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What is and Why Use DEVS

DEVS—Discrete Event System Specification

Strictly Defined Modeling and Simulation Framework based
on DEVS Formalism.

Flexible Hierarchical Modeling and Simulation Structure.
Support Model Reuse by Model Repository.

Support both discrete event and continuous system
modelling and simulation.

Can be used for formalized design and system design
verification and validation.

Can be used for agent-based simulation.

And more...



DEVS and Non-DEVS based Simulation

DEVS is formalized.
DEVS is hierarchical.

Clearly separating modeling and simulation
framework.

Models' behavior and their inter-relation
are separated.
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Separate Model and Simulator [*]
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DEVS Formalism

DEVS stands for Discrete Event System
Specification.

DEVS Formalism is used to strictly define the
model component behaviour.

DEVS Formalism has many extensions to
satisfy the emerging requirements.



Basic DEVS Formalism[*]

A Discrete Bvent System Specification (DEVE) 18 a structure
M= <—‘;£:S:-K &'nf: "SEEIT:- "—Ef.:'m:--‘%:- I':I:)
where

A 1% the set of input values
= 18 a set of states,
¥ 1s the set of output values
Oipe 15— 5 18 the internal tranzition function
Omprs XX > 8§
15 the external transition function, where
C={{se)|se 3 0=¢e =ta(s)} 18 the tota! state set
¢ 18 the time elapsed since last transition
X® denotes the collection of bags over X
(sets in which some elements may occur more than once).
G D FP 3§
is the confluent transition function,

A: 55— ¥*? is the output function

ta: S — R is the time advance function



Basic Concept in DEVS[~]




Internal Transition[*}
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External Transition[*]
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Confluent Function[*]
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Basic DEVS Formalism Example[*]

DEE}E.E::H-E‘E =2 ['X- E S: 5&':’1‘? 'ﬁﬂf? ;'I-ﬁ' f'ﬂ/;l
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Hierarchical Model Construction[*]

Atomic: lowest level model, >, A <
contains structural SimpA
dynamics -- model level -
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DEVS Tools

ADEVS (by Dr. Nutaro, ORNL)

CD++ (by Dr. Wainer, Carleton Univ.)

Tools Developed at ACIMS, Univ. of Arizona:
DEVSJAVA

DEVS/CORBA

DEVS/Grid

DEVS/P2P

DEVS/SOA

DEVS/HLA

DEVS/RMI
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DEVSJAVA

Java Implementation of DEVS

Support discrete and continuous system
modeling and simulation

Support As-Fast-As-Can, Real Time DEVS
simulation.

Support Distributed Simulation, but with
limited functionalities.

Support dynamic structure changes
through “variable structure”. 6



Distributed DEVS--Why?

Reducing model execution time.

Overcoming limited memory for a single
machine to handle large models.

Obtaining scalable performance.

Handling geographically distributed users
and/or resources (e.g., databases,
specialized equipment).

Integrating simulations running on
different platforms.

Dealing with fault tolerance.
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DEVS/P2P[1]

Use JXTA Pipe Interface as middleware to
support distributed Execution of DEVS.

Need additional layer for simulation time
management.

Prototype developed, not see application
on complex and large-scale models.
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DEVS/P2P-architecture
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DEVS/P2P-communication between simulators

simulator Simulator
DEVS Model Model
Input port
(DEVS protocol) ﬁ‘ _# Output port | PP
DEVS msg -» DEVS msg -
P2P Simulator P2P SiLulator
DEVS/] XTA Prgxy Proxy
(DEVS/P2P Protoco) 7 R * Input pipe listener
JXTA msg —» D J XTA msg
b J + —
utput pipe —— P Input pipe
(J XTA Protocol) Pt PP PEEPP
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DEVS/Grid [2]

Use Grid infrastructure to run DEVS in
distributed fashion.

Rely on existing Grid management
framework, such as Globus.

Not see application on solving real-world
simulation models.
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DEVS/SOA—recent advance [3]

Jse SOA as the basis architecture.

Jse most current web service technology.
DEVS can be run on internet !
Performance is the big issue?
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DEVS/SOA-architecture
[Mittal, Zeigler, Martin] OVERVIEW DEVS/SOA] _
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DEVS/RMI--Motivation

Portable distributed simulation framework

Support dynamic re-configuration of
simulation in a distributed environment

Eliminate the model code change when
mapping models to computing nodes

Flexible to implement partition algorithm
in a distributed environment

Toward very large-scale distributed
simulation.
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Java RMI(1)

Maintaining the original object architecture
built for a single processor, which is important
for building large-scale scalable system.

Task or computing workload distribution is at
object level, which helps on solving load-
balance, fault-tolerance problems in
distributed computing in an easier way.

Make the design of highly dynamic and
reconfigurable distributed framework easier;
Systems integration can be performed to a
higher degree. 26



Java RMI(2)
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DEVS/RMI Architecture

RMI Naming

Machine 3

Model Structure

Configuration Engine

Simulation Controller

RMT Naming

RMT Naming

Machine 1

Simulation Monitor

DEVS/RMI System Architecture



DEVS/RMI-A Flexible
Framework

Integrate Java RMI to existing DEVS/JAVA
objects framework.

