
ORIGINAL RESEARCH PAPER

Performance analysis of a novel GPU computation-to-core
mapping scheme for robust facet image modeling

Seung In Park • Yong Cao • Layne T. Watson •

Francis Quek

Received: 4 November 2011 / Accepted: 11 August 2012

� Springer-Verlag 2012

Abstract Modern graphics processing units (GPUs) are

commodity data-parallel coprocessors capable of high

performance computation and data throughput. It is well

known that the GPUs are ideal implementation platforms

for image processing applications. However, the level of

efforts and expertise to optimize the application perfor-

mance is still substantial. This paper investigates the

computation-to-core mapping strategies to probe the effi-

ciency and scalability of the robust facet image modeling

algorithm on GPUs. Our fine-grained computation-to-core

mapping scheme achieves a significant performance gain

over the standard pixel-wise mapping scheme. With in-

depth performance comparisons across the two different

mapping schemes, we analyze the impact of the level of

parallelism on the GPU computation and suggest two

principles for optimizing future image processing applica-

tions on the GPU platform.

Keywords Facet image modeling � Robust estimation �
GPGPU � Computation-to-core mapping

1 Introduction

Modern graphics processing units (GPUs) are commodity

data-parallel coprocessors capable of high performance

computation and data throughput. GPUs are ideal imple-

mentation platforms for image processing algorithms.

The majority of image processing algorithms belong to

the class of embarrassingly parallel problems in which the

same operation on each pixel of the input image is per-

formed and the operations are completely independent. It

is therefore conceptually simple to map the processing of

each pixel to the parallel architecture of GPUs. In most

cases, such simple computation-to-core mapping can be

effective [12, 17, 33, 37]. However, when an algorithm

involves a large linear system to solve, for example,

robust facet image modeling [9] and surface analysis [35,

36] algorithms, the amount of computation for each pixel

is too heavy for a single GPU core to execute efficiently.

Applying such a pixel-wise mapping of computation to

graphics hardware for this type of algorithms may result

in a GPU resource deficit, and limit the scalability of an

application.

In this paper we investigate the computation-to-core

mapping strategies to achieve the efficiency and scalability

of the image processing applications on GPUs. This paper

is an extended version of our earlier work in [30]. The

previous work mainly focused on developing a computa-

tion-to-core mapping scheme to realize fine-grained par-

allelism for the robust facet image modeling algorithm. We

showed our mapping scheme, called block-level facet

processing, achieved an efficient GPU resource utilization

and thus substantial performance gains over the standard

pixel-level mapping scheme. On top of this, attempts are

made to better understand the impact of parallelism gran-

ularity on numerically oriented computation within image

S. I. Park � Y. Cao (&) � L. T. Watson � F. Quek

Department of Computer Science, Virginia Polytechnic Institute

and State University, Blacksburg, VA, USA

e-mail: yongcao@vt.edu

S. I. Park

e-mail: spark80@vt.edu

L. T. Watson

e-mail: ltw@cs.vt.edu

F. Quek

e-mail: quek@vt.edu

L. T. Watson

Department of Mathematics, Virginia Polytechnic Institute

and State University, Blacksburg, VA, USA

123

J Real-Time Image Proc

DOI 10.1007/s11554-012-0272-7

processing. Our facet-based model involves a numerical

method known as QR decomposition. We did comparative

implementation of the QR decomposition computation for

both the pixel and block-level approaches. We provide in-

depth performance comparisons across these implementa-

tions, and draw two principles for optimizing future image

processing applications on the GPU platform.

The rest of the paper is organized as follows: Section 2

describes the architecture and programming model of

GPUs. Several previous studies on image processing using

GPUs are reviewed in Sect. 3. Section 4 illustrates the

robust facet image modeling algorithm and analyzes the

computational characteristics of the algorithm. Section 5

explores two implementation designs differing in the

mapping of data elements to GPU processing cores.

Section 6 introduces an algorithmic optimization for robust

image modeling and how the optimization affects the

two implementations discussed in the previous section.

Section 7 discusses how the mapping affects the perfor-

mance and scalability. Section 8 summarizes what mapping

strategy should be taken depending upon computational

profile and purpose, and describes a limitation and future

work.

2 GPU architecture

GPUs have evolved from fixed function graphics pipe-

lines to fully programmable, massively parallel archi-

tectures for general purpose computational applications.

With the advent of NVIDIA’s Compute Unified Device

Architecture (CUDA) in 2007, developers were liber-

ated from need to frame computation within the struc-

ture of shaders and graphics APIs. CUDA allowed

researchers from many disciplines to exploit the low-

cost massively parallel computational power of GPUs

with support for random memory access and C pro-

gramming SDK.

