
A Shared Memory Parallel Algorithm
for Data Reduction

Using the Singular Value Decomposition

Rhonda Phillips, Layne Watson, Randolph Wynne

April 16, 2008



Outline

• Motivation

• Algorithms

• Study Area

• Results and Analysis

• Implementation Details

• Conclusions

2 Virginia Tech



Motivation

• Satellite images are increasing in size.

• Spectral and spatial resolutions are increasing.

• Having too many features for the training dataset
degrades classification accuracy (overfitting
issues).

• The SVD can be expensive to compute, especially
for a large dataset.

3 Virginia Tech



SVD-based feature reduction
• SV DReduce:

• Consider X = UΣV t to be m × n and
m << n.

• In order to represent X using k dimensions
(k < m), set the singular values in positions

k + 1 to m in Σ to zero to form Σ̃.

• X can be represented by coordinates Σ̃V t.

• SV DTrainingReduce:
• Instead of using the image X as in

SV DReduce, a representative training data

set T is used to compute T = ÛΣ̂V̂ t.

• X is projected onto the basis set Û .

4 Virginia Tech



Study Area

0 190 380 570 76095
Meters

A hyperspectral image containing 224 bands taken over
the Appomattox Buckingham State Forest was used to
obtain all execution times listed.

5 Virginia Tech



Execution Times for SVDReduce

U , the left singular vectors, are computed using the
image X, and X is projected onto U .

Operation Time (seconds)
SVD Factorization 340.04
Matrix-Vector Multiply 184.33
Other 8.05
Total 532.42

6 Virginia Tech



Execution Times for SVDTrainingReduce

Û , the left singular vectors, are computed using the

training data T , and X is projected onto Û .

Operation Time (seconds)
SVD Factorization .24
Matrix-Vector Multiply 180.07
Other 4.71
Total 185.02

7 Virginia Tech



Parallel SVD based feature reduction

• SV DTrainingReduce is faster than SV DReduce,
and is more suited to run on a parallel computer.

• The SVD factorization and the projection of X

onto Û can be computed in parallel.

• The SVD factorization requires much less
execution time than projecting X onto Û .

• In practice, using a (shared memory) parallel
SVD factorization was slower than using the
serial SVD factorization.

8 Virginia Tech



Parallel Speedup

20 40 60 80 100 120
processors

20

40

60

80

100

120

speedup

ideal static guided default

Parallel speedup of pSV DTrainingReduce including
all input/output operations.

9 Virginia Tech



Parallel Speedup

20 40 60 80 100 120
processors

25

50

75

100

125

150

175

speedup

ideal static guided default

Parallel speedup of pSV DTrainingReduce without
input/output execution times included.

10 Virginia Tech



Implementation Issues

• Scheduling

• Data Placement

• Private vs. Shared variables

• Cache

11 Virginia Tech



Scheduling
The speedup increase using all processors can be
repeated on smaller SGI Altixes.

2 4 6 8 10 12
processors

5

10

15

20

speedup

ideal static guided default

Speedup without input/output using 12 processors.

12 Virginia Tech



Scheduling

• Referring to previous speedup graphs, there is an
increase in speedup when guided scheduling and
all processors are used.

• Guided scheduling is a type of dynamic
scheduling that varies the chunk size.

• This speedup is also observed for dynamic
scheduling.

• Although these are dynamic scheduling strategies,
data initialization and placement (using dplace)
is important.

• Allowing the underlying hardware and software
to assign work to processors results in a large
speedup, but only when using all processors.

13 Virginia Tech



Scheduling

2 4 6 8
chunk size

12

14

16

18

execution time

static dynamic guided guided�no dplace

Illustration of execution time differences using various
scheduling and data placement strategies when all
processors are involved in computation.

14 Virginia Tech



Data Placement

50 60 70 80 90 100
processors

40

60

80

100

120
speedup

ideal static guided default

In this zoom of parallel speedup without input/output,
the static and guided scheduling strategies using
dplace and consistent memory access outperform a
naive approach.

15 Virginia Tech



Variable Storage

• U is the basis set that every vector in X is
projected onto.

• U can be physically stored as static or dynamic
memory, and can be private or shared across
processors during parallel execution.

Execution times for different methods of storing U
using 12 processors.

Variable Type Time (seconds)
static shared 20.586
static private 17.741
dynamic shared 17.419

16 Virginia Tech



Cache optimization

• In the previous slide, cache coherency overhead
resulted in increased execution times for static
memory that is shared across processors.

• As this algorithm was implemented in Fortran
95, which uses column major order, all data is
accessed by column.

• Each processor then accesses data elements
in the order they are laid out in memory,
maximizing cache hits.

• The data is also distributed across columns
to minimize the likelihood that processors are
operating on the same cache line.

17 Virginia Tech



Conclusions
• pSV DTrainingReduce is faster than

SV DTrainingReduce, which is faster and
parallelizes better than SV DReduce.

• If input/output are excluded from the execution
times, pSV DTrainingReduce scales well to 128
processors since the SVD factorization is a small
portion of the algorithm.

• Even for straightforward parallel algorithms such
as pSV DTrainingReduce, performance tuning is
essential.

• There is something interesting happening “under
the hood” of the SGI Altix when dynamic
scheduling strategies are employed and all
processors are utilized.

18 Virginia Tech


