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Outline
❚  How to Find DEVS Materials:
❚       Google: ACIMS
❚ DEVS Key Concepts
❚ DEVS Tools and Distributed DEVS Tools:
❚     DEVS/Grid, DEVS/P2P, DEVS/SOA...
❚ DEVS/RMI—A Reconfigurable Distributed DEVS 

Framework
❚ Solving large-scale simulation models using 

DEVS/RMI
❚ DEVS in the near future
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What is and Why Use DEVS
❚ DEVS—Discrete Event System Specification
❚ Strictly Defined Modeling and Simulation Framework based 

on DEVS Formalism.
❚ Flexible Hierarchical Modeling and Simulation Structure.
❚ Support Model Reuse by Model Repository.
❚ Support both discrete event and continuous system 

modelling and simulation.
❚ Can be used for formalized design  and system design 

verification and validation.
❚ Can be used for agent-based simulation.
❚ And more...
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DEVS and Non-DEVS based Simulation

❚ DEVS is formalized.
❚ DEVS is hierarchical.
❚ Clearly separating modeling and simulation 

framework.
❚ Models' behavior and their inter-relation 

are separated.
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Concept View of Entity Relationship[*]
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Separate Model and Simulator [*]
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DEVS Formalism
❚ DEVS stands for Discrete Event System 

Specification.
❚ DEVS Formalism is used to strictly define the 

model component behaviour.
❚ DEVS Formalism has many extensions to 

satisfy the emerging requirements.
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Basic DEVS Formalism[*]
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Basic Concept in DEVS[*]
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Internal Transition[*]
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External Transition[*]
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Confluent Function[*]
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Basic DEVS Formalism Example[*]
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Hierarchical Model Construction[*]
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DEVS Tools
❚ ADEVS (by Dr. Nutaro, ORNL)
❚ CD++ (by Dr. Wainer, Carleton Univ.)
❚ Tools Developed at ACIMS, Univ. of Arizona: 
❚ DEVSJAVA
❚ DEVS/CORBA
❚ DEVS/Grid
❚ DEVS/P2P
❚ DEVS/SOA
❚ DEVS/HLA
❚ DEVS/RMI
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DEVSJAVA
❚ Java Implementation of DEVS
❚ Support discrete and continuous system 

modeling and simulation
❚ Support As-Fast-As-Can, Real Time DEVS 

simulation.
❚ Support Distributed Simulation, but with 

limited functionalities.
❚ Support dynamic structure changes 

through “variable structure”.
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Distributed DEVS--Why?
❚ Reducing model execution time.
❚ Overcoming limited memory for a single 

machine to handle large models.
❚ Obtaining scalable performance.
❚ Handling geographically distributed users 

and/or resources (e.g., databases, 
specialized equipment).

❚ Integrating simulations running on 
different platforms.

❚ Dealing with fault tolerance.
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DEVS/P2P[1]

❚ Use JXTA Pipe Interface as middleware to 
support distributed Execution of DEVS.

❚  Need additional layer for simulation time 
management.

❚ Prototype developed, not see application 
on complex and large-scale models.
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DEVS/P2P-architecture
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DEVS/P2P-communication between simulators
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DEVS/Grid [2]

❚ Use Grid infrastructure to run DEVS in 
distributed fashion.

❚ Rely on existing Grid management 
framework, such as Globus.

❚ Not see application on solving real-world 
simulation models.
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DEVS/Grid [2]-architecture
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DEVS/SOA—recent advance [3]

❚ Use SOA as the basis architecture.
❚ Use most current web service technology.
❚ DEVS can be run on internet !
❚ Performance is the big issue?
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DEVS/SOA-architecture
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DEVS/RMI--Motivation

❚ Portable distributed simulation framework
❚ Support dynamic re-configuration of 

simulation in a distributed environment
❚ Eliminate the model code change when 

mapping models to computing nodes
❚ Flexible to implement partition algorithm 

in a distributed environment
❚ Toward very large-scale distributed 

simulation.
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Java RMI(1)
❚ Maintaining the original object architecture 

built for a single processor, which is important 
for building large-scale scalable system. 

❚ Task or computing workload distribution is at 
object level, which helps on solving load-
balance, fault-tolerance problems in 
distributed computing in an easier way. 

❚ Make the design of highly dynamic and 
reconfigurable distributed framework easier; 
Systems integration can be performed to a 
higher degree.
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Java RMI(2)
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DEVS/RMI Architecture
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DEVS/RMI-A Flexible 
Framework
❚ Integrate Java RMI to existing DEVS/JAVA 

objects framework.
❚ Using both local and remote simulators.
❚ No additional simulation time 

management.
❚ No model code change except adding a 

new attribute for model code to assign 
model to computing node.

