Fast Effective Clustering for Graphs and Document Collections

William W. Cohen

Machine Learning Dept. and Language Technologies Institute
School of Computer Science
Carnegie Mellon University

Joint work with: Frank Lin
Introduction: trends in machine learning

- **Supervised learning**: given data $(x_1, y_1), \ldots, (x_n, y_n)$, learn to predict y from x
 - y is a real number or member of small set
 - x is a (sparse) vector

- **Semi-supervised learning**: given data $(x_1, y_1), \ldots, (x_k, y_k), x_{k+1}, \ldots, x_n$ learn to predict y from x

- **Unsupervised learning**: given data x_1, \ldots, x_n find a “natural” clustering
Introduction: trends in machine learning

- Supervised learning: given data \((x_1, y_1), \ldots, (x_n, y_n)\), learn to predict \(y\) from \(x\)
 - \(y\) is a real number or member of a small set
 - \(x\) is a (sparse) vector
 - \(x\)'s are all i.i.d., independent of each other
 - \(y\) depends only on the corresponding \(x\)

- Structured learning: \(x\)'s and/or \(y\)'s are related to each other
Introduction: trends in machine learning

- **Structured learning**: x’s and/or y’s are related to each other
 - General: x and y are in two parallel 1d arrays
 - x’s are words in a document, y is POS tag
 - x’s are words, $y=1$ if x is part of a company name
 - x’s are DNA codons, $y=1$ if x is part of a gene
 - ...
 - More general: x’s are nodes in a graph, y’s are labels for these nodes
Examples of classification in graphs

• x is a web page, edge is hyperlink, y is topic
• x is a word, edge is co-occurrence in similar contexts, y is semantics (distributional clustering)
• x is a protein, edge is interaction, y is subcellular location
• x is a person, edge is email message, y is organization
• x is a person, edge is friendship, $y=1$ if x smokes
• ...
• x, y are anything, edge from x_1 to x_2 indicates similarity between x_1 and x_2 (manifold learning)
Examples: Zachary's karate club, political books
Political blog network

Adamic & Glance
“Divided They Blog:…” 2004
This talk:

- **Unsupervised learning in graphs**
 - aka: community detection, network modeling, ...
 - \(\sim\) low-dimensional matrix approximation, ...
 - **Spectral clustering**

- **Experiments:**
 - For networks with known "true" labels ...
 - can unsupervised learning can recover these labels?

 - (Usually) node identifiers and topology of graph is all that’s used by these methods...
Outline

• Introduction
• Background on spectral clustering
• “Power Iteration Clustering”
 - Motivation [Lin & Cohen, ICML 2010]
 - Experimental results
• Analysis: PIC vs spectral methods
• PIC for sparse bipartite graphs
 - Experimental Results
Spectral Clustering: Graph = Matrix

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Spectral Clustering: Graph = Matrix
Transitivity Closed Components = “Blocks”

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>_</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>_</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>1</td>
<td>1</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>1</td>
<td>_</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td>_</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>1</td>
<td>_</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>_</td>
<td></td>
</tr>
</tbody>
</table>

Of course we can’t see the “blocks” unless the nodes are sorted by cluster…
Spectral Clustering: Graph = Matrix
Vector = Node \rightarrow Weight

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>_</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>_</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>_</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>_</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>_</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>_</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>1</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M

V

<table>
<thead>
<tr>
<th></th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
</tr>
</tbody>
</table>
Spectral Clustering: Graph = Matrix

$M^*v_1 = v_2$ “propogates weights from neighbors”

Matrix M

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>_</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>_</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>_</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>1</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>1</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>_</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>_</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>1</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram

- A connected to B, C, D, E
- B connected to A, C
- C connected to A, D
- D connected to A, C
- E connected to A, B, F, G, H
- F connected to E, G
- G connected to F, H
- H connected to G, I, J
- I connected to H, J
- J connected to I

