
 1

DEVS Tutorial--
DEVS and Distributed DEVS

Ming Zhang, PhD
Paradise Research Laboratory

School of Information Technology and Engineering
University of Ottawa

 2

Outline
❚ How to Find DEVS Materials:
❚ Google: ACIMS
❚ DEVS Key Concepts
❚ DEVS Tools and Distributed DEVS Tools:
❚ DEVS/Grid, DEVS/P2P, DEVS/SOA...
❚ DEVS/RMI—A Reconfigurable Distributed DEVS

Framework
❚ Solving large-scale simulation models using

DEVS/RMI
❚ DEVS in the near future

 3

What is and Why Use DEVS
❚ DEVS—Discrete Event System Specification
❚ Strictly Defined Modeling and Simulation Framework based

on DEVS Formalism.
❚ Flexible Hierarchical Modeling and Simulation Structure.
❚ Support Model Reuse by Model Repository.
❚ Support both discrete event and continuous system

modelling and simulation.
❚ Can be used for formalized design and system design

verification and validation.
❚ Can be used for agent-based simulation.
❚ And more...

 4

DEVS and Non-DEVS based Simulation

❚ DEVS is formalized.
❚ DEVS is hierarchical.
❚ Clearly separating modeling and simulation

framework.
❚ Models' behavior and their inter-relation

are separated.

 5

Concept View of Entity Relationship[*]

Source
System Simulator

Model

Experimental Frame

Simulation
Relation

Modeling
Relation

behavior database

 6

Separate Model and Simulator [*]

Simulator

Single
processor

Distributed
Simulator

Real-Time
Simulator

C++

Non
DEVS

DEVS

Java

Other
Representation

DEVS
Simulation

Protocol

The DEVS simulation
protocol is the agreement
between the DEVS
modeler and the
implemented simulator

 7

DEVS Formalism
❚ DEVS stands for Discrete Event System

Specification.
❚ DEVS Formalism is used to strictly define the

model component behaviour.
❚ DEVS Formalism has many extensions to

satisfy the emerging requirements.

 8

Basic DEVS Formalism[*]

 9

Basic Concept in DEVS[*]

x0 x1X

S

Y
y0

e

t0 t1 t2

 10

Internal Transition[*]

ss

Generate outputGenerate output

outputoutput

Make a transition
s’

Make a transition
s’s’

Time advanceTime advance using the
internal
transition
function

using the
output
function

 11

External Transition[*]

Time advance

inputinput

Make a transitionMake a transition

elapsed
time

using the
external
transition
function

 12

Confluent Function[*]

Time advance

inputinput

Make a transitionMake a transition

elapsed
time

Generate outputGenerate output

outputoutput

using the
confluent
transition
function

 13

Basic DEVS Formalism Example[*]

60ft
35 min

1 hr

40ft
25 min

5 min
5ft

Dive
Plan

Emergency
Phone

Call
Response

60ft
35 min

1 hr

40ft
25 min

5 min
5ft

Dive
Plan

Emergency
Phone

Call
Response

 14

Hierarchical Model Construction[*]

Atomic

Atomic

Atomic: lowest level model,
contains structural
dynamics -- model level
modularity

Atomic

Atomic

+ coupling

Atomic

A to m ic

A to m i c

 Coupled: composed of
one or more atomic
and/or coupled
models hierarchical

construction

SimpA
rc.efa

 15

DEVS Tools
❚ ADEVS (by Dr. Nutaro, ORNL)
❚ CD++ (by Dr. Wainer, Carleton Univ.)
❚ Tools Developed at ACIMS, Univ. of Arizona:
❚ DEVSJAVA
❚ DEVS/CORBA
❚ DEVS/Grid
❚ DEVS/P2P
❚ DEVS/SOA
❚ DEVS/HLA
❚ DEVS/RMI

 16

DEVSJAVA
❚ Java Implementation of DEVS
❚ Support discrete and continuous system

modeling and simulation
❚ Support As-Fast-As-Can, Real Time DEVS

simulation.
❚ Support Distributed Simulation, but with

limited functionalities.
❚ Support dynamic structure changes

through “variable structure”.