Our paper is about the use of modern GPUs with the

CUDA programming framework and instruction set

architecture for numerically-based computation and

image processing. We employed NVIDIA’s GT200-series

GPUs as our test platform. These GPUs are built as a

collection of streaming multiprocessors, each of which

consists of eight SIMT (single-instruction, multiple-

thread) stream processors. The SIMT architecture allows

each stream processor in a multiprocessor to run the same

instruction on different data independently, making it

ideal for data-parallel computing. This section will dis-

cuss the thread organization of CUDA and the GPU

memory hierarchy. A detailed description of the pro-

gramming model and architectural specification for

CUDA can be found in [21] and [22].

2.1 Thread organization

CUDA manages a large number of computing threads by

organizing them into a set of logical blocks. Each thread

block can be mapped onto one of the multiprocessors for

execution. The number of threads allowed in a block

depends on the hardware limitation of each specific device

and the computational resources required by each thread in

the block. Blocks are further organized into grids. The

threads within one grid all execute the same kernel func-

tion, and the thread grids are scheduled to run sequentially

on the GPU.

In terms of scheduling, a group of 32 threads forms a

warp, which is the minimum thread set that is scheduled

independently to run on multiprocessors in parallel. Since

each multiprocessor has only one instruction fetch unit, all

threads in a warp must execute the same instruction in a

GPU clock cycle for the best performance. If a branch

instruction causes the execution of diverged codepaths

within a warp, all different codepaths have to be executed

sequentially, which results in performance degradation.

2.2 Memory hierarchy

Another important feature of CUDA is a memory hierarchy

to hide memory and pipeline latency. Figure 1 illustrates

the memory resources available to CUDA, and how each

resource may be accessed. Each processing core within a

multiprocessor has its own local memory (not shown in

figure) that is allowed exclusively for some automatic

variables, and is not in programmatic control of the

developer. Each multiprocessor has a set of shared memory

and cache memory resources, and a set of memory

resources that is shared across multiprocessors: global,

constant, and texture memory. The cache memory is clo-

sely related to texture memory. Texture and constant

memory are accessible as read-only memory from within

CUDA. These memory resources may be written from the

host CPU program, and serve as a way to pass information

Multi-processor

Processing
core

Shared
Memory

Cache
Memory

Multi-processor Multi-processor

Global Memory

Texture Memory

Constant Memory

Fig. 1 Overview of the CUDA memory hierarchy [22]

J Real-Time Image Proc

123

into the multiprocessor program of the GPU from the CPU.

The difference, as the name implies, is that texture memory

also serves the purpose of declaring image arrays to be

used by the GPU.

The most flexible memory available to CUDA are the

shared and global memory, subject to size limitations.

Shared memory is on-chip memory with very fast access

that is shared among all the threads in the same block.

Global memory can be accessed by all threads across all

multiprocessors but is costly; global memory latency is

400–600 cycles while shared memory latency is ten cycles.

Consequently global memory access should be minimized

as much as possible for the best performance. However,

only 16 KB of shared memory is given per multiprocessor,

and if enough shared memory to process the kernel func-

tion in at least one thread block is not available, then the

kernel launch will fail.

3 Related work

Owens et al. [25] surveyed the latest developments and

trends in general purpose application of GPUs. The focus

here is on a subset of the work in image processing.

A GPU-based stereo matching technique combining the

sum of squared differences dissimilarity measure and

multiresolution approach was introduced in [39] and [40].

Histogram equalization and tone mapping using a vertex

shader was presented in [32]. Sinha et al. [33]. described

the shader based implementation of the Kanade–Lucdas–

Tomasi feature tracking and SIFT feature extraction algo-

rithms on GPUs. GPUs were designed to enhance the

performance of graphics related applications specifically,

and significant efforts were required to use them outside of

a graphics rendering context. Therefore, the focus of image

processing on GPUs was reformatting of the target algo-

rithm to be mapped to the computing of vertex transfor-

mation or pixel illumination.

With the CUDA programming framework, using the

GPU for image processing has found its way into a wide

variety of applications. Just to name a few of those studies,

Mizukami and Tadamura [20] proposed implementation of

Horn and Schunck’s regularization algorithm with a mul-

tiscale search method for optical flow computation. They

were able to achieve speedup of approximately 16 on a

NVIDIA GeForce 8800 GTX card over a 3.2-GHz CPU.

Bui and Brockman [5] presented a 2-D rigid image regis-

tration algorithm using CUDA and reported speedup of 90

with bilinear interpolation and speedup of 33 with bicubic

interpolation. They profiled the data to identify perfor-

mance bottlenecks of the CUDA platform and emphasized

the need to manage memory resources carefully to obtain

maximum speedup. The general optimization strategies

include utilizing many threads and maximizing memory

and instruction throughput through a set of techniques such

as global memory coalescing, reducing shared memory

bank conflicts, and reducing divergent branching [22].