Using both local and remote simulators.

No additional simulation time
management.

No model code change except adding a
new attribute for model code to assign
model to computing node.

Flexible and dynamic re-configurable.
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DEVS/RMI--Simulator
Relations

Remote Machine
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DEVS

Parsing as

e DEVS/RMI Simulation

RMICoordinator ContrOller

Decomposing Model
h 4

Sub-Models (Atomic
or Coupled)

If sub_model.putwhere =

& “remote host”
Static Creation of Remote
é Simulators
h 4

Create and Assign Dynamic| Creation of
Local Simulators Remote $imulators
h 4
Load the model to Create Remote
“Remote Host”, create References of the
the simulators there, Remote Simulators
obtains the Remote using pre-defined RMI
References of the URL.
Remote Simulators.

v

Initialize RMICoordinator

v

Start Execution of
Distributed Simulation




DEVS/RMI-- RMI Overhead

Test

Processorl0

Generator

Machine 1

Processorl 1

Processorln

Machine 2
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DEVS/RMI--RMI Overhead
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DEVS/RMI-Reconfigurable
Framework(1)

Sup
mac

MocC

ports run-time model migration across
nines.

el states are kept persistent.

MocC

el structure can evolve during a

distributed simulation execution.

High-level support of run-time model re-
partition.
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DEVS/RMI-Reconfigurable
Framework(3)

Processor10
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Machine 1 Processorln Machine 2
Processor10
Generator — Processorll +—  Processor2

Machine 1 Processorln Machine 2




DEVS/RMI-Reconfigurable
Framework(4)

Owverhead vs. No. of Migrated Models
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Model Partition in
DEVS/RMI(1)

Al A2
All Al2 H — A21 [ A22

ViewableAtomic Al = new generator("A1","node2");
add(Al);

ViewableAtomic A1l =new generator("A11","node3");
add(A11);
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Model Parti

DEVS/RMI(2)
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Model Partition in DEVS/RMI(3)
--Dynamic model repartition

1 1 . . 1 . 1
i Sub-Domain 1 « o Migation 4 Qub_Domain 2 '
: HE P I '
1 1 ~ -~ . 1
1 1 had

. Cell 11 — | Celll2  +—™ | Cell13 T—»| Celll4 i
! ! Coupling ! !
1 1 1 1
1 1 1 1
1 1 1 1

—

i : | )& :
1 1 1 1
1 1 1 1
| Cell 21 — | Cell22 T [—| cCell23 T | Cell24 H
| ' = '
1 1 - 1
1 1" - 1 1
fmmmmmmmmmmmmm e #* " Migration lmmmmmmmmmmmmmm s m s !

—»  These arrow lines represent the coupling that will be
«— removed.

. ! 1 .
i Sub-Domain 1 ! ' Sub-Domain 2 |
! ! ! !
1 1
I Cell 11 — | cel12 Cll 13 ol Cell 14 !
1 1
1 ! ! 1
| ! !
> X e |
1 1
| : . =
: Cell 21 — | cell22 Cell 23 et ot Cc 1] 24 i
I :
1 1
! 1
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Model Partition in
DEVS/RMI(4)

Increase locality whenever possible using
model domain decomposition.

Overhead incurred by dynamic repartition
should be carefully evaluated.

Load balance technique needs to be
applied whenever necessary.

40



DEVS/RMI on large-scale
model

Hilly Terrain Model

Measure the shortest travel time for a
traveller in a 2D space with hills.

The “direction” of traveller is determined
by the gradient of hill at certain point.

Increasing the resolution results in using
larger cell space.
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Why use DEVS/RMI

Express the continuous spatial model
using DEVS Quantization Technique.

2D DEVS Cellular Space is used.

Problems:

cell space should be large enough to get
necessary resolution, which results in “out of
memory” in a single machine.

Simulation execution time increases
significantly when cell space increases.

Solution: Distributed Simulation using
DEVS/RMI. *



Hilly Terrain Model in DEVS

| configwe | | twoDCeliSpace ~| | spreadspace

-
Hilly Terrain Space
outCoarihE outCoordinE #8 outCoorhE outCaor
outDramint outDraw inM outDraninh autDram
B outE inME #- outE  inMNE #- ¢ outE inMNE # autE
b outM inhuL oyt inku B autl i MUY B outh
L intmo cutdE inS S outhE  inS cuttE  ins 4 autME SutED o
outMilin SE outHul in SE outMilinSE UM
outS inSy outS  inS outS jnSyi outs
outSE il 4 qutSE  inil 4 outSE iyl QutSE
outS start outSuy start outSUl star autsir
autid stop B outid stap outilt stop 3 outir
= auCoordinE 4 auiCoordnE oulCooihE sutboor  THET 4
inM outDraw inM outDrawinH outDranin N outDran
inNE aME  inNE oute inNE b otE inNE outE
in Mt Suth inM guth inbhif Guth inhiiy outh
ing @ SuthE  ing' 4 suthE  inS SuthE inS| W outhE
inSE Quthir iR SE ¢ outNuinSE outhinE authiny
in i B outs  inSu 4 3 outs inSf 0 outS inSW B outs
iy QutSE i @ b outSE imil @ outSE inil & outSE
start outswy start ¥ outguy start outSW start outSid
stop outld  stop & outyy  stop % outiii stop # outilf
HiF inSin0 outNED #

ready clock: 0 Q00  real time factor: Ul

| step || un || restart |

IZ almays show couplings help
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omputation Domain Decompose
or Hilly Terrain Model