 17

Distributed DEVS--Why?
❚ Reducing model execution time.
❚ Overcoming limited memory for a single

machine to handle large models.
❚ Obtaining scalable performance.
❚ Handling geographically distributed users

and/or resources (e.g., databases,
specialized equipment).

❚ Integrating simulations running on
different platforms.

❚ Dealing with fault tolerance.

 18

DEVS/P2P[1]

❚ Use JXTA Pipe Interface as middleware to
support distributed Execution of DEVS.

❚ Need additional layer for simulation time
management.

❚ Prototype developed, not see application
on complex and large-scale models.

 19

DEVS/P2P-architecture

activator

s1

s3

s4

s1

s2

s1

s2

activator

activator

Virtual Node_01

tA, message

C3.a1

C2.a1

Virtual Node_02

Virtual Node_n

a1 a2 C3.a1

c4

C3.a2 c5

deployer

C3.a1a1 a2 C3.a1

C2.a1 c4

C3.a2 c5

s2

a1
a2

C3.a1

C3.a2

C3.a1

c4

C3.a2

c5

 20

DEVS/P2P-communication between simulators

DEVS

Output pipe Input pipe

Model Model

Output port Input port

DEVS msg

(JXTA Protocol)

(DEVS protocol)

DEVS/J XTA

J XTA

simulator simulator

Input pipe listener
JXTA msg

DEVS msg

P2P Simulator
Proxy

(DEVS/P2P Protocol)

P2P Simulator
Proxy

JXTA msg

 21

DEVS/Grid [2]

❚ Use Grid infrastructure to run DEVS in
distributed fashion.

❚ Rely on existing Grid management
framework, such as Globus.

❚ Not see application on solving real-world
simulation models.

 22

DEVS/Grid [2]-architecture

 23

DEVS/SOA—recent advance [3]

❚ Use SOA as the basis architecture.
❚ Use most current web service technology.
❚ DEVS can be run on internet !
❚ Performance is the big issue?

 24

DEVS/SOA-architecture

 25

DEVS/RMI--Motivation

❚ Portable distributed simulation framework
❚ Support dynamic re-configuration of

simulation in a distributed environment
❚ Eliminate the model code change when

mapping models to computing nodes
❚ Flexible to implement partition algorithm

in a distributed environment
❚ Toward very large-scale distributed

simulation.

 26

Java RMI(1)
❚ Maintaining the original object architecture

built for a single processor, which is important
for building large-scale scalable system.

❚ Task or computing workload distribution is at
object level, which helps on solving load-
balance, fault-tolerance problems in
distributed computing in an easier way.

❚ Make the design of highly dynamic and
reconfigurable distributed framework easier;
Systems integration can be performed to a
higher degree.

 27

Java RMI(2)

 28

DEVS/RMI Architecture

 29

DEVS/RMI-A Flexible
Framework
❚ Integrate Java RMI to existing DEVS/JAVA

objects framework.
❚ Using both local and remote simulators.
❚ No additional simulation time

management.
❚ No model code change except adding a

new attribute for model code to assign
model to computing node.

❚ Flexible and dynamic re-configurable.

 30

DEVS/RMI--Simulator
Relations

 31

 DEVS
Model

Decomposing Model

Sub-Models (Atomic
or Coupled)

RMICoordinator

Create and Assign
Local S imulators

If sub_model.putwhere =
“remote host”

Parsing as
parameters

Load the model to
“Remote Host”, create
the simulators there,
obtains the Remote
References of the

Remote Simulators.

Dynamic Creation of
Remote Simulators

Static Creation of Remote
Simulators

Create Remote
References of the

Remote Simulators
using pre-defined RMI

URL.

Initialize RMICoordinator

Start Execution of
Distributed Simulation

DEVS/RMI Simulation
Controller

 32

DEVS/RMI-- RMI Overhead
Test

Generator

Processor10

Processor11

Processor1n

………….

