAD)

Function:

 Advection CONTINUOUS ADJOINT in the vertical, x3-direction:

 The process time step is set equal to TSTEP

INPUT:

 CGRID

OUTPUT:

 CGRID

 6.4 Chemistry

Subroutines responsible for forward and reverse chemistry processes. These files are generated
using Kinetic PreProcessor (KPP). (courtesy: Amir Hakami)

• kppdriver.F – main driver to perform forward chemistry.

• kppdriver_adj.F – main driver to perform backward chemistry process on adjoint variable.

• kppcalcks.F - computes thermal and photolytic reaction rate coefficients for each reaction.

• KPP_Data_mod.F - mechanism & solver data for EBI solver.

• KPP_Init.F- to initialize species tolerances, arrays, and indices.

• KPP_Util.F – provides function to copy concentrations from USER to KPP and vice-versa.

• KPP_HessianSP.F - Hessian Sparse Data.

• KPP_JacobianSP.F - Sparse Jacobian Data.

• KPP_JacobianTE.F- provides subroutines: Jac_SP - the Jacobian of Variables in sparse
matrix representation, and JacTR_SP_Vec - sparse multiplication: sparse Jacobian transposed
times vector.

• KPP_Function.F - time derivatives of variables - Agregate form.

• KPP_Glob.F - declaration of global variables.

• KPP_Pars.F – model parameter definitions.

• KPP_Precision.F - Definition of different levels of accuracy for REAL variables using
KIND parameterization.

• kppModel.F - Completely defines the model CMAQ_CB4 by using all the associated
modules.

• KPP_HessianTE.F – provides subroutines: Hessian - function for Hessian (Jac derivative
w.r.t. variables) and Hess_Vec - Hessian times user vectors.

• KPP_LinAlg.F – Sparse Linear Algebra subroutines.

• kppIntegrator.F - Numerical Integrator (Time-Stepping) File.

• kppIntegrator_adj.F - Numerical Integrator Adjoint (Time-Stepping) File.

 6.5 Checkpoint Files

Subroutines used for reading and writing forward (CGRID) and adjoint (LGRID) concentrations.

• rd_*chk.F * = ‘ ’, ‘L3’, ‘L4’, ‘L5’, ‘L6’\ (Subroutine: RD_*CHK)

Function:

 Subroutine to perform reading from checkpoint file CONC_*CHK

INPUT:

 CGRID

• wr_*chk.F * = ‘ ’, ‘L3’, ‘L4’, ‘L5’, ‘L6’\ (Subroutine: WR_*CHK)

Function:

 Subroutine to perform writing to the checkpoint file CONC_*CHK

INPUT:

 CGRID

 6.6 Others

• modsciproc.F (Subroutine: SCIPROC)

Function:

 Controls all of the physical and chemical processes for a grid

 Operator splitting symmetric around chemistry

CAUTION:

 This is a modified SCIPROC subroutine with some of the physical processes

 such as ADJADV,PING,CLDPROC and AERO switched off. For the adjoint model

 only chemistry and transport processes are considered with this package.

INPUT:

 CGRID

OUTPUT:

 CGRID

Subroutines and functions called:

 All physical and chemical subroutines,

 DECOUPLE, COUPLE, VDIFF, XADV, YADV, ZADV, HDIFF

• sciproc_cadj.F (Subroutine: SCIPROC_CADJ)

Function:

 Controls all of the physical and chemical adjoint processes for a grid

 Operator splitting symmetric around chemistry

INPUT:

 LGRID, CGRID

OUTPUT:

 LGRID

Subroutines and functions called:

 All physical and chemical subroutines,

 VDIFF_ADJ, XADV_CAD, YADV_CAD, ZADV_CAD, HDIFF_ADJ

• modsciproc_cadj.F (Subroutine: SCIPROC_CADJ)

Function:

 ->Controls all of the physical and chemical adjoint processes for a grid

 ->Operator splitting symmetric around chemistry

 ->Designed for use with sensitivity analysis

INPUT:

 LGRID, EMGRID

OUTPUT:

 LGRID

Subroutines and functions called:

 All physical and chemical subroutines,

 VDIFF_ADJ, XADV_CAD, YADV_CAD, ZADV_CAD, HDIFF_ADJ

• calc_bggrad.F (Subroutine: BG_GRAD_UPDATE)

Function:

 Calculates the background cost-function value and updates

 adjoint variable for initial time

CAUTION:

 ->This subroutine is being constructed for current test problem.

 ->One needs to modify the formulas according to his/her needs.

INPUT:

 CGRID - Current concentration field (read from CONC_CHK)

 LGRID - Adjoint variable to be updated

 CF - Cost-Function update variable

 JDATE,JTIME - Current date and time step values

DATA READ FROM FILES:

 CBGRID – background (perturbed) conc from file: CONC_L5CHK

OUTPUT:

 LGRID,CF

• calc_obsgrad.F (Subroutine: OBS_GRAD_UPDATE)

Function:

 Calculates the observation cost-function update value and updates

 adjoint variable for the current dynamic time-step

CAUTION:

 This subroutine uses model-observations to calculate cost function

 and its gradient. One needs to modify the formulaes and I/O procedures

 to incorporate real-observations.

INPUT:

 CGRID - Current concentration field

 LGRID - Adjoint variable to be updated

 CF - Cost-Function update variable

 JDATE,JTIME - Current date and time step values

DATA READ FROM FILES:

 CHKGRID - observed(reference) conc from file: CONC_L3CHK

OUTPUT:

 LGRID,CF

• tridiag_adj.F (Subroutine: ADTRIDIAG)

FUNCTION:

 -> Discrete adjoint of TRIDIAG subroutine that comes with CMAQv4.5

 -> Solves tridiagonal system by Thomas algorithm. Algorithm fails

 (M3ERR) if first pivot is zero. In that case, rewrite the

 equation as a set of order KMAX-1, with X(2) trivially eliminated.

Associated tri-diagonal system is stored in 3 arrays

 D : diagonal

 L : sub-diagonal

 U : super-diagonal

 B : right hand side function

 X : return solution from tridiagonal solver

 [D(1) L(2) 0 0 0 ... 0]

 [U(1) D(2) L(3) 0 0]

 [0 U(2) D(3) L(4) 0]

 [. ] X(i) = B(i)

 [. . . . 0]

 [. . . L(n)]

 [0 . D(n)]

 where n = NLAYS

• routines.f (Subroutine: setulb)

Function:

 This subroutine partitions the working arrays wa and iwa, and then uses

 the limited memory BFGS method to solve the bound constrained

 optimization problem by calling mainlb.(The direct method will be used

 in the subspace minimization.)

INPUT:

 x,f,g

OUTPUT:

 x

|----------------||---------------------||-------------------||------------------||-------------------||----------------|

