# CS 4414, Spring 2012 Homework \#4 

April 17, 2012

Consider the Runge function

$$
\begin{equation*}
f(x)=\frac{1}{1+x^{2}}, \quad x \in[a, b] \tag{1}
\end{equation*}
$$

where $a=-5$ and $b=5$.

## Problem 1

Consider the interpolation points

$$
x_{1}=a, \quad x_{2}=(a+b) / 2, \quad x_{3}=b .
$$

Construct the quadratic interpolant for the Runge function at $x_{0}, x_{1}, x_{2}$ using:

1. the direct approach (Vandermonde matrix)
2. Lagrange interpolation
3. Newton divided differences interpolation

## Problem 2

Write a program to compute the interplant of degree $n$ at the points $x_{1}, \ldots, x_{n+1}$. Plot the function and the polynomial interpolant on the same graphic for $n=4,6,10$.

1. Choose equidistant points

$$
x_{i}=a+\frac{b-a}{n}(i-1), \quad i=1, \ldots, n+1 .
$$

2. Choose the points to be the projections of equally distributed points along a half circle:

$$
x_{i}=\frac{b-a}{2} \cos \left(\frac{\pi}{n}(i-1)\right), \quad i=1, \ldots, n+1
$$

Comment on the differences you observe between the quality of the interpolation with the two choices of points.