Machine 1 Machine 2

 33

DEVS/RMI--RMI Overhead
Simulation Execution Time vs. No. of "Processors"

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200

Number of "Processors"

Si
m

ul
at

io
n

Ex
ec

ut
io

n
Ti

m
e(

Se
co

nd
s)

Single Machine
3 Machines

 34

DEVS/RMI-Reconfigurable
Framework(1)

❚ Supports run-time model migration across
machines.

❚ Model states are kept persistent.
❚ Model structure can evolve during a

distributed simulation execution.
❚ High-level support of run-time model re-

partition.

 35

DEVS/RMI-Reconfigurable
Framework(3)

Generator

Processor10

Processor11

Processor1n

Processor2

………….

Machine 1 Machine 2

Generator

Processor10

Processor11

Processor1n

Processor2

………….

Machine 1 Machine 2

 36

DEVS/RMI-Reconfigurable
Framework(4)

Overhead vs. No. of Migrated Models

0

1

2

3

4

5

6

0 20 40 60 80 100 120 140 160 180

Number of Migrated Models

O
ve

rh
ea

d(
se

co
nd

s)

Overhead vs. No. of Migrated Models

 37

Model Partition in
DEVS/RMI(1)

ViewableAtomic A1 = new generator("A1","node2");
add(A1);
ViewableAtomic A11 = new generator("A11","node3");
add(A11);

A

A1 A2

A11 A21 A22A12

 38

Model Partition in
DEVS/RMI(2)

Cell
11

Cell
12

Cell
13

Cell
14

Cell
21

Cell
22

Cell
23

Cell
24

Cell
31

Cell
32

Cell
33

Cell
34

Cell
41

Cell
42

Cell
43

Cell
44

 39

Model Partition in DEVS/RMI(3)
--Dynamic model repartition

Cell 11 Cell 12 Cell 13 Cell 14

Cell 21 Cell 22 Cell 23 Cell 24

Sub-Domain 1 Sub-Domain 2

Coupling

Cell 11 Cell 12 Cell 13 Cell 14

Cell 21 Cell 22 Cell 23 Cell 24

Sub-Domain 1 Sub-Domain 2

Coupling

These arrow lines represent the coupling that will be
removed.

Migration

Migration

 40

Model Partition in
DEVS/RMI(4)

❚ Increase locality whenever possible using
model domain decomposition.

❚ Overhead incurred by dynamic repartition
should be carefully evaluated.

❚ Load balance technique needs to be
applied whenever necessary.

 41

DEVS/RMI on large-scale
model

Hilly Terrain Model
❚ Measure the shortest travel time for a

traveller in a 2D space with hills.
❚ The “direction” of traveller is determined

by the gradient of hill at certain point.
❚ Increasing the resolution results in using

larger cell space.

 42

Why use DEVS/RMI
❚ Express the continuous spatial model

using DEVS Quantization Technique.
❚ 2D DEVS Cellular Space is used.
❚ Problems:

❙ cell space should be large enough to get
necessary resolution, which results in “out of
memory” in a single machine.

❙ Simulation execution time increases
significantly when cell space increases.

❚ Solution: Distributed Simulation using
DEVS/RMI.

 43

Hilly Terrain Model in DEVS

 44

Computation Domain Decompose
for Hilly Terrain Model

 45

Measure the Travel Time
Travel Time vs. No. of Cells

0

100

200

300

400

500

600

700

800

900

1000

0 10000 20000 30000 40000 50000

Number of Cells

Tr
av

el
 T

Im
e

one hill
four hills

Travel Time vs. No. of Hills

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25

Number of Hills

Tr
av

el
 T

im
e

100 by 100 cell space

 46

Speedup of Distributed
Simulation

Speedup of Simulation

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2500 5000 7500 1000
0

1250
0

1500
0

1750
0

2000
0

2250
0

2500
0

No. of Cells

S
p

e
ed

u
p

(s
in

g
le

/m
u

lt
i-

n
o

d
es

)

3 nodes one hill
6 nodes one hill
11 nodes one hill
3 nodes 100 hills
6 nodes 100 hills
11 nodes 100 hills

 47

Studying Valley Fever
Model
❚ Distributed simulation of Valley fever

model, a highly dynamic 2D cell space,
using DEVS/RMI

❚ Static model partition and “activity” based
dynamic repartition are used

❚ Simulation execution performance is
measured in terms of different computing
workload

❚ Effects of “activity” based repartition is
studied.