Both of [20] and [5] applied these strategies to achieve

optimal performance. However, they simply take the pro-

cessing of each pixel as a computation unit for parallel-

ization, none of them explored the influence of level of

parallelism on the optimization.

Focusing on program optimization aspects of CUDA,

Ryoo and his colleagues [28] demonstrate the significance

of the optimization principles by analyzing the relative

performance among different configurations on a suite of

applications. Because of the enormous computing power of

GPUs, orders of magnitude performance difference can

exist between well optimized and poorly optimized codes

of an application. In Ryoo’s experiment, speedups between

10.5 and 457 were achieved by the code optimization.

Later, Ryoo et al. developed their ideas further on efficient

GPU program optimization, and revealed that optimizing

an application for maximum performance goes beyond

simply application of a set of optimization techniques to

code. The difficulty comes from the fact that the interac-

tions among the underlying architectural and programming

model constraints affect performance in a non-linear fash-

ion [29]. They modeled GPU programming for maximum

performance as a multivariable optimization problem. The

complete optimization space consists of memory bandwidth,

dynamic instruction reduction, threads occupancy, instruction

level parallelism, memory latency hiding, and work redistri-

bution. To avoid inefficient empirical search of the large

optimization space, they proposed program optimization

carving that prunes those variables down to a set of configu-

rations that bring the best performance. In order to do that,

metrics that capture the instruction efficiency of the kernel

code and utilization of the compute resources were developed

and used to reduce the search space.

Yixun [41] took a novel perspective on CUDA program

optimization. They presented how program inputs affect

the effectiveness on the optimization. Then G-ADAPT

(GPU adaptive optimization framework), a compiler-based

framework, was presented to help decision making on the

optimal code configuration. As Yixun revealed, some GPU

applications are affected by certain optimization factors

besides well-known ones. In this work, we explore the

influence of computation-to-core mapping strategy on the

image processing applications.

4 Robust facet image modeling

We selected facet image modeling (FIM) as the test algo-

rithm because it represents aspects of computation that are

J Real-Time Image Proc

123

both image oriented (and therefore naturally replicated),

and numerical (involving mathematical approaches that

employ large computational arrays and numerical

optimization).

The concept of FIM was first introduced by Haralick and

Watson [9]. The basic idea is to divide images into larger

regions that are homogeneous with respect to some high

level criterion that allows these regions to be handled

similarly. For example, an image of a polyhedral object

may be best represented by a set of planes, each describing

a surface of the polyhedron that exhibits the same surface

normal (and hence similar shading characteristics). Besl

et al. [4] proposed a robust window operator to yield good

model estimates for facets when the sample data are con-

taminated with more than one statistical distribution. The

algorithm applies robust statistics to minimize the error

between the underlying gray level model and the observed

data from the image. We call this robust FIM.

FIM has been applied to many different applications

such as edge detection [11, 19, 27], background normali-

zation [16], and image segmentation [10]. The massive

amount of computation inhibits the algorithm from being

used more widely in real world applications.

In an earlier attempt to employ parallel computation for

FIM, Pathak et al. [26] focused on an efficient implemen-

tation of quadratic facet modeling with algorithm trans-

formation. The optimized implementation on a

MediaStation 5000 improved the performance by a factor

of 7 over the direct implementation on a SUN SparcStation

10/41 for quadratic facet modeling. Our research applies

parallelization on the more readily available and faster

GPU computational architecture.

4.1 Algorithm overview

Facet-based modeling requires accurate parametric repre-

sentation of each image facet so that it reveals the structure

of the underlying whole image. As such, precise parameter

extraction is at the heart of the algorithm. Since FIM

employs numerical fitting of such parametric models to the

image data, it is essential that the resulting parameters are

not contaminated by image outliers. Our algorithm

employs a robust estimation technique known as M-esti-

mation. The results of the M-estimation process is fed to an

iterative reweighted least squares algorithm that performs

the actual parameter estimation. Because FIM employs

polynomial basis functions for the modeling, one needs to

know the order of the polynomial to apply to each facet.

Obviously, this cannot be known a priori. Hence the

algorithm employs a variable order approach where the

order of the polynomial is estimated through a series of

iterations beginning with lower order polynomials and

advancing to higher orders. We will discuss the

mathematics behind the algorithm and flush out the details

of the algorithm thereafter.

