Data-driven Motion Estimation with Low-Cost Sensors

Liguang Xiel, Mithilesh Kumarl, Yong Caol,Denis Gracaninl, Francis Quek1

1 Computer Science Department
Virginia Polytechnic Institute and State University, United States
yongcao@vt.edu

Keywords:Performance animation, accelerometer, motion
synthesis, data-driven, local modeling

Abstract

Motion capture can produce high quality data for motion
generation. However, that professional motion capture
is expensive, and imposes restrictions on the capturing
environment. We propose a motion estimation framework
that utilizes a small set of low-cost, 3D acceleration sensors.
We use a data-driven approach to synthesize realistic human
motion comparable in quality to the motion captured by the
professional motion capture systems. We employ eight 3D
accelerometers — four Nintendo© Wii controllers — attached
to a performer’s body to capture motion data. The collected
data is used to synthesize high quality motion from a statistical
model learned from a high quality motion capture database.
The proposed system is inexpensive and is easy to setup.

1 Introduction

Compared to manual animation authoring solutions, automatic
motion generation techniques can produce a large amount of
high quality motion clips with little effort. Motion capture
is one of these techniques and has been widely adopted by
the animation industry. However, motion capture systems are
costly and require a long setup time. This places significant
constraints for its use. Recently, the availability of low-cost
motion sensors, such as 3D accelerometers and gyroscopes,
promises to put ubiquitous motion generation systems within
the reach of the animation community.

In this paper, we propose a low cost motion estimation and
synthesis framework. A prototype system is built on a small
number of Nintendo© Wii™controllers that are easy to attach
to human body. Using Wii controllers as input devices, we
are able to generate high quality motion data using our motion
estimation framework. The system we developed is easy to set
up and imposes little or no restriction on the data acquisition
environment. We aim to make our motion synthesis framework
as convenient as video capture systems and make it applicable
to a wide range of applications, ranging from video game
interfaces, animated chat-rooms to interactive character control
in virtual environments (VEs).

We estimate full body motion in two phases. During the
first, data collection phase, we collect motion data from
a “profesional” performer using a commercially available
professional motion capture system. At the same time we
also capture 3D acceleration data from eight sensors (four

Wii controllers) attached to the performer’s body. This
one-to-one mapped, time synchronized data is used to create
a large, high quality motion capture database. In the second
phase, we capture motion from a ’regular user’ using only
the attached accelerometer sensors. We then estimate the
corresponding motion using a local linear model created
from the motion capture database. The proposed local linear
model can estimate high quality motion from low-dimensional
noisy accelerometer data. Our local modeling approach also
enables us to scale the database to incorporate large amounts
of motions without performance degradation.

We evaluate our system by comparing the synthesized results
with ground truth which is simultaneously captured by an
optical motion capture system. The evaluation shows that our
system can accurately estimate full body motion using a small
number of low-cost acceleration sensors.

The remainder of the paper is organized as follows. Section 2
provides the background and describes the related work in
this area. Section 3 explains the system architecture while
Sections 4 and 5 provide the detailed description of our
approach. Section 6 shows the results and demonstrates the
accuracy of our approach. Section 7 summarizes the paper and
discusses the limitations. Section 8 discusses future work to
address the current limitations.

2 Background

There is a variety of user interfaces to control the motion
of characters in 3D VEs, especially for gaming. The input
devices include mouses, keyboards, joysticks and other devices
such as vision based tracking systems (e.g., (©Sony EyeToy)
and inertial/acceleration sensors (e.g., Wii "MController). Such
user interfaces provide immediate and direct control signals
with limited number of degrees of freedom. Therefore, it is
difficult to provide performance-driven control for complex
human motions.

Badler et al. [1] proposed a system that reconstructs full-body
motion using four magnetic sensors and a real-time inverse-
kinematic algorithm to control a standing character in a VE.
The system introduced a data-driven approach to address the
kinematic redundancy problem. Another system developed
by Yin and Pai [9] synthesizes full-body motion within one
second by using a foot pressure sensor. However, it can only
generate a small range of behaviors and cannot produce motion
for complex upper body movements.