Weight Calculation

- $A = 2*1 + 3*1 + 0*1 = 5$
- $B = 3*1 + 3*1 = 6$
- $C = 3*1 + 2*1 = 5$
- $D = 1 + 1 = 2$
- $E = 3 + 1 = 4$
- $F = 1 + 1 = 2$
- $G = 1 + 1 = 2$
- $H = 1 + 1 = 2$
- $I = 1 + 1 = 2$
- $J = 1 + 1 = 2$

Matrix M

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>0</td>
</tr>
<tr>
<td>J</td>
<td>0</td>
</tr>
</tbody>
</table>
Spectral Clustering: Graph = Matrix
$W^*v_1 = v_2$ “propogates weights from neighbors”

W: normalized so columns sum to 1

$$W \ast v_1 = v_2$$
Spectral Clustering: Graph = Matrix
\[W* v_1 = v_2 \] “propogates weights from neighbors”

\[W \cdot v = \lambda v : v \text{ is an eigenvector with eigenvalue } \lambda \]

Q: How do I pick \(v \) to be an eigenvector for a block-stochastic matrix?
Spectral Clustering: Graph = Matrix

\[W \cdot v = \lambda v : v \text{ is an eigenvector with eigenvalue } \lambda \]

How do I pick \(v \) to be an eigenvector for a block-stochastic matrix?
Spectral Clustering: Graph = Matrix

\[W \cdot v = \lambda v : v \text{ is an eigenvector with eigenvalue } \lambda \]

\[W \cdot v = v_2 \text{ “propogates weights from neighbors”} \]

\[W * v_1 = v_2 \]

\[\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, 6, 7, \ldots \]

“eigengap”

[Shi & Meila, 2002]
Spectral Clustering: Graph = Matrix
\[W \cdot v = \lambda v : v \text{ is an eigenvector with eigenvalue } \lambda \]

[Shi & Meila, 2002]
Spectral Clustering: Graph = Matrix
\[W \cdot v = \lambda v \]
\[W^* v_1 = v_2 \] “propogates weights from neighbors”

If \(W \) is connected but roughly block diagonal with \(k \) blocks then
- the top eigenvector is a constant vector
- the next \(k \) eigenvectors are roughly piecewise constant with “pieces” corresponding to blocks
Spectral Clustering: Graph = Matrix
\[W^*v_1 = v_2 \] “propagates weights from neighbors”

\[W \cdot v = \lambda v : v \text{ is an eigenvector with eigenvalue } \lambda \]

If \(W \) is connected but roughly block diagonal with \(k \) blocks then

- the “top” eigenvector is a constant vector
- the next \(k \) eigenvectors are roughly piecewise constant with “pieces” corresponding to blocks

Spectral clustering:
- Find the top \(k+1 \) eigenvectors \(v_1, \ldots, v_{k+1} \)
- Discard the “top” one
- Replace every node \(a \) with \(k \)-dimensional vector
\[x_a = <v_2(a), \ldots, v_{k+1}(a)> \]
- Cluster with \(k \)-means
Spectral Clustering: Pros and Cons

• Elegant, and well-founded mathematically
• Tends to avoid local minima
 – Optimal solution to relaxed version of mincut problem
 (Normalized cut, aka NCut)
• Works quite well when relations are approximately transitive (like similarity, social connections)
• Expensive for very large datasets
 – Computing eigenvectors is the bottleneck
 – Approximate eigenvector computation not always useful
• Noisy datasets sometimes cause problems
 – Picking number of eigenvectors and k is tricky
 – “Informative” eigenvectors need not be in top few
 – Performance can drop suddenly from good to terrible
Experimental results: best-case assignment of class labels to clusters