4.2 M-estimation

The robust window operator estimates the parameters of

the underlying facet model for a given two-dimensional

n� m window centered at the pixel with local coordinates

(0, 0); the model function f ðr; cÞ at pixel ðr; cÞ located at

the rth row and the cth column is a linear combination of

(polynomial) basis functions /i;

f ðr; cÞ ¼
Xp

i¼1

ai/iðr; cÞ; ð1Þ

where p is the dimension of the vector space generated by

the /i:

To find the coefficient vector a of the fitting function,

M-estimation minimizes the residual error

EðaÞ ¼
Xn0

r¼�n0

Xm0

c¼�m0
q

dðr; cÞ � f ðr; cÞ
s

� �
;

n0 ¼ n� 1

2
; m0 ¼ m� 1

2
;

ð2Þ

where dðr; cÞ is observed data, q is a symmetric, monotone

increasing function with qð0Þ ¼ 0; and the scaling factor s

is evaluated using the median absolute deviation (MAD).

The optimal coefficient vector a is found by minimizing

EðaÞ: Choosing q so that its derivative is the Huber mini-

max function [15], rEðaÞ ¼ 0 can be written as

Xn0

r¼�n0

Xm0

c¼�m0

Xp

k¼1

wðr; cÞ/iðr; cÞak/kðr; cÞ

¼
Xn0

r¼�n0

Xm0

c¼�m0
dðr; cÞwðr; cÞ/iðr; cÞ; i ¼ 1; . . .; p;

ð3Þ

where the weight wðr; cÞ is defined as q0ðeðr; cÞÞ=
eðr;cÞ;eðr;cÞ¼ðdðr;cÞ�f ðr;cÞÞ=s: Equation (3) in matrix

form is

UtWUa ¼ UtWd; ð4Þ

which is a nonlinear equation in a because the weight

matrix W depends on these coefficients. U is a n � m� p

matrix whose rows are /1ðr; cÞ; . . .;/pðr; cÞ: W is a n �
m� n � m diagonal matrix whose diagonal elements are

wðr; cÞ; a is a p-vector whose entries are ai; and d is a n � m-

vector whose entries are the observed image data.

Iteratively reweighted least squares (IRLS) is used to

solve this nonlinear matrix equation via the recurrence

formula

aðtþ1Þ ¼ ðUtWðaðtÞÞUÞ�1UtWðaðtÞÞd; ð5Þ

J Real-Time Image Proc

123

where t is the iteration number. Detailed derivation of these

equations can be found in [4].

4.3 Iterative reweighted least squares (IRLS)

The IRLS process for polynomial models of each order

occurs iteratively. To initialize the iteration, an initial fit

coefficient vector að0Þ is needed. að0Þ for zero-th order is the

median value of the observed data, and is set with the

previous order fit coefficient vector for higher order, e.g.,

the final planar fit initializes the quadratic fit.

IRLS uses the QR decomposition to solve Eq. (5). A QR

decomposition of an m� n matrix A is a factorization A ¼
QR; where Q is an m� m orthogonal matrix and R is

an m� n upper triangular matrix. Among three major

QR factorization algorithms—modified Gram–Schmidt,

Givens, and Householder—the Householder transformation

algorithm outperforms the modified Gram–Schmidt algo-

rithm in numerical stability, and requires fewer arithmetic

operations than the Givens rotation algorithm [7]. There-

fore the QR factorization is done with Householder trans-

formations, a series of orthogonal transformations applied

to the input matrix A to bring it into upper triangular form.

The product of these orthogonal transformations is the

matrix Qt giving QtA ¼ R:

4.4 The algorithm

Figure 2 outlines the algorithm for IRLS-based Robust

FIM. Given an n� m window, several different order

robust surface fits for a pixel are computed up to a pres-

elected maximum order. Here the highest degree of the

fitting polynomial function is set at 3 because the com-

plexity of this fitting function is adequate for the most

commonly used window size, which is 5� 5:

If the IRLS iteration yields a residual MAD below

some epsilon threshold, the fit is termed ‘good enough’

and the algorithm will be terminated with the estimated

coefficients for the fitting function. If the maximum iter-

ation limit is reached without convergence, the next

higher degree fit is computed. At the final step, the fit

quality for each degree polynomial model is evaluated,

and then the fitting function with the best fit quality is

chosen. Note that facet image modeling begins by com-

puting the median value of the window; the zero-th order

model (constant fit) is initialized with the median value of

the observed data without performing the IRLS process.

Then the first set of residual errors, scale factor, and

weights are computed from the zero-th order fit to ini-

tialize the planar fit.

The pseudo code for the Robust FIM algorithm in

Algorithm 1 illustrates the IRLS estimation process for a

k-th degree fitting polynomial, which has p coefficients, for

a single pixel. Algorithm 1 maintains a two-dimensional

n� m observed data matrix window for the pixel. The

matrix E stores the residual error between the observed

data and the approximation for each pixel in window: W is

the weight matrix whose values are assigned with

‘WeightFunction’ of the residual error matrix E: A is a

n � m� p matrix