This Exam is being given under the guidelines of the Honor Code. You are expected to respect those guidelines and to report those who do not. There are 4 questions for a total of 100 points.

1. Define $f(x)=\int_{0}^{x} \frac{\log (1+t)}{t} \mathrm{~d} t$.
(a) Obtain a polynomial approximation for the integrand about $t=0$. Using this, derive a polynomial approximation for $f(x)$ about $x=0$.
(b) Bound the error in approximation to $f(x)$, with $|x| \leq 1$, as a function of the degree n of the polynomial.
(c) Compute the integral for several values of n, at different values of the argument x and assess the accuracy of the approximation, given that

$$
f(0.01)=0.00997511, \quad f(0.1)=0.0976052, \quad f(0.5)=0.448414, \quad f(1)=\frac{\pi^{2}}{12} .
$$

2. (a) In some situations, loss-of-significance errors can be avoided by rearranging the function being evaluated. Show how to avoid such errors in the following function, where x is near 0 :

$$
f(x)=\frac{1-\cos (x)}{x^{2}} .
$$

(b) Write a matlab program to compute the function value for argument values $x=1 . e-3 \cdot i$, for all $i=1, \cdots, 100$. Using Matlab's semilogy function plot the error (the difference between the two formulas) as a function of x. Discuss the results.
3. Calculate the condition number of the following matrix

$$
A=\left[\begin{array}{ll}
1 & c \\
c & 1
\end{array}\right]
$$

using $\|\cdot\|_{\infty}$.
How well- or ill-conditioned if the matrix for $0<c<1$?
Explain this conditioning geometrically.
Hint: $\|A\|_{\infty}=\max _{i} \sum_{j}\left|a_{i, j}\right|$.
4. (a) Consider the Hilbert matrix, whose entries are

$$
H_{i, j}=\frac{1}{i+j-1}, \quad 1 \leq i, j \leq n .
$$

Consider also the vector

$$
b_{i}=\sum_{j=1}^{n} \frac{1}{i+j-1}, \quad 1 \leq i \leq n .
$$

Write a program that solves the system

$$
H x=b
$$

You can use Matlab.
Bonus points: write the program in C or Fortran using calls to LAPACK library (the functions dgetrf and dgetrs).
(b) What is the exact solution $x_{\text {exact }}$ of the system?

Solve the system repeatedly for different values of $n, 2 \leq n \leq 12$. How accurate are the numerical solutions $x_{\text {numeric }}$? Tabulate the solution errors

$$
e(n)=\frac{\| x_{\text {numeric }}-x_{\text {exact } \|}}{\| x_{\text {exact } \|}}
$$

as a function of n. You can plot errors versus n using matlab's semilogy function. Explain in detail the results.