<table>
<thead>
<tr>
<th>Dataset</th>
<th>k</th>
<th>NCut Accuracy</th>
<th>NCut Macro-F1</th>
<th>NJW Accuracy</th>
<th>NJW Macro-F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris</td>
<td>3</td>
<td>0.673</td>
<td>0.570</td>
<td>0.807</td>
<td>0.806</td>
</tr>
<tr>
<td>PenDigits01</td>
<td>2</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>PenDigits17</td>
<td>2</td>
<td>0.755</td>
<td>0.753</td>
<td>0.755</td>
<td>0.754</td>
</tr>
<tr>
<td>UBMCBlog</td>
<td>2</td>
<td>0.953</td>
<td>0.953</td>
<td>0.953</td>
<td>0.953</td>
</tr>
<tr>
<td>AGBlog</td>
<td>2</td>
<td>0.520</td>
<td>0.342</td>
<td>0.520</td>
<td>0.342</td>
</tr>
<tr>
<td>20ngA</td>
<td>2</td>
<td>0.955</td>
<td>0.955</td>
<td>0.955</td>
<td>0.955</td>
</tr>
<tr>
<td>20ngB</td>
<td>2</td>
<td>0.505</td>
<td>0.344</td>
<td>0.550</td>
<td>0.436</td>
</tr>
<tr>
<td>20ngC</td>
<td>3</td>
<td>0.613</td>
<td>0.621</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20ngD</td>
<td>4</td>
<td>0.469</td>
<td>0.432</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>-</td>
<td>0.716</td>
<td>0.663</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Spectral Clustering: Graph = Matrix

\[M \ast v_1 = v_2 \] "propogates weights from neighbors"

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>_</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>_</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>_</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>1</td>
<td>1</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td>_</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td>_</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>1</td>
<td>1</td>
<td>_</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>_</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[M \ast v_1 = v_2 \]
Repeated averaging with neighbors as a clustering method

- Pick a vector v^0 (maybe at random)
- Compute $v^1 = Wv^0$
 - i.e., replace $v^0[x]$ with weighted average of $v^0[y]$ for the neighbors y of x
- Plot $v^1[x]$ for each x
- Repeat for $v^2, v^3, ...$

- Variants widely used for semi-supervised learning
 - clamping of labels for nodes with known labels
- Without clamping, will converge to constant v^+
- What are the dynamics of this process?
Repeated averaging with neighbors on a sample problem...

• Create a graph, connecting all points in the 2-D initial space to all other points
 • Weighted by distance
• Run power iteration for 10 steps
• Plot node id x vs $v^{10}(x)$
 • nodes are ordered by actual cluster number
Repeated averaging with neighbors on a sample problem...

(a) 3Circles PCL result
(b) Embedding at $t = 10$
(c) Embedding at $t = 50$
(d) Embedding at $t = 100$
Repeated averaging with neighbors on a sample problem...

(a) 3Circles PIC result
(b) Embedding at $t = 10$
(c) Embedding at $t = 50$
(d) Embedding at $t = 100$
(e) Embedding at $t = 200$
(f) Embedding at $t = 400$
Repeated averaging with neighbors on a sample problem...

(a) 3Circles PIC result
(b) Embedding at $t = 10$
(c) Embedding at $t = 50$
(d) Embedding at $t = 100$

(e) Embedding at $t = 200$
(f) Embedding at $t = 400$
(g) Embedding at $t = 600$
(h) Embedding at $t = 1000$
PIC: Power Iteration Clustering

run power iteration (repeated averaging w/ neighbors) with early stopping

1. Pick an initial vector v^0.
2. Set $v^{t+1} \leftarrow \frac{Wv^t}{\|Wv^t\|_1}$ and $\delta^{t+1} \leftarrow |v^{t+1} - v^t|$.
3. Increment t and repeat above step until $|\delta^t - \delta^{t-1}| \approx 0$.
4. Use k-means to cluster points on v^t and return clusters $C_1, C_2, ..., C_k$.

- V^0: random start, or “degree matrix” D, or ...
- Easy to implement and efficient
- Very easily parallelized
- Experimentally, often better than traditional spectral methods
- Surprisingly, the embedded space is 1-dimensional!
Experiments

- "Network" problems: natural graph structure
 - PolBooks: 105 political books, 3 classes, linked by copurchaser
 - UMBCBlog: 404 political blogs, 2 classes, blogroll links
 - AGBlog: 1222 political blogs, 2 classes, blogroll links