~| | distSpreadSpace

Hilly Terrain Space
50 =1
[ inNinD outEn My Ls in b outCdol outED
outDrid 4
B outEnNE W
i o uthh Ny
HrouiMERS
outhkEE
H bt QutE1 Ly inhint auten Sy E1
outSE 4
wutSbart
cutingtop
HE inSi0 wuttEQ 8 g in S uthED
[ ini : SuthET 1 L in et outhE1 4
MO im0 outSED 4H L inwnia outSEQ ¥
& inir outSE1 #H L imnia outSET 4

ready clock: 0 000 realtimefac‘tnr:. Ul [¥] always show couplings help
| step || n || restart | 44




Measure the Travel Time

Travel Time

Travel Time vs. No. of Cells
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Speedup of Distributed
Simulation

Speedup of Simulation

4
3.5 /1 \@\
3 :
/ —<— 3 nodes one hill
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, q /_)\ —2— 11 nodes one hill
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Studying Valley Fever
Model

Distributed simulation of Valley fever
model, a highly dynamic 2D cell space,

using

DEVS/RMI

Static model partition and “activity” based
dynamic repartition are used

Simulation execution performance is
measured in terms of different computing
workload

Effec

s of “activity” based repartition is

studied. 47



Valley Fever Java Model In
DEVS

EVSJAVA Simulation Viewer

| configure | |\ralleyrever w7 | |cnxmndel_dist - |
coxmodel
rainFall
test @ rain 8 rain
o = 624.000
rain_in-&- Coupling_control
busy wind - rain_out
wind _jn -
wind o = 0.000
start #- busy —ouinid
o =1.000
rain cellon patch_state |-& rain cellln patch_state, 4 rain cellzn patch_state

sut 8 = es—iir speres_sut B | = speres_in spores—out

pay ok
|

SpE

rain cellld patch_state Q-I |-ﬂ rain celll1 patch_state :i |.n rain cell21 patch_state
sut 4 — - - remi i

|:rain celll2  patch_state -1

cell2  patch_state ..I |:: rain cell2l patch_state
. N % cporac_in . "
el

reachy clock: 2265 000 realtimefac‘tnr:. mEs [¥] aways show couplings help
| step || run || restart |

Valley fever model in Simview
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Original model distributed
simulation performance

500
400- —
300+

O Execution
200 - Time(S)

100-
0-

1 2 5 10

Original model simulation execution performance in
DEVS/RMI



Injecting workload

1000
800+
600+

4001

2001

Injecting workload to

partitioned cells (a sum
of 1 to 100)

O workload1

8000
7000
6000
5000
4000 1
3000
20001
1000+

O workload2

Injecting workload to
partitioned cells (a sum

of 1 to 150)

50




Dynamic repartition using
“activity”

“activity” metric is measured by counting

the internal transitions of each individual
cell.

“activity” metric is used to repartition the

model dynamically to achieve better load
balance.

High “activity” cells are assigned more
computing power.
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Valley Fever Model-using
activity

Using 5 computing | Static Blind Partition not | Dynamic Performance
nodes including 1 head | considering model | reconfiguration increase by
node. activities using “activity” percentage

4 by 4 cells with 400 | 28.124s 27.566s 1.98%
simulation steps

4 by 4 cells with 2000 | 113.977s 114.968s -0.87%
simulation steps

8 by 8 cells with 400 | 256.49s 248.644s 3.06%
simulation steps

8 by 8 cells with 2000 | 1238.479s 1216.97s 1.73%
simulation steps

Using 9 computing | Static Blind Partition not | Dynamic Performance
nodes including 1 head | considering model | reconfiguration increase by
node. activities using “activity” percentage

4 by 4 cells with 2000 | 134.74s 110.49s 18%
simulation steps

8 by 8 cells with 2000 | 1348.17s 1199.87s 11%

simulation steps
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Performance Issues

Distributed Simulation performance of

DEVS/RMI closely relates to the
computation and RMI communication

workload partitions.

Load balance is a key factor.

Locality should be increased whenever
possible.
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Advantages of DEVS/RMI

DEVS/RMI provides an flexible and easy-
to-use reconfigurable distributed
simulation framework.

Refactoring a distributed simulation
becomes easier.

Support run-time model structure
evolution in a distributed environment.

Achieves significant speedup when
dealing with large-scale model.
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DEVS in the near future

SOA based architecture.

Running on P2P network
Towards to distributed execution.
Towards running on grid.

Keep its role as a formalized modeling
framework.
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Thank You!

Questions?
Email: mizhang@site.uottawa.ca
Google: ACIMS
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