Chai et al. [4] implemented a vision based system that
requires only two inexpensive video cameras. Using only
six markers attached to a body, the system can synthesize

a wide variety of human movement without a long suit-up
time. The synthesized motions are very detailed because a
data-driven approach is used to query a high quality motion
capture database. Similarly, Liu et al. [6] applied a linear
regression model to estimate human motions from a reduced
marker set. However, these systems require a restrictive
motion capture environment and suffer from the occlusion
problem of a vision based tracking system. Oore et al. [7] use
six degree-of-freedom tracking devices to interactively control
the locomotive animations. Dontcheva et al. [5] also use a
tangible user interface in their puppetry system to control the
motions divided into several different layers.

Recently, Vlasic et al. [8] combined accelerometer, inertial
and acoustic sensors to capture high-fidelity motions that are
comparable to the motions captured from marker based vision
systems. The system removes the restriction of constrained
motion capture environments, and allows the user to be tracked
almost “everywhere”. However, the cost of the system is still
high and, due to the necessary post-processing time, it is not a
real-time system.

3 System Overview

We describe a novel approach that uses low cost 3D
acceleration sensors to synthesize full body motion. The high
quality motion is synthesized from the input sensor data using
a statistic model learned from a motion capture database.
There are two major phases of our approach — data collection
and motion synthesis.

Data collection: We first perform a series of off-line motion
capture sessions using simultaneously an optical motion
capture system and accelerometer sensors (Wii controllers).
Both motion capture data and sensor data are pre-processed to
reduce noise. We then synchronize the motion data with the
sensor data in order to get a precise frame-to-frame mapping.
All the data is then stored in a database for motion synthesis.

Motion synthesis: Figure 1 describes this phase. During
the motion synthesis phase, the user performs actions using
only 3D acceleration sensors (Wii controllers) attached to the
body. Using this sensor data, we synthesize high quality motion
data and the statistical model built from the motion database
captured in the previous step. In order to build the model,
we first segment the database into clusters using a Gaussian
Mixture clustering algorithm. We then construct a Radial Basis
Function (RBF) interpolation model for each cluster. For each
frame of the input sensor data, we apply the RBF interpolation
function of the cluster associated with the input data. The result
is a 3D pose with the same quality as the one of the motion
capture data. All newly generated poses are post-processed to
generate a smooth animation sequence.

Clustering

&

T
Model Learning

Local Linear
Model

| Motion
Synthesis

Sensor Signals Synthesized Motion

C Gt

Figure 1: Motion query and synthesis.

4 Data Collection and Preprocessing

In this Section we describe our data capture, synchronization
and pre-processing procedures.

4.1 Data Capture and Representation

We perform an off-line motion capture session to create a
motion database which consists of two types of synchronized
data. One is high quality motion capture data, acquired
using a Vicon optical motion capture system. The other
type is accelerometer sensor data from Wii controllers. The
database contains five different types of full-body motions:
tennis forehand (1121 frames), tennis backhand (1004 frames),
basketball shot (1300 frames), golf swing (1201 frames), and
karate middle block (456 frames).

We use a system with 8 Vicon MX series cameras for high
quality motion capture at a frame rate of 60 frames per
second. Simultaneously, data are captured using low cost 3D
accelerometers (Wii controllers) with a range of +3g and built-

in Bluetooth® interface for data transmission at a peak rate
of 100 frames per second, where a data frame consists of
acceleration values from all the sensors. The interface based
on these wireless sensors is cheap, easy to set-up and, unlike
a vision based system, does not suffer from occlusion. The
data obtained from the motion performance recording is pre-
processed to control the frame rate and provide noise reduction
due to the wireless environment.

Figure 2 shows a total of 45 retro-reflective markers and eight
accelerometers attached to the performer’s body. The sensors
are attached to the arms and legs since they provide most
of the movements for a majority of human actions. Each
sensor transmits its 3D acceleration signal to the data collection
computer where the data is converted into sensor frames,
synchronized with motion data frames and stored into the
database. There are N frames of data in the database, which

Figure 2: Data collection: an optical motion capture system
and a 3D acceleration sensor based data acquisition system
are used in parallel. There are 45 retro-reflective markers and
eight sensors (four Wii™ Nintendo controllers) attached to the
performer.

can be represented as

(ctvqt)|t: 17'~~>N

where ¢; is a 24-dimensional frame of sensor data representing
the 3D acceleration measures of four or eight sensors on the
body at time 7. q, is a frame of optical motion capture data and
it represents a pose at time 7. The pose is represented in the
form of local joint rotations in the quaternion format. Note that
there is one-to-one correspondance between ¢; and ;.