❚ Flexible and dynamic re-configurable.



 30

DEVS/RMI--Simulator 
Relations
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DEVS/RMI-- RMI Overhead 
Test
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DEVS/RMI--RMI Overhead
Simulation Execution Time vs. No. of "Processors"
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DEVS/RMI-Reconfigurable 
Framework(1)

❚ Supports run-time model migration across 
machines.

❚ Model states are kept persistent.
❚ Model structure can evolve during a 

distributed simulation execution.
❚ High-level support of run-time model re-

partition.
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DEVS/RMI-Reconfigurable 
Framework(3)
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DEVS/RMI-Reconfigurable 
Framework(4)

Overhead vs. No. of Migrated Models
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Model Partition in 
DEVS/RMI(1)

ViewableAtomic A1 = new generator("A1","node2");
add(A1);
ViewableAtomic A11 = new generator("A11","node3");
add(A11);
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Model Partition in 
DEVS/RMI(2)
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Model Partition in DEVS/RMI(3) 
--Dynamic model repartition
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Model Partition in 
DEVS/RMI(4)

❚ Increase locality whenever possible using 
model domain decomposition.

❚ Overhead incurred by dynamic repartition 
should be carefully evaluated.

❚ Load balance technique needs to be 
applied whenever necessary.
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DEVS/RMI on large-scale 
model

Hilly Terrain Model
❚ Measure the shortest travel time for a 

traveller in a 2D space with hills.
❚ The “direction” of traveller is determined 

by the gradient of hill at certain point.
❚ Increasing the resolution results in using 

larger cell space. 
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Why use DEVS/RMI
❚ Express the continuous spatial model 

using DEVS Quantization Technique.
❚ 2D DEVS Cellular Space is used.
❚ Problems:

❙ cell space should be large enough to get 
necessary resolution, which results in “out of 
memory” in a single machine.

❙ Simulation execution time increases 
significantly when cell space increases.

❚ Solution: Distributed Simulation using 
DEVS/RMI.
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Hilly Terrain Model in DEVS
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Computation Domain Decompose 
for Hilly Terrain Model
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Measure the Travel Time
Travel Time vs. No. of Cells

0

100

200

300

400

500

600

700

800

900

1000

0 10000 20000 30000 40000 50000

Number of Cells

Tr
av

el
 T

Im
e

one hill
four hills

Travel Time vs. No. of Hills

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25

Number of Hills

Tr
av

el
 T

im
e

100 by 100 cell space



 46

Speedup of Distributed 
Simulation

Speedup of Simulation
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Studying Valley Fever 
Model
❚ Distributed simulation of Valley fever 

model, a highly dynamic 2D cell space, 
using DEVS/RMI

❚ Static model partition and “activity” based 
dynamic repartition are used

❚ Simulation execution performance is 
measured in terms of different computing 
workload

❚ Effects of “activity” based repartition is 
studied.
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Valley Fever Java Model in 
DEVS

 
Valley fever model in Simview
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Original model distributed 
simulation performance
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Injecting workload
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Dynamic repartition using 
“activity”

❚ “activity” metric is measured by counting 
the internal transitions of each individual 
cell.

❚ “activity” metric is used to repartition the 
model dynamically to achieve better load 
balance.

❚ High “activity” cells are assigned more 
computing power.
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Valley Fever Model-using 
activity

Using 5 computing 
nodes including 1 head 
node. 

Static Blind Partition not 
considering model 
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Performance Issues

❚ Distributed Simulation performance of 
DEVS/RMI closely relates to the 
computation and RMI communication 
workload partitions.

❚ Load balance is a key factor.
❚ Locality should be increased whenever 

possible.
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Advantages of DEVS/RMI
❚ DEVS/RMI provides an flexible and easy-

to-use reconfigurable distributed 
simulation framework.

❚ Refactoring a distributed simulation 
becomes easier.

❚ Support run-time model structure 
evolution in a distributed environment.

❚ Achieves significant speedup when 
dealing with large-scale model.
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DEVS in the near future

❚ SOA based architecture.
❚ Running on P2P network 
❚ Towards to distributed execution.
❚ Towards running on grid.
❚ Keep its role as a formalized modeling 

framework.
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Thank You! 

Questions?
Email: mizhang@site.uottawa.ca

Google: ACIMS

mailto:mizhang@site.uottawa.ca
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