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Purpose: Image segmentation techniques using fuzzy connectedness (FC) principles have shown

their effectiveness in segmenting a variety of objects in several large applications. However, one

challenge in these algorithms has been their excessive computational requirements when processing

large image datasets. Nowadays, commodity graphics hardware provides a highly parallel comput-

ing environment. In this paper, the authors present a parallel fuzzy connected image segmentation

algorithm implementation on NVIDIA’s compute unified device Architecture (CUDA) platform for

segmenting medical image data sets.

Methods: In the FC algorithm, there are two major computational tasks: (i) computing the fuzzy

affinity relations and (ii) computing the fuzzy connectedness relations. These two tasks are imple-

mented as CUDA kernels and executed on GPU. A dramatic improvement in speed for both tasks is

achieved as a result.

Results: Our experiments based on three data sets of small, medium, and large data size demon-

strate the efficiency of the parallel algorithm, which achieves a speed-up factor of 24.4x, 18.1x, and

10.3x, correspondingly, for the three data sets on the NVIDIA Tesla C1060 over the implementa-

tion of the algorithm on CPU, and takes 0.25, 0.72, and 15.04 s, correspondingly, for the three data

sets.

Conclusions: The authors developed a parallel algorithm of the widely used fuzzy connected image

segmentation method on the NVIDIA GPUs, which are far more cost- and speed-effective than both

cluster of workstations and multiprocessing systems. A near-interactive speed of segmentation has

been achieved, even for the large data set. VC 2011 American Association of Physicists in Medicine.
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I. INTRODUCTION

Image segmentation is the process of identifying and delin-

eating objects in images. It is the most crucial of all compu-

terized operations done on acquired images. Even seemingly

unrelated operations, like image (gray-scale=color) display,

3D visualization, interpolation, filtering, and registration

depend, to some extent, on image segmentation; since they

all would need some object information for their optimum

performance. In spite of several decades of research,1,2 seg-

mentation remains a challenging problem in both image

processing and computer vision.

The fuzzy connectedness (FC) framework and its exten-

sions3–8 have been extensively utilized in many medical

applications, including multiple sclerosis (MS) lesion detec-

tion and quantification via MR imaging,9 upper airway

segmentation in children via MRI for studying obstructive

sleep apnea,10 electron tomography segmentation,11 abdomi-

nal segmentation,12 automatic brain tissue segmentation8 in

MRI images, clutter-free volume rendering and artery–vein

separation in MR angiography,13 in brain tumor delineation

via MR imaging,14 and automatic breast density estimation

via digitized mammograms for breast cancer risk assess-

ment.15 High segmentation accuracies of the FC algorithms

have been achieved in these clinical applications, such as

true positive volume fraction of more than 96% in brain tis-

sue segmentation,8 false negative volume fraction of 1.3% in

MS lesion detection and quantification,9 an accuracy of 97%

in upper airway segmentation.10 New imaging technologies

are capable of producing increasingly larger image data sets,

and newer and advanced applications in quantitative
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radiology call for real-time or interactive segmentation

methodologies. One problem with the FC image segmenta-

tion algorithms has been their high computational require-

ments for processing large image data sets.16

Several parallel implementations have been developed to

improve the efficiency of the fuzzy connectedness algo-

rithms. A parallel implementation of the scale-based FC

algorithm has been developed for implementation on a clus-

ter of workstations (COWs) by using the message passing

interface (MPI) parallel-processing standard.16 A manager-

worker scheme has been used in this implementation. The

manager processor keeps a watch on the worker processors

as to whose queues become empty and who, therefore, may

become idle. A worker processor may be activated because

there are chunks (subsets) of image data, whose queues are

still not empty. The entire segmentation process stops at the

point when all queues maintained by all processors (the

workers) become empty. A speed-up factor of approximately

three has been achieved on a COW with six workstations.

An OpenMP-based parallel implementation of the fuzzy con-

nectedness algorithm has been reported recently.17 This

algorithm has been adapted to a distributed-processing

scheme.7 This scheme also works using manager-worker

paradigm in which there are several processors (the workers)

handling subsets of the data set and a special processor (the

manager) that controls how the other processors carry out

the segmentation of their corresponding subset. A speed

increase of approximately five has been achieved related to

the sequential implementation. OpenMP requires special

compilers that recognize directives embedded in the source

code which control parallelism. Typically, OpenMP systems

are expensive, tightly coupled, shared memory multiproces-

sor systems (MPS), such as the SGI Altix 4700, which is the

hardware being used in Ref. 17. The lower boost factor

achieved in Ref. 16 compared to Ref. 17 might be due to the

very fast FC algorithm employed18 to begin with and due to

the differences in image data, objects segmented, and the

computing platforms used.