4.2 Data Synchronization

In order to map the motion data q, to the sensor data ¢;, it
is necessary to synchronize data from all the sensors and
optical motion capture system. This is critical since the
sensors transmit independently of each other using the wireless
medium. Moreover, data from each sensor is received with
variable frame-rate owing to packet loss in the wireless
environment. To resolve these two issues, all data received
from the sensors are marked with the sensor ID and placed in
a common buffer. A snapshot of the buffer is taken after every
frame period and one sensor frame is constructed with the
currently received data. After a snapshot is taken, the buffer
is overwritten if new data arrives. Typically, there should be
only one sensor frame in the buffer when taking snapshots.
However, if the terminal failed to receive data from any sensor
during this time period (or the buffer is empty), then the
previously received frame is considered again. If there are
more than one sensor frame, we use the average of all frames
in the buffer. This way the sensors can be synchronized at a
constant frame-rate of 60Hz to match the frame rate of the
motion capture system.

The next step is to synchronize the motion capture data with
the sensor data. For this we ask a performer to strike fists

before and after performing any action. We use this striking
event to synchronize the sensor data and motion capture data,
by aligning the spike in the sensor readings with the frame in
motion capture data when two fists touch each other.

4.3 Data Pre-Processing

Before storing the captured data into the database, we pre-
process the data for model learning and motion synthesis.
We use quaternions for joint rotation representation so that
congruent angles (e.g. 0° and 360°) are represented using the
same numerical value. Noise in optical motion capture data
due to marker occlusion is removed in the post-processing step
of the data capture stage. This noise reduction is crucial for the
output data quality.

Noise in the sensor data is mainly because of the wireless
environment. We use sensitive Bluetooth receivers to maintain
a high bandwidth. It is common to find a few arbitrary
values that are beyond the range of values we expect from the
sensors. These values are automatically detected and replaced
by quantities that are estimated from the neighboring data.

5 Model Learning and Motion Synthesis

In this section, we describe how to build the model from the
database and how to synthesize novel motions from the model.

5.1 Local Linear Model

Local linear models are often used to deal with a large database
that cannot be accurately represented by a linear model. The
idea is to cluster the whole database into smaller, compact
datasets via a Gaussian mixture model. We then build a linear
model for each dataset. Globally, the model is non-linear but
the local models are linear and have simple linear solutions.

5.1.1 Gaussian Mixture Clustering

In our approach we model the motion database using a
Gaussian mixture model. The model is defined as follows:

K
p(x|0) =N mjm(x|u;,2;) M
=1

where K is the number of clusters and 6 = {7, u;,X;} are the
model parameters. i is the mixing weight satisfying 0 < 7; <
1 and Zf:ljp j=1. ujand X; are the mean and covariance of the
mixture cluster j. We use Bouman’s algorithm [2] to estimate
the number of clusters which best fit the motion capture dataset
O containing optical motion capture data q,. The estimation
is based on the Rissenen order identification criteria known as
minimum description length [2]. Given the number of clusters
K, we perform unsupervised classification on Q and get the

model parameter sets 6. Following the clustering result of
0, we classify the sensor dataset C = {¢;} into K clusters by
one-to-one mapping from ¢; to q, during data synchronization.
Figure 3 shows an example plot of motion capture dataset
clustering and sensor dataset clustering for tennis forehand
action. In our database, the total 5,082 frames are classified
into 81 clusters.

88 & o 8 B8

Figure 3: Example of Motion and Sensor Dataset Clustering:
A set of data points with the same color represent one cluster.
The dataset are plotted in the top three components of PCA
space of motion capture data (left figure) and sensor data (right
figure), respectively.