 48

Valley Fever Java Model in
DEVS

Valley fever model in Simview

 49

Original model distributed
simulation performance

0

100

200

300

400

500

1 2 5 10

Execution
Time(S)

Original model simulation execution performance in
DEVS/RMI

 50

Injecting workload

0

200

400

600

800

1000

1 5

workload1

0
1000
2000
3000
4000
5000
6000
7000
8000

1 5

workload2

Injecting workload to
partitioned cells (a sum
of 1 to 100)

Injecting workload to
partitioned cells (a sum
of 1 to 150)

 51

Dynamic repartition using
“activity”

❚ “activity” metric is measured by counting
the internal transitions of each individual
cell.

❚ “activity” metric is used to repartition the
model dynamically to achieve better load
balance.

❚ High “activity” cells are assigned more
computing power.

 52

Valley Fever Model-using
activity

Using 5 computing
nodes including 1 head
node.

Static Blind Partition not
considering model
activities

Dynamic
reconfiguration
using “activity”

Performance
increase by
percentage

4 by 4 cells with 400
simulation steps

28.124s 27.566s 1.98%

4 by 4 cells with 2000
simulation steps

113.977s 114.968s -0.87%

8 by 8 cells with 400
simulation steps

256.49s 248.644s 3.06%

8 by 8 cells with 2000
simulation steps

1238.479s 1216.97s 1.73%

Using 9 computing
nodes including 1 head
node.

Static Blind Partition not
considering model
activities

Dynamic
reconfiguration
using “activity”

Performance
increase by
percentage

4 by 4 cells with 2000
simulation steps

134.74s 110.49s 18%

8 by 8 cells with 2000
simulation steps

1348.17s 1199.87s 11%

 53

Performance Issues

❚ Distributed Simulation performance of
DEVS/RMI closely relates to the
computation and RMI communication
workload partitions.

❚ Load balance is a key factor.
❚ Locality should be increased whenever

possible.

 54

Advantages of DEVS/RMI
❚ DEVS/RMI provides an flexible and easy-

to-use reconfigurable distributed
simulation framework.

❚ Refactoring a distributed simulation
becomes easier.

❚ Support run-time model structure
evolution in a distributed environment.

❚ Achieves significant speedup when
dealing with large-scale model.

 55

DEVS in the near future

❚ SOA based architecture.
❚ Running on P2P network
❚ Towards to distributed execution.
❚ Towards running on grid.
❚ Keep its role as a formalized modeling

framework.

 56

References:
❚ 1.Saehoon Cheon, Chungman Seo, Sunwoo Park, Bernard P. Zeigler,

“Design and Implementation of Distributed DEVS Simulation in a Peer to
Peer Network System”, 2004 Military, Government, and Aerospace
Simulation.

❚ 2. Chungman Seo, Sunwoo Park, Byounguk Kim, Saehoon Cheon, Bernard
P. Zeigler, “Implementation of Distributed High-performance DEVS
Simulation Framework in the Grid Computing Environment”, 2004 High
Peformance Computing Symposium.

❚ 3. Mittal, S., Risco-Martin, J.L., Zeigler, B.P., "DEVS-Based Simulation Web
Services for Net-centric T&E", Summer Computer Simulation Conference
SCSC'07, July, 2007.

❚ 4. Ming Zhang, B.P. Zeigler, P. Hammonds, "DEVS/RMI-An Auto-
Adaptive and Reconfigurable Distributed Simulation Environment for
Engineering Studies", International Test & Evaluation Association
(ITEA) Journal of Test and Evaluation, March/April 2006, Volume 27,
Number 1, Page 49-60.

❚

 * http://www.acims.arizona.edu/EDUCATION/ECE575Fall03/Note/
❚

 57

Thank You!

Questions?
Email: mizhang@site.uottawa.ca

Google: ACIMS

mailto:mizhang@site.uottawa.ca

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