The aim of this study is to describe a parallel implementa-

tion of the FC algorithm using less expensive hardware,

which can achieve vastly higher speed-up factors than both

the COW and MPS systems. Toward this goal, we chose

massively parallel graphics processing units (GPU) to accel-

erate the FC algorithms, mainly because the GPU has sub-

stantial arithmetic and memory bandwidth capabilities.

Coupled with its recent addition of user programmability, it

has permitted general-purpose computation on graphics

hardware (GPGPU).19 Moreover, the GPU has very low cost,

is wide available, and can be used on a normal desktop PC.

The use of GPU as a hardware accelerator has attracted

much recent attention and has proved to be an effective

approach in the domain of high performance scientific com-

putation.20 Since medical imaging applications intrinsically

have data-level parallelism with high compute requirements,

they are highly suitable for implementation on the GPU.

Several studies of medical imaging applications on GPU

have been reported recently, such as in deformable image

registration,21 Monte Carlo-based dose calculation in radio-

therapy,22 and image segmentation.23–26 An interactive,

GPU-based level set segmentation tool called GIST has been

developed for 3D medical images in Ref. 23. A sparse level

set solver has been implemented on the GPU. An improve-

ment of the GPUs narrow band algorithm has been pro-

posed.24 The communication latency between the GPU and

CPU that exists23 has been avoided by traversing the domain

of active tiles in parallel on the GPU. Thus, the computa-

tional efficiency has been dramatically improved. A GPU-

based random walker method has been presented for interac-

tive organ segmentation in 2D and 3D medical images.25 It

is implemented on an ATI Radeon X800 XT graphics card

by using a graph cuts interface. The computation time has

been reduced in excess of an order of magnitude, compared

with the CPU version. A fast graph cut method on the NVI-

DIA’s GPU using the compute unified device architecture

(CUDA) framework has also been proposed.26 The perform-

ance of over 60 graph cuts per second on 1024� 1024 2D

images and over 150 graph cuts per second on 640� 480 2D

images on an Nvidia 8800 GTX have been reported.

Theoretical and algorithmic studies of the similarities

among FC, level set, graph cut, and watershed families of

methods are recently emerging,27–29 which also demonstrate

their differences in computational efficiencies. While com-

parative analysis of the GPU implementations of these

frameworks will be worthwhile, their individual GPU imple-

mentations have to be developed first. Since such implemen-

tations do not exist for FC, and with this goal in mind, in this

paper, we present a parallel FC image segmentation algo-

rithm implemented on GPU by using CUDA to achieve nearly

interactive speed when segmenting large medical image data

sets. We emphasize that our focus in this paper is algorithmic

speed. The accuracy of the parallel FC algorithm imple-

mented on GPU is the same as that of the sequential algo-

rithm on CPU. We do not undertake any application-specific

evaluation of the parallel FC algorithm in this paper. In Sec.

II, we first briefly present the basic FC principles and its

sequential algorithm that is chosen for parallel GPU imple-

mentation; we then describe the NVIDIA GPU architecture

and the CUDA programming model, and explain the parallel-

ized version of this algorithm and its implementation by

using CUDA. The experimental results are presented in Sec.

III. Finally, a discussion and our concluding remarks are pre-

sented in Sec. IV. An early version of this paper was pre-

sented at the 31st Annual International Conference of the

IEEE Engineering in Medicine and Biology Society, whose

proceedings contained an abbreviated version of this paper.30

II. MATERIALS AND METHODS

II.A. Fuzzy connectedness principles and sequential
algorithm

We chose to parallelize and implement on GPU the first

FC segmentation algorithm reported in Ref. 3. Although sev-

eral advanced versions of FC algorithms have been reported

(see Ref. 31 for a recent review), such as scale-based FC, rel-

ative FC, and iterative relative FC, we chose the absolute FC

of Ref. 3 since this algorithm forms the basic building block
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of all other algorithms. The lessons learned from its imple-

mentation are more fundamental and can directly lead us to

the realization of other algorithms on GPU.

