
CS/MATH–4414 Homework #1

Computer Arithmetic

January 31, 2012

Implement each of the following programs in Fortran or C. Run them. The homework

will carefully display the results and fully discuss/explain them.

Problem. Run the following program program several times (with i = 1,2,3,4,5) and ex-

plain the results.

program test_int

implicit none

integer :: m,i

m = 2147483645

do i=1,10

print*,’i=’,i,’. m+i=’,m+i

end do

end program test_int

Run the program several times, with i = 1,2,3,4,5 and explain the results.

Problem. Run the following program and explain the results.

program test

real :: a, p

double precision :: b

print*, ’please provide p:’

read*, p

b = (1.99d0+p)*(2.d0**127)

print*, b

1

A. Sandu. CS/MATH–4414, Spring 2012. Computer Arithmetic 2

a = b

print*, a

print*, ’normal end here !’

end program test

Problem.

program test

real :: a=1.0, b=-1.0E+8, c=9.999999E+7

read :: d, r1, r2

d = sqrt(b**2-4.0*a*c)

r1 = (-b+d)/(2.0*a)

r2 = (-b-d)/(2.0*a)

print*, r1, r2

end program test

The exact results are −1 and −c, and we expect the numerical results to be close approxima-

tions. Run the code and explain the results. What kind of errors are corrupting the result?

Which is the critical stage of the calculation?

Re-run the code with all variables declared double precision. Explain the results.

To overcome the cancellation implement the mathematically equivalent formulas:

e1,2 =
2c

−b∓
√
b2 − 4ac

.

Problem. Consider the Fortran code

program test

real :: x=100000.0, y=100000.1, z

z = y-x

print*, ’z=’,z

end program test

We would expect the output

Z = 0.1000000

What do we get? Explain.

A. Sandu. CS/MATH–4414, Spring 2012. Computer Arithmetic 3

Problem. Run the code and explain the results:

program test

real :: x=12345.6, y=45678.9, z=98765432.1

real :: w1, w2

w1 = x*y/z

w2 = y*(x*(1.0/z))

print*, w1-w2

end program test

Problem. Write a program that computes the smallest positive floating point number

(2−p) in single and in double precision. What is p in each case?

Problem. The following F90 code fragment is an attempt to find the ǫ-machine in double

precision.

double precision function wlamch()

integer :: i

double precision :: sum, eps

eps = 1.0d0

do i = 1, 80

eps = eps*0.5d0

sum = 1.0 + eps

if (sum.le.1.0d0) then

wlamch = eps*2

return

end if

end do

print*,’error in wlamch. eps < ’,eps

end function wlamch

Run the program. The returned accuracy is smaller than expected (in fact, it corresponds

to extended precision).

Another implementation (see LAPACK) can be considered along the following lines:

A. Sandu. CS/MATH–4414, Spring 2012. Computer Arithmetic 4

double precision function wlamch()

integer :: i

double precision :: sum, eps

double precision, parameter :: one=1.0d0

eps = one

do i = 1, 80

eps = eps*0.5d0

call wlamch_add(one,eps,sum)

if (sum.le.one) then

wlamch = eps*2

return

end if

end do

print*,’error in wlamch. eps < ’,eps

end function wlamch

subroutine wlamch_add(a, b, sum)

double precision a, b, sum

sum = a + b

end subroutine wlamch_add

Now the reported accuracy is in line with our expectations.

Explain in detail what causes the difference in results between the 2 implementations.