- "Manifold" problems: cosine distance between classification instances
 - Iris: 150 flowers, 3 classes
 - PenDigits01,17: 200 handwritten digits, 2 classes (0-1 or 1-7)
 - 20ngA: 200 docs, misc.forsale vs soc.religion.christian
 - 20ngB: 400 docs, misc.forsale vs soc.religion.christian
 - 20ngC: 20ngB + 200 docs from talk.politics.guns
 - 20ngD: 20ngC + 200 docs from rec.sport.baseball
Experimental results:
best-case assignment of class labels to clusters

<table>
<thead>
<tr>
<th>Dataset</th>
<th>k</th>
<th>NCut Accuracy</th>
<th>NCut Macro-F1</th>
<th>NJW Accuracy</th>
<th>NJW Macro-F1</th>
<th>PIC Accuracy</th>
<th>PIC Macro-F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris</td>
<td>3</td>
<td>0.673</td>
<td>0.570</td>
<td>0.807</td>
<td>0.806</td>
<td>0.980</td>
<td>0.980</td>
</tr>
<tr>
<td>PenDigits01</td>
<td>2</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>PenDigits17</td>
<td>2</td>
<td>0.755</td>
<td>0.753</td>
<td>0.755</td>
<td>0.754</td>
<td>0.755</td>
<td>0.753</td>
</tr>
<tr>
<td>UBMCBlog</td>
<td>2</td>
<td>0.953</td>
<td>0.953</td>
<td>0.953</td>
<td>0.953</td>
<td>0.948</td>
<td>0.948</td>
</tr>
<tr>
<td>AGBlog</td>
<td>2</td>
<td>0.520</td>
<td>0.342</td>
<td>0.520</td>
<td>0.342</td>
<td>0.957</td>
<td>0.957</td>
</tr>
<tr>
<td>20ngA</td>
<td>2</td>
<td>0.955</td>
<td>0.955</td>
<td>0.955</td>
<td>0.955</td>
<td>0.960</td>
<td>0.960</td>
</tr>
<tr>
<td>20ngB</td>
<td>2</td>
<td>0.505</td>
<td>0.344</td>
<td>0.550</td>
<td>0.436</td>
<td>0.905</td>
<td>0.904</td>
</tr>
<tr>
<td>20ngC</td>
<td>3</td>
<td>0.613</td>
<td>0.621</td>
<td>0.635</td>
<td>0.639</td>
<td>0.737</td>
<td>0.730</td>
</tr>
<tr>
<td>20ngD</td>
<td>4</td>
<td>0.469</td>
<td>0.432</td>
<td>0.535</td>
<td>0.534</td>
<td>0.580</td>
<td>0.570</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>0.716</td>
<td>0.663</td>
<td>0.746</td>
<td>0.713</td>
<td>0.869</td>
<td>0.867</td>
</tr>
</tbody>
</table>

Table 1: Clustering performance of PIC and spectral clustering algorithms on several real datasets.
Experiments: run time and scalability

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Size</th>
<th>NCut Runtime</th>
<th>NJW Runtime</th>
<th>PIC Runtime</th>
<th>Iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris</td>
<td>150</td>
<td>589</td>
<td>242</td>
<td>59</td>
<td>6</td>
</tr>
<tr>
<td>PenDigits01</td>
<td>200</td>
<td>965</td>
<td>326</td>
<td>56</td>
<td>6</td>
</tr>
<tr>
<td>PenDigits17</td>
<td>200</td>
<td>1197</td>
<td>528</td>
<td>62</td>
<td>6</td>
</tr>
<tr>
<td>UBMCMBlog</td>
<td>404</td>
<td>4205</td>
<td>1589</td>
<td>85</td>
<td>21</td>
</tr>
<tr>
<td>AGBlog</td>
<td>1222</td>
<td>114821</td>
<td>58145</td>
<td>211</td>
<td>34</td>
</tr>
<tr>
<td>20ngA</td>
<td>200</td>
<td>1113</td>
<td>355</td>
<td>72</td>
<td>15</td>
</tr>
<tr>
<td>20ngB</td>
<td>400</td>
<td>4085</td>
<td>1864</td>
<td>139</td>
<td>13</td>
</tr>
<tr>
<td>20ngC</td>
<td>600</td>
<td>13070</td>
<td>6383</td>
<td>190</td>
<td>13</td>
</tr>
<tr>
<td>20ngD</td>
<td>800</td>
<td>33191</td>
<td>16295</td>
<td>278</td>
<td>11</td>
</tr>
</tbody>
</table>

Time in millisec
Outline

• Introduction
• Background on spectral clustering
• “Power Iteration Clustering”
 - Motivation
 - Experimental results
• Analysis: PIC vs spectral methods
• PIC for sparse bipartite graphs
 - Motivation & Method
 - Experimental Results
Analysis: why is this working?

eigenvectors e_1, \ldots, e_n
eigenvalues $\lambda_1, \ldots, \lambda_n$,

$$s_a = \langle e_1(a), \ldots, e_k(a) \rangle,$$

$$\text{spec}(a, b) \equiv \| s_a - s_b \|_2 = \sqrt{\sum_{i=2}^{k} (e_i(a) - e_i(b))^2}$$

$$\text{pic}^t(v^0; a, b) \equiv |v^t(a) - v^t(b)|$$
Analysis: why is this working?

\[\text{eigenvalues } \lambda_1, \ldots, \lambda_n, \]
\[s_a = \langle e_1(a), \ldots, e_k(a) \rangle, \]
\[\text{pic}^t(v^0; a, b) \equiv |v^t(a) - v^t(b)| \]
\[v^t = Wv^{t-1} = W^2v^{t-2} = \ldots = W^tv^0 \]
\[= c_1W^te_1 + c_2W^te_2 + \ldots + c_nW^te_n \]
\[= c_1\lambda_1^te_1 + c_2\lambda_2^te_2 + \ldots + c_n\lambda_n^te_n \]

\[\text{pic}^t(a, b) = \left| [e_1(a) - e_1(b)]c_1\lambda_1^t \right| \]
\[+ \sum_{i=2}^{k} [e_i(a) - e_i(b)]c_i\lambda_i^t + \sum_{j=k+1}^{n} [e_j(a) - e_j(b)]c_j\lambda_j^t \]
Analysis: why is this working?

eigenvalues $\lambda_1, \ldots, \lambda_n$,
\[
s_a = \langle e_1(a), \ldots, e_k(a) \rangle,
\]
\[
\text{spec}(a, b) \equiv \|s_a - s_b\|_2 = \sqrt{\sum_{i=2}^{k} (e_i(a) - e_i(b))^2}
\]
\[
\text{pic}^t(a, b) = \begin{vmatrix} e_1(a) & e_1(b) \end{vmatrix} c_1 \lambda_1^t
\]
\[
+ \sum_{i=2}^{k} [e_i(a) - e_i(b)] c_i \lambda_i^t + \sum_{j=k+1}^{n} [e_j(a) - e_j(b)] c_j \lambda_j^t
\]

L2 distance
scaling?
differences might cancel?
“noise” terms
Analysis: why is this working?

• If
 - eigenvectors e_2, \ldots, e_k are approximately piecewise constant on blocks;
 - $\lambda_2, \ldots, \lambda_k$ are “large” and λ_{k+1}, \ldots are “small”;
 • e.g., if matrix is block-stochastic
 - the c_i’s for v^0 are bounded;
 - for any a,b from distinct blocks there is at least one e_i with $e_i(a) - e_i(b)$ “large”

• Then exists an R so that
 - $\text{spec}(a,b)$ small $\Leftrightarrow R \ast \text{pic}(a,b)$ small
Analysis: why is this working?

- Sum of differences vs sum-of-squared differences
- “soft” eigenvector selection
<table>
<thead>
<tr>
<th>Dataset</th>
<th>k</th>
<th>Purity</th>
<th>NMI</th>
<th>RI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris</td>
<td>3</td>
<td>0.6733</td>
<td>0.7235</td>
<td>0.7779</td>
</tr>
<tr>
<td>PenDigits01</td>
<td>2</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>PenDigits17</td>
<td>2</td>
<td>0.7550</td>
<td>0.2066</td>
<td>0.6301</td>
</tr>
<tr>
<td>PolBooks</td>
<td>3</td>
<td>0.8476</td>
<td>0.5745</td>
<td>0.8447</td>
</tr>
<tr>
<td>UBMCMBlog</td>
<td>2</td>
<td>0.9860</td>
<td>0.7594</td>
<td>0.9232</td>
</tr>
<tr>
<td>AGBlog</td>
<td>2</td>
<td>0.5305</td>
<td>0.0000</td>
<td>0.4617</td>
</tr>
<tr>
<td>20ngA</td>
<td>2</td>
<td>0.6183</td>
<td>0.3295</td>
<td>0.6750</td>
</tr>
<tr>
<td>20ngB</td>
<td>3</td>
<td>0.4750</td>
<td>0.2385</td>
<td>0.6312</td>
</tr>
<tr>
<td>20ngC</td>
<td>4</td>
<td>0.7308</td>
<td>0.4596</td>
<td>0.7393</td>
</tr>
</tbody>
</table>

Ncut with top k eigenvectors

<table>
<thead>
<tr>
<th>Dataset</th>
<th>k</th>
<th>Purity</th>
<th>NMI</th>
<th>RI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris</td>
<td>3</td>
<td>0.6733</td>
<td>0.7235</td>
<td>0.7779</td>
</tr>
<tr>
<td>PenDigits01</td>
<td>2</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>PenDigits17</td>
<td>2</td>
<td>0.7550</td>
<td>0.2066</td>
<td>0.6301</td>
</tr>
<tr>
<td>PolBooks</td>
<td>3</td>
<td>0.8476</td>
<td>0.5745</td>
<td>0.8447</td>
</tr>
<tr>
<td>UBMCMBlog</td>
<td>2</td>
<td>0.9860</td>
<td>0.7594</td>
<td>0.9232</td>
</tr>
<tr>
<td>AGBlog</td>
<td>2</td>
<td>0.5305</td>
<td>0.0000</td>
<td>0.4617</td>
</tr>
<tr>
<td>20ngA</td>
<td>2</td>
<td>0.6183</td>
<td>0.3295</td>
<td>0.6750</td>
</tr>
<tr>
<td>20ngB</td>
<td>3</td>
<td>0.4750</td>
<td>0.2385</td>
<td>0.6312</td>
</tr>
<tr>
<td>20ngC</td>
<td>4</td>
<td>0.7308</td>
<td>0.4596</td>
<td>0.7393</td>
</tr>
</tbody>
</table>