5.1.2 Principal Component Analysis

For each cluster Q;, where 1 < j < K and Q; = {q{|i =
1,2,..,n;} (nj is the size of j"cluster), we first apply Principal
Component Analysis (PCA) to reduce the dimensionality
of motion capture data Q;. In our case we reduce the
dimensionality from 72 to 7. This choice of lower dimension
is an optimum value that reduces computational cost of model
learning and synthesis while still capturing 99% of the motion
variance. The reduced dimension data r{ is produced by PCA
using Equation 2:

—a)A; ",)

where q; is the mean value for cluster j, A; is the transfer
matrix built from the eigenvectors corresponding to the largest
eigenvalues of the covariance matrix of the data.

5.1.3 Radial Basis Function

Now we can build a local linear model for each cluster. For
the j” cluster , we can build a local linear model using Radial
Basis Functions (RBF) [3] to learn the mapping function from
¢/ tog/, wheree/ €C;={c/[i=1,2,...p;}.q/ € 0;={q]li=
1,2,..,p;} and p; is the number of frames in cluster j. Given
a new input sensor data point ¢ at the time frame ¢, if this
data is classified as the j” cluster, the mapping function can be

expressed using Equation 3 as:

pj)
@ = Fi(&) =a,+A; > wid(|[& —¢|]), 3)
=1

1

where @, is the high quality pose we want to synthesize, w;; are
unknown weights, || - || denotes a metric — in our case Euclidian
distance, and ¢ () is a continuous kernel function.

There are several choices for ¢(), including Gaussian,
multiquadratic, or thin plate spline. We chose the Gaussian
function,

pr)=e"1,

because it is non-linear and provides good results when applied
locally. The width o, determines the amount of area covered
by Gaussian function on the data. Since data points are not
uniformly distributed in the data space, in order to improve
quality of output we implemented a dynamic o [3] dependent
on the density of local data.

By using the local cluster data {c;i ,q‘l-i }, we can solve for
unknown weights w;; to complete the local linear model
(Equation 3).

5.2 Motion Synthesis with Interpolation Model

Given the new input sensor data &,1 <t < N with N frames,
we apply the local linear model learned from the previous step
to synthesize the new high quality motion ¢;,1 <t < N.

For the input sensor data ¢, at frame 7, we identify the cluster
it belongs to by calculating the closest distance against the
mean values of all clusters in sensor data, ¢;,1 < j < K. If
it is classified as cluster j, we use RBF mapping function F;()
defined in Equation 3 to synthesize new motion data frame ;.

During the post-processing step, we smoothen the synthesized
motion data q;, 1 <¢ < N using a low pass filter.

6 Results

We tested the performance of the system with two subjects
performing various actions. Figure 4 shows the results for
four synthesized actions, tennis forehand, tennis backhand,
basketball shot and middle block from Karate. The results
clearly show that the synthesized motion precisely captured the
poses of the subjects (compared to the video footage of the
motion capture session).

We perform an end-to-end evaluation to measure the accuracy
of our system. During capture sessions we also recorded the
high quality motions using an optical motion capture system.
The recorded high quality motions are used as ground truth
that can be compared against the synthesized motion frame by
frame. The recorded motions and the synthesize motions are
both converted from quaternion data to joint angle data for error
calculation. We then use the normalized Root Mean Square
(RMS) distance e to quantitatively measure the difference. The
unit of e is degree of freedom per angle. e is defined as below:

S (ki — Qii)?
n

¢ = RMS(q, qi) = : @

where k is the frame index, ¢ is the synthesize motion, qy

is the ground truth motion and qy; is the i dimension of .

Table 1 shows the RMS distances for four synthesized motions.
Figure 5 shows a comparison of one of the synthesized motions
with the corresponding ground-truth motion. (Please refer to
the demonstration video for more comparisons). The results
of visual and quantitative comparisons show that our low cost
system generates motions with the quality equivalent to that
of an expensive optical motion capture systems. In terms of
computational expense, our system is efficient. The motion
synthesis implemented in Martlab® is at a rate of about 0.019
seconds/frame, compared with real time at a rate of 0.016
seconds/frame (for 60 frames per second animation).

