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Motivation

• Satellite images are increasing in size.

• Spectral and spatial resolutions are increasing.

• Having too many features for the training dataset
degrades classification accuracy (overfitting
issues).

• The SVD can be expensive to compute, especially
for a large dataset.
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SVD-based feature reduction
• SV DReduce:

• Consider X = UΣV t to be m × n and
m << n.

• In order to represent X using k dimensions
(k < m), set the singular values in positions

k + 1 to m in Σ to zero to form Σ̃.

• X can be represented by coordinates Σ̃V t.

• SV DTrainingReduce:
• Instead of using the image X as in

SV DReduce, a representative training data

set T is used to compute T = ÛΣ̂V̂ t.

• X is projected onto the basis set Û .
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Study Area
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A hyperspectral image containing 224 bands taken over
the Appomattox Buckingham State Forest was used to
obtain all execution times listed.
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Execution Times for SVDReduce

U , the left singular vectors, are computed using the
image X, and X is projected onto U .

Operation Time (seconds)
SVD Factorization 340.04
Matrix-Vector Multiply 184.33
Other 8.05
Total 532.42
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Execution Times for SVDTrainingReduce

Û , the left singular vectors, are computed using the

training data T , and X is projected onto Û .

Operation Time (seconds)
SVD Factorization .24
Matrix-Vector Multiply 180.07
Other 4.71
Total 185.02
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Parallel SVD based feature reduction

• SV DTrainingReduce is faster than SV DReduce,
and is more suited to run on a parallel computer.

• The SVD factorization and the projection of X

onto Û can be computed in parallel.

• The SVD factorization requires much less
execution time than projecting X onto Û .

• In practice, using a (shared memory) parallel
SVD factorization was slower than using the
serial SVD factorization.
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Parallel Speedup
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Parallel speedup of pSV DTrainingReduce including
all input/output operations.
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Parallel Speedup
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Parallel speedup of pSV DTrainingReduce without
input/output execution times included.
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Implementation Issues

• Scheduling

• Data Placement

• Private vs. Shared variables

• Cache
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Scheduling
The speedup increase using all processors can be
repeated on smaller SGI Altixes.
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Speedup without input/output using 12 processors.
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Scheduling

• Referring to previous speedup graphs, there is an
increase in speedup when guided scheduling and
all processors are used.

• Guided scheduling is a type of dynamic
scheduling that varies the chunk size.

• This speedup is also observed for dynamic
scheduling.

• Although these are dynamic scheduling strategies,
data initialization and placement (using dplace)
is important.

• Allowing the underlying hardware and software
to assign work to processors results in a large
speedup, but only when using all processors.
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Scheduling
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Illustration of execution time differences using various
scheduling and data placement strategies when all
processors are involved in computation.
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Data Placement
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In this zoom of parallel speedup without input/output,
the static and guided scheduling strategies using
dplace and consistent memory access outperform a
naive approach.
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Variable Storage

• U is the basis set that every vector in X is
projected onto.

• U can be physically stored as static or dynamic
memory, and can be private or shared across
processors during parallel execution.

Execution times for different methods of storing U
using 12 processors.

Variable Type Time (seconds)
static shared 20.586
static private 17.741
dynamic shared 17.419
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Cache optimization

• In the previous slide, cache coherency overhead
resulted in increased execution times for static
memory that is shared across processors.

• As this algorithm was implemented in Fortran
95, which uses column major order, all data is
accessed by column.

• Each processor then accesses data elements
in the order they are laid out in memory,
maximizing cache hits.

• The data is also distributed across columns
to minimize the likelihood that processors are
operating on the same cache line.
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Conclusions
• pSV DTrainingReduce is faster than

SV DTrainingReduce, which is faster and
parallelizes better than SV DReduce.

• If input/output are excluded from the execution
times, pSV DTrainingReduce scales well to 128
processors since the SVD factorization is a small
portion of the algorithm.

• Even for straightforward parallel algorithms such
as pSV DTrainingReduce, performance tuning is
essential.

• There is something interesting happening “under
the hood” of the SGI Altix when dynamic
scheduling strategies are employed and all
processors are utilized.
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