CS 4414, Spring 2012 Homework \#2

February 23, 2012

Problem 1: Taylor series

Construct a Taylor series for the following function about $x=0$, and bound the error when truncating after n terms. Hint: expand the integrand in Taylor series, then integrate each term.

$$
\begin{equation*}
f(x)=\frac{1}{x} \int_{0}^{x} e^{-t^{2}} d t \tag{1}
\end{equation*}
$$

Problem 2: Summation

Write a computer program to form the sum $\sum_{j=1}^{n} \frac{1}{j^{2}}$ in two ways: (1) from smallest to largest, (2) from largest to smallest. Comment on the accuracy of the results for different (large) values of n.

Problem 3: Iterative methods

Implement Jacobi iterations in Matlab. You should provide a matlab function $\mathrm{x}=\mathrm{my}$ _jacobi $(\mathrm{A}, \mathrm{b}, \mathrm{x} 0, \mathrm{n})$
that performs n Jacobi iterations to solve the system $A x=b$, starting from the value x_{0}.

Implement Gauss-Seidel iterations in Matlab. You should provide a matlab function
$\mathrm{x}=\mathrm{my} \mathrm{gss}^{(\mathrm{A}, \mathrm{b}, \mathrm{x} 0, \mathrm{n})}$;
that performs n Gauss-Seidel iterations to solve the system $A x=b$, starting from the value x_{0}.

Choose a system (A and b) of dimension 10. Find its solution
xref $=A \backslash b ;$
For each of the above implementations, compute the error norm $\operatorname{err}(\mathrm{n})=$ norm(x-xref) for the solution obtained after n iterations.

Plot the error against the number of iterations using Matlab's semilogy function. Plot both curves (Jacobi and Gauss Seidel) on the same plot. Discuss the results.