Frame | Average | Processing
Actions Number | RMS Time
Basketball shot 302 0.37 5.78 sec.
Tennis Forehand | 256 0.18 4.90 sec.
Tennis Backhand | 206 0.26 3.94 sec.
Middle Block 160 0.53 3.07 sec.

Table 1: Normalized RMS distance is used to compare, for
each action, the synthesized motion with the ground truth
motion captured directly by the optical motion capture system.

7 Conclusion

We present a framework for estimating full body motion using
a small set of low cost inertial sensors. Our two step approach
involves data collection and motion synthesis. Data collection
is performed in the studio and produces a database of time
synchronized high quality motion capture data and sensor
data. Prior to motion synthesis, we cluster the database and
create local linear models that enable us to convert the non-
linear global database into clusters of linear data. We then
apply linear interpolation or optimization technique for pose
estimation. We have shown the effectiveness of our framework
by performing an End-to-End evaluation.

The type of animation that can be synthesized using our system
is only limited by the size of the database and sensitivity of the
sensors. The examples close to the motion to be synthesized
must be present in the database. However, our design is
scalable and can handle larger databases without performance
degradation. Using a sufficient number of examples we can
synthesize a large variety of human motions.

8 Future Work

In our current work we have focused on a motion estimation
system that requires data to be processed offline and used later.
We plan to improve the performance of our motion capture
framework and support interactive applications by using real-
time optimization algorithms. Real-time support will allow

performers to view the results during capture session and hence
make quick adaptations.

Like most of the linear model based motion synthesis, our
approach suffers from the smoothness problem during motion
synthesis. This problem results partly from the noise in the
sensor data and partly from possible discontinuity between two
clusters. We plan to improve the smoothness of synthesized
motion by using on-line motion blending techniques.

A major goal of our research is to use minimum number of
sensors without compromising the quality. We believe that it is
possible to generate visually indistinguishable animation with
a reduced number of sensors, if the motion to be acquired is
within a small set of movements (e.g. golf swing). For such
a scenario, we would like to design an effective database and
synthesize full body motion with as little as 1 sensor.

References

[1] N. I. Badler, M. J. Hollick, and J. P. Granieri. Real-
time control of a virtual human using minimal sensors.
Presence, 2(1):82-86, 1993.

[2] C. A. Bouman. Cluster: An unsupervised algorithm
for modeling gaussian mixtures. Available from http://
www.ece.purdue.edu/"bouman, April 1997.

[3] M. D. Buhmann. Radial Basis Functions : Theory and
Implementations. Cambridge University Press, 2003.

[4] J. Chai and J. K. Hodgins. Performance animation from
low-dimensional control signals. ACM Trans. Graph.,
24(3):686-696,2005.

[5] M. Dontcheva, G. Yngve, and Z. Popovi¢. Layered
acting for character animation. In Proceedings of ACM
SIGGRAPH 2003, pages 409-416, New York, NY, USA,
2003. ACM.

[6] G. Liu, J. Zhang, W. Wang, and L. McMillan. Human
motion estimation from a reduced marker set. In I3D
’06: Proceedings of the 2006 symposium on Interactive 3D
graphics and games, pages 3542, New York, NY, USA,
2006. ACM.

[7] S. Oore, D. Terzopoulos, and G. Hinton. A desktop input
device and interface for interactive 3D character animation.
In Proceedings of Graphics Interface 2002, pages 133—
140, May 2002.

[8] D. Vlasic, R. Adelsberger, G. Vannucci, J. Barnwell,
M. Gross, W. Matusik, and J. Popovi¢. Practical motion
capture in everyday surroundings. ACM Transactions on
Graphics, 26(3):35,2007.

[9]1 K. Yin and D. K. Pai. Footsee: an interactive
animation system. In Proceedings of the 2003
ACM SIGGRAPH/Eurographics symposium on Computer
animation, pages 329-338, Aire-la-Ville, Switzerland,
2003. Eurographics Association.

Figure 4: Four different actions (one in each row) synthesized by our system. Each frame shows on the left side the actual pose
and on the right side the synthesized pose.

Figure 5: Synthesized motion compared to the ground truth. Each frame shows on the left side the synthesized motion and on
the right side the ground truth.