The characteristics of both the algorithm and the GPU

platform play a crucial role in determining the final speed-up

factor. We briefly describe the concepts related to FC in this

section to make this paper self-contained. Please see the

original papers for more details.3,4

We refer to a volume image as a scene and represent it by

a pair C¼ (C, f), where C is a rectangular array of cuboidal

volume elements, usually referred to as voxels, and f is the

scene intensity function which assigns to every voxel c [ C
an integer called the intensity of c in C in a range [L, H].

II.A.1. Fuzzy adjacency and affinity

Independent of any image data, we think of the digital

grid system defined by the voxels as having a fuzzy adja-

cency relation. This relation assigns to every pair (c,d) of

voxels a value between zero and one. The closer c and d are

spatially to each other, the greater is this number. This is

intended to be a “local” phenomenon. How local it ought to

be should depend on the blurring property of the imaging de-

vice. We denote the fuzzy adjacency relation by a and the

degree of adjacency assigned to any voxels (c,d) by la(c,d).

Now, consider the voxels as having scene intensities

assigned to them. We define another local fuzzy relation

called affinity on voxels denoted by j. The strength of this

relation between any voxels c and d, denoted lj(c,d), lies

between zero and one, and indicates how the voxels “hang

together” locally in the scene. lj(c,d) depends on la(c,d), as

well as on how similar are the intensities or intensity-based

properties at c and d. The properties of fuzzy affinity rela-

tions are studied extensively and a guidance as to how to set

up fuzzy affinities in practical applications is given in Refs.

4 and 32. In this paper, the following functional form for lj:

ljðc; dÞ ¼ laðc; dÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1ðf ðcÞ; f ðdÞÞg2ðf ðcÞ; f ðdÞÞ

p
; (1)

is used, where g1 and g2 are Gaussian functions of

[f(c)þ f(d)]=2 and [f(c) � f(d)]=2, respectively. The mean

and variance of g1 are related to the mean and variance of

the intensity of the object that we wish to define in the scene.

That is, this component of affinity takes on a high value

when c and d are both close to an expected intensity value

for the object. g2 is a zero-mean Gaussian, the underlying

idea being to capture the degree of local hanging together-

ness of c and d based on intensity homogeneity.

II.A.2. Fuzzy connectedness and fuzzy objects

The aim in FC is to capture the global phenomenon of

hanging togetherness in a global fuzzy relation on voxels

called fuzzy connectedness, denoted j. The strength of this

relation lK(c,d) between any voxels c and d, indicating the

strength of their connectedness, lies between zero and one,

and is determined as follows: There are numerous possible

“paths” within the scene domain C between c and d. Each

path for our purposes is a sequence of voxels, starting from c
and ending in d, with the successive voxels being nearby. We

think of each pair of successive voxels as constituting a link

and the whole path to be a chain of links. We assign a strength

(between zero and one) to every path, which is simply the

smallest pairwise voxel affinity along the path. Finally, the

strength of connectedness between c and d is the strength

associated with the strongest of all paths between c and d.

Let h be any number in [0,1], a fuzzy connected object O
in C of strength h, and containing a voxel o, consists of a

pool O�C of voxels together with a value indicating

“objectness” assigned to every voxel. O is such that o [ O,

and for any voxels c [ O and d [ O, the strength of connect-

edness between them lK(c,d) � h, and for any voxel c [ O
and e 62 O, the strength lK(c,e)< h.

The absolute FC algorithm is presented below for seg-

menting an object O in C. For any voxel affinity j in

C¼ (C,f), we define the j-connectivity scene of C with

respect to a voxel o [ C by CKo¼ (C,fKo), where, for any c [
C, fKo¼lK(o,c). The algorithm uses Dijkstra’s implementa-

tion of dynamic programming to find the best path from o to

each voxel in C.

Algorithm j FOE (Ref. 3)

Input: C¼ (C, f), any o[C, fuzzy affinity j.

Output: A j-connectivity scene CKo¼ (C, fKo) of C with

respect to o.

Auxiliary Data Structures: 3D array representing the

connectivity scene CKo¼ (C, fKo) and a queue Q containing

voxels to be processed. We refer to the array itself by CKo for

the purpose of the algorithm.