Ncut with top 10 eigenvectors: weighted

Table 2. Clustering performance of eigenvalue-weighted NCut on several real datasets. For all measures a higher number means better clustering. Bold numbers are the highest in its row.
Table 2. Clustering performance of eigenvalue-weighted NCut on several real datasets. For all measures a higher number means better clustering. Bold numbers are the highest in its row.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>k</th>
<th>Purity</th>
<th>NMI</th>
<th>RI</th>
<th>e_i weighted by λ_i</th>
<th>Purity</th>
<th>NMI</th>
<th>RI</th>
<th>e_i weighted by λ_i^{15}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Purity</td>
<td>NMI</td>
<td>RI</td>
<td>Purity</td>
<td>NMI</td>
</tr>
<tr>
<td>Iris</td>
<td>3</td>
<td>0.6667</td>
<td>0.6507</td>
<td>0.7254</td>
<td>0.9800</td>
<td>0.9306</td>
<td>0.9741</td>
<td>0.9800</td>
<td>0.9306</td>
</tr>
<tr>
<td>PenDigits01</td>
<td>2</td>
<td>0.7000</td>
<td>0.2746</td>
<td>0.5800</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>PenDigits17</td>
<td>2</td>
<td>0.7000</td>
<td>0.1810</td>
<td>0.5800</td>
<td>0.7550</td>
<td>0.2066</td>
<td>0.6301</td>
<td>0.7550</td>
<td>0.2066</td>
</tr>
<tr>
<td>PolBooks</td>
<td>3</td>
<td>0.4857</td>
<td>0.1040</td>
<td>0.4413</td>
<td>0.8476</td>
<td>0.5861</td>
<td>0.8514</td>
<td>0.8476</td>
<td>0.5861</td>
</tr>
<tr>
<td>UBMCCBlog</td>
<td>2</td>
<td>0.9505</td>
<td>0.7400</td>
<td>0.9059</td>
<td>0.9505</td>
<td>0.7400</td>
<td>0.9059</td>
<td>0.9505</td>
<td>0.7400</td>
</tr>
<tr>
<td>AGBlog</td>
<td>2</td>
<td>0.9493</td>
<td>0.7143</td>
<td>0.9037</td>
<td>0.9509</td>
<td>0.7223</td>
<td>0.9066</td>
<td>0.9509</td>
<td>0.7223</td>
</tr>
<tr>
<td>20ngA</td>
<td>2</td>
<td>0.5600</td>
<td>0.0685</td>
<td>0.5072</td>
<td>0.9600</td>
<td>0.7594</td>
<td>0.9232</td>
<td>0.9600</td>
<td>0.7594</td>
</tr>
<tr>
<td>20ngB</td>
<td>2</td>
<td>0.7125</td>
<td>0.2734</td>
<td>0.5903</td>
<td>0.9450</td>
<td>0.7042</td>
<td>0.8961</td>
<td>0.9450</td>
<td>0.7042</td>
</tr>
<tr>
<td>20ngC</td>
<td>3</td>
<td>0.6867</td>
<td>0.3866</td>
<td>0.6546</td>
<td>0.6617</td>
<td>0.3772</td>
<td>0.7025</td>
<td>0.6617</td>
<td>0.3772</td>
</tr>
<tr>
<td>20ngD</td>
<td>4</td>
<td>0.4763</td>
<td>0.2365</td>
<td>0.6368</td>
<td>0.4875</td>
<td>0.2555</td>
<td>0.6425</td>
<td>0.4875</td>
<td>0.2555</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>0.6888</td>
<td>0.3630</td>
<td>0.6525</td>
<td>0.8538</td>
<td>0.6282</td>
<td>0.8432</td>
<td>0.8538</td>
<td>0.6282</td>
</tr>
</tbody>
</table>
Summary of results so far

• Both PIC and Ncut embed each graph node in a space where distance is meaningful
• Distances in “PIC space” and Eigenspace are closely related
 - At least for many graphs suited to spectral clustering
• PIC does “soft” selection of eigenvectors
 - Strong eigenvalues give high weights
• PIC gives comparable-quality clusters
 - But is much faster
Outline

• Background on spectral clustering
• “Power Iteration Clustering”
 - Motivation
 - Experimental results
• Analysis: PIC vs spectral methods
• PIC for sparse bipartite graphs
 - “Lazy” Distance Computation
 - “Lazy” Normalization
 - Experimental Results
Motivation: Experimental Datasets are...

- **“Network” problems: natural graph structure**
 - PolBooks: 105 political books, 3 classes, linked by copurchaser
 - UMBCBlog: 404 political blogs, 2 classes, blogroll links
 - AGBlog: 1222 political blogs, 2 classes, blogroll links
 - Also: Zachary’s karate club, citation networks, ...

- **“Manifold” problems: cosine distance between all pairs of classification instances**
 - Iris: 150 flowers, 3 classes
 - PenDigits01,17: 200 handwritten digits, 2 classes (0-1 or 1-7)
 - 20ngA: 200 docs, misc.forsale vs soc.religion.christian
 - 20ngB: 400 docs, misc.forsale vs soc.religion.christian
 - ...

Gets expensive fast
Lazy computation of distances and normalizers

• Recall PIC’s update is
 - \(v^t = W \ast v^{t-1} = D^{-1} A \ast v^{t-1} \)
 - …where \(D \) is the [diagonal] degree matrix: \(D=A*1 \)

• My favorite distance metric for text is length-normalized TFIDF:
 - Def’n: \(A(i,j) = \langle v_i, v_j \rangle / \|v_i\| * \|v_j\| \)
 - Let \(N(i,i) = \|v_i\| \) ... and \(N(i,j)=0 \) for \(i\neq j \)
 - Let \(F(i,k) = \) TFIDF weight of word \(w_k \) in document \(v_i \)
 - Then: \(A = N^{-1} F^T F N^{-1} \)
Lazy computation of distances and normalizers

- Recall PIC’s update is
 - $v^t = W * v^{t-1} = D^{-1} A * v^{t-1}$
 - ...where D is the [diagonal] degree matrix: $D = A * 1$
- Let $F(i,k) =$ TFIDF weight of word w_k in document v_i
- Compute $N(i,i) = ||v_i||$... and $N(i,j) = 0$ for $i! = j$
- **Don’t** compute $A = N^{-1}F^T F N^{-1}$
- Let $D(i,i) = N^{-1} F^T F N^{-1} * 1$ where 1 is an all-1’s vector
 - Computed as $D = N^{-1}(F^T(F(N^{-1} * 1)))$ for efficiency

- New update:
 - $v^t = D^{-1} A * v^{t-1} = D^{-1} N^{-1} F^T F N^{-1} * v^{t-1}$
Experimental results

• RCV1 text classification dataset
 - 800k + newswire stories
 - Category labels from *industry* vocabulary
 - Took single-label documents and categories with at least 500 instances
 - Result: 193,844 documents, 103 categories

• Generated 100 random category pairs
 - Each is all documents from two categories
 - Range in size and difficulty
 - Pick category 1, with m_1 examples
 - Pick category 2 such that $0.5m_1 < m_2 < 2m_1$
Results

<table>
<thead>
<tr>
<th>Method</th>
<th>ACC-Avg</th>
<th>NMI-Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>57.59</td>
<td>-</td>
</tr>
<tr>
<td>k-means</td>
<td>69.43</td>
<td>0.2629</td>
</tr>
<tr>
<td>NCUTTevd</td>
<td>77.55</td>
<td>0.3962</td>
</tr>
<tr>
<td>NCUTTiram</td>
<td>61.63</td>
<td>0.0943</td>
</tr>
<tr>
<td>PIC</td>
<td>76.67</td>
<td>0.3818</td>
</tr>
</tbody>
</table>

- NCUTTevd: Ncut with exact eigenvectors
- NCUTTiram: Implicit restarted Arnoldi method
- No stat. signif. diffs between NCUTTevd and PIC
Results

Accuracy of k-means vs PIC

Accuracy of NCUTevd vs PIC

Accuracy of NCUTiram vs PIC
Results

Accuracy of NCUTevd vs PIC

Accuracy of NCUTiram vs PIC
Results

Size vs Runtime of PIC and NCut (log-log)
Results

• Linear run-time implies *constant* number of iterations
• Number of iterations to “acceleration-convergence” is hard to analyze:
 - Faster than a single complete run of power iteration to convergence
 - On our datasets
 • 10-20 iterations is typical
 • 30-35 is exceptional
(a) $R^2 = 0.0424$

(b) $R^2 = 0.0552$

(c) $R^2 = 0.0007$

(d) $R^2 = 0.0134$
Related work

- Fowlkes et al, PAMI 2004; Yan et al, KDD 2009; ...
 - Faster spectral clustering via sampling (vs using all data here)
- Zelnik-Manor & Perona; NIPS 2005; Xiang & Gong, Pattern Recog 2008
 - Eigenvalue selection heuristics (hard, vs “soft” ones here)
- Dhillon, PAMI 2007
 - Fast multilevel kernel k-means to solve NCUT optimization problem
 - But: much more complex method, local minima issues
- Tishby & Slonim, NIPS 2000; Zhou & Woodruff, SIGMOD 2004;...
 - Also use dynamics of power iteration process for distance metrics in clustering
 - But: matrix-matrix vs matrix-vector multiplication, more expensive
Summary/conclusion

• Unsupervised network-based clustering:
 - Very general setting for learning
 • Especially if you consider manifold-based learning settings
 - Robustness and scalability is important
 • 144.5M pairs of NPs that co-occur nearby in English ClueWeb (2B sentences)

• PIC is
 - robust and effective
 - ~ linear-time (up to 1000x faster than Ncut)
Thanks to...

- NIH/NIGMS
- NSF
- Google
- Microsoft LiveLabs