Begin

1. set all voxels of CKo to 0 except o which is set to 1;

2. push o to Q;

3. while Q is not empty do

4. remove a voxel c from Q for which fKo(c) is maximal;

5. for each voxel e such that lj(c,e)>0 do

6. set fmin¼min{ fKo(c), lj(c,e)};

7. if fmin> fKo(e) then

8. set fKo(e)¼ fmin;

9. if e is already in Q then

10. update the location of e in Q;

11. else

12. push (e) in Q;

End

II.B. Parallel implementation

In this section, we first briefly describe the NVIDIA GPU

hardware architecture and the CUDA programming model. For

a full description on NVIDIA GPU and CUDA, readers are

referred to the CUDA programming guide.33 We then describe

how we implement the FC algorithm using CUDA.

II.B.1. NVIDIA GPU architecture and programming
model

The underlying hardware architecture of a NVIDIA GPU

is illustrated in Fig. 1. The NVIDIA Tesla C1060 GPU is
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used as an example to provide a brief overview of the archi-

tecture. The Tesla C1060 GPU has 240 processing cores

with a clock rate of 1.3 GHz for each core, delivering nearly

one Tera FLOPS of computational power. To support an in-

tuitive and flexible programming environment to access such

computing power, NIVIDA provides CUDA framework,33

which is based on a C-language model. CUDA enables genera-

tion and management of a massive number of processing

threads, which can be executed in parallel on GPU cores

with efficient hardware scheduling.

The 240 cores of Tesla C1060 GPU are grouped into 30

multiprocessors. Each multiprocessor has eight processing

cores, organized in a SIMD (single instruction multiple data)

fashion. Each core has its own register file and arithmetic

logic unit, which allows it to accomplish a specific computa-

tional task. The Tesla C1060 has 4 GB of on-board device

memory, which can be used as read-only texture memory or

read-write global memory. The GPU device memory fea-

tures have very high bandwidth, recorded at 102 GB s�1, but

it suffers from high access latency. In each multiprocessor

unit, there is 16 KB of user-controlled L1 cache, called

shared memory. If it is used efficiently, it can be employed

to hide the latency in global memory access.

The CUDA programming model is based on concurrently

executed threads. CUDA manages threads in a hierarchical

structure. Threads are grouped into a thread block, and

thread blocks are grouped into a grid. All threads in one grid

share the same functionality, as they are executing the same

kernel code. Each thread block is mapped on to one multi-

processor unit, and threads in each block are scheduled to

run on eight processing cores of the multiprocessor unit,

using a scheduling unit of 32-thread warp. Since the threads

in a block are executed on the same multiprocessor, they can

use the same shared memory space for data communication.

On the other hand, the threads between different blocks can

communicate only through the low-speed global memory.

II.B.2. CUDA implementation

In CUDA, programs are expressed as kernels. In order to

map a sequential algorithm to the CUDA programming envi-

ronment, developers should identify data-parallel portions of

the application and isolate them as CUDA kernels. In the FC

algorithm, there are two major computational tasks: (i) com-

puting the fuzzy affinity relations and (ii) computing the

fuzzy connectedness relations. We shall refer to (i) as

“affinity computation” and (ii) as “tracking” a fuzzy object.

These two tasks are implemented as CUDA kernels, and a dra-

matic improvement in speed for both tasks is achieved as a

result.

(1) Affinity computation kernel: The CUDA implementation of

fuzzy affinity computation is straightforward. The fuzzy

affinity computation of every pair (c,d) of voxels where

la(c,d) is greater than zero is totally independent of other

pair of voxels. Thus for the pair (c,d), one thread is

assigned to compute corresponding g1(c,d) and g2(c,d) in

Eq. (1), and the fuzzy affinity lj(c,d) result is written to

the specific allocated GPU device memory. For compu-

tational simplicity, we use the six-adjacency relation

for a.

(2) Tracking kernel: Computing the fuzzy connectedness

values for a fuzzy object is a variation of the single-

source-shortest-path (SSSP) problem. Dijkstra’s algo-

rithm is an optimal sequential solution to the SSSP prob-

lem. Parallel implementation of the Dijkstra’s SSSP

algorithm is quite challenging.34 As far as is known,

there is no efficient parallel algorithm for the SSSP prob-

lem in a SIMD model. Harish and Narayanan35 proposed

the use of CUDA to accelerate large graph algorithms

(including those for the SSSP problem) on the GPU;

however, they implemented only a very basic version

and did not gain much performance improvement. We

use a similar scheme, but take advantage of a newer ver-

sion of CUDA hardware, which supports atomic read/write

operations in the device global memory. The flow chart

of our CUDA implementation is illustrated in Fig. 2, and

the algorithm is presented below.

FIG. 1. NVIDIA GPU hardware architecture.

FIG. 2. The flow chart of the proposed CUDA implementation.
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Algorithm CUDA-FOE

Input: C¼ (C,f), any o[C, the functional form of j.

Output: A j-connectivity scene C Ko¼ (C,fKo) of C with

respect to o.

Auxiliary Data Structures: Two 3D arrays representing

binary scenes C m1 = (C,fm1) and C m2¼ (C,fm2). We refer to

the arrays themselves by C m1 and C m2 for the purpose of the

algorithm.

Begin

1. set all voxels of C Ko and C m1 to 0 except o which is set to

1;

2. Invoke AFFINITY-KERNEL on grid to compute fuzzy

affinity lj.

3. while C m1 is not all zero do

4. set all voxels of C m2 to 0;

5. Invoke TRACKING-KERNEL(CKo,Cm1,Cm2,lj) on grid;

6. Copy Cm2 to Cm1;

End

The above algorithm is executed on the host (CPU) side

while the kernels are executed on the device (GPU) side, as

shown in Fig. 2. The different threads operate on voxels for

updating connectivity information simultaneously. In one in-

vocation, they all update connectivity information as much

as they can on the voxels in their purview. The CPU deter-

mines if any updating has been done in the last invocation of

the tracking kernel. If so, the kernel is invoked again with

updated information on the voxels (in C m2) where connectiv-

ity needs to be further updated. The CPU terminates the run

of the algorithm where no more updates are presented by the

tracking kernel. The affinity kernel and the tracking kernel

algorithms are presented below.

AFFINITY-KERNEL

Begin

1. compute thread index t(id);

2. for each voxel c processed by t(id) do

3. for each voxel d adjacent to c do

4. compute affinity lj(c,d) using Equation 1;

5. write lj(c,d) to corresponding GPU memory;

End

TRACKING-KERNEL (CKo,Cm1,Cm2,lj)

Begin

1. compute thread index t(id);

2. for each voxel c processed by t(id) do

3. if fm1 (c)¼ 1 then

4. for each voxel e such that lj(c,e)>0 do

5. set f min¼min{ fKo(c), lj(c,e)};

6. if fmin> fKo(e) then

7. set fKo(e)¼ fmin;

8. set fm2(e)¼ 1;

End

The algorithm CUDA-FOE is an iterative procedure. At the

first iteration, only one thread which processes the voxel o is

active. TRACKING-KERNEL is called to update the connec-

tivity scene C Ko and the binary scene C m2. More threads will

be involved and become active for the connectivity update at

the successive iteration. Because of the limited communica-

tion capability among threads from different blocks, the CPU

side needs to collect connectivity update information from

each thread on GPU, and decides when to terminate calling

the TRACKING-KERNEL. Each thread checks the flag of

each voxel under its control to see if it is 1 in the binary array

C m1. If yes (which means the connectivity of that voxel has

been updated during the last iteration, thus the connectivity

values of its neighboring voxels might need to be updated in

current iteration), it fetches its connectivity value fKo(c) from

the connectivity array C Ko and the affinities lj(c,e) between

voxel c and its adjacent voxel e. Then the connectivity value

of voxel e is updated if the minimum of lj(c,e) and fKo(c) is

greater than its original connectivity value fKo(e). Note in line

7 of the Algorithm TRACKING-KERNEL, atomic operation

was used for consistency, because update operations for one

voxel by multiple threads might happen simultaneously. The

two binary arrays Cm1 and Cm2 are used to avoid inconsis-

tency. When voxel c has been processed by one thread,

whether or not it needs to be further processed in the next iter-

ation depends on the processing results of its adjacent voxels.

The algorithm CUDA-FOE terminates when there is no connec-

tivity update from any of the threads.

III. RESULTS

In this section, the running times of our GPU and CPU

implementations of the FC algorithm are compared for

image data of different sizes. The CPU version of FC is

implemented in Cþþ . The computer used is a DELL PRE-

CISION T7400 with a quad-core 2.66 GHz Intel Xeon CPU.

It runs Windows XP and has 2 GB of main memory. The

GPU used is the NVIDIA Tesla C1060 with 240 processing

cores and 4 GB device memory. CUDA SDK 2.3 is used in our

GPU implementation. Three image data sets—small, me-

dium, and large—are utilized to test the performance of the

GPU and CPU implementations. Table I lists the image data

set information and shows the performance of the GPU

implementation versus the CPU implementation. A speed-up

factor of 24.4x, 18.1x, and 10.3x, respectively, has been

achieved, for the three data sets over the CPU implementa-

tion. It is noted that the segmentation results produced from

both GPU and CPU implementations are identical. Here, the

speed-up factor is defined as ts=tp, where ts and tp are the

TABLE I. Data set information and performance of the GPU implementation

with respect to the optimal CPU implementation.

Dataset Small Medium Large

Protocol PD MRI T1 MRI CT torso

Scene domain 256� 256� 46 256� 256� 124 512� 512� 459

Voxel size(mm3) 0.98� 0.98� 3.0 0.94� 0.94� 1.5 0.68� 0.68� 1.5

CPU time (s) 6.09 13.01 155.53

GPU time (s) 0.25 0.72 15.04

Speed-up 24.4 18.1 10.3
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times taken for the sequential and parallel implementations,

respectively. It seems that the larger the size of the testing

data set, the less speed-up we achieved. This is mainly

because for larger data sets, the affinity and tracking kernels

require much more device global memory access, which has

high latency.

Figure 3 shows the example of the small data set, which

comes from MRI of the head of a clinically normal human

subject. A fast spin-echo dual-echo protocol is used. Figure

3(a) shows one slice of the original PD-weighted scene, Figs.

3(b) and 3(c) show corresponding slices depicting connected-

ness values, and the final hard segmented white matter object.

Figure 4 shows the example of the medium data set, which

is a T1-weighted MRI scene of the head of a clinically normal

human subject. The spoiled gradient recalled (SPGR) acquisi-

tion was used. This data set were obtained from the web site

of National Alliance for Medical Image Computing.36 Figure

4(a) shows one slice of the original scene, and Figs. 4(b) and

4(c) show corresponding slices depicting the connectedness

values, and the final hard segmented white matter object.

Figure 5 shows the example of the large data set, which is

a CT scene of the torso. Figure 5(a) shows one slice of the

original scene, and Figs. 5(b) and 5(c) show corresponding

slices depicting the connectedness values, and the final hard

segmented lung mask without pulmonary vessels.

IV. DISCUSSION AND CONCLUDING REMARKS

Recently, clinical radiological research and practice are

becoming increasingly quantitative. Further, images con-

tinue to increase in size and volume. For quantitative radiol-

ogy to become practical, it is crucial that image

segmentation algorithms and their implementations are rapid

and yield practical run time on very large data sets. This pa-

per describes an example of practical and cost-effective solu-

tions to the problem.

We developed a parallel algorithm of the widely used

fuzzy connected image segmentation method on the NVI-

DIA GPUs, which are far more cost- and speed-effective

than both COWs and multiprocessing systems. The parallel

implementation achieves speed increases by factors ranging

from 10.3x to 24.4x on Tesla C1060 GPU over an optimized

CPU implementation for three image data sets with a wide

range of sizes, and takes 0.25, 0.72, and 15.04 s,

FIG. 3. A slice of the PD-weighted MRI scene from the

small data set (a), the corresponding slices of the scenes

depicting the connectedness values (b), and the final

hard segmented white matter (c).

FIG. 4. A slice of the T1-weighted MRI scene from the

medium data set (a), the corresponding slices of the

scenes depicting the connectedness values (b), and the

final hard segmented white matter (c).

FIG. 5. A slice of the CT scene of the torso from the

large data set (a), the corresponding slices of the scenes

depicting the connectedness values (b), and the final

hard object (c).
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correspondingly, for the three image data sets. The perform-

ance of the parallel implementation could be further

improved by taking advantage of fast GPU shared memory.

A near-interactive speed of segmentation has been achieved,

even for the large data set. For some specific applications,

several free parameters (e.g., fuzzy affinity parameter,

threshold value for the fuzzy object) in fuzzy connected

image segmentation might be difficult to optimize.8 The

interactive speed of segmentation could give users immedi-

ate feedback on parameter settings; thus allowing them to

fine-tune free parameters and produce more accurate seg-

mentation results. Future work will also include the develop-

ment of more advanced FC algorithms such as the scale-

based relative FC (Ref. 5) and iterative relative FC (Ref. 31)

on the GPU.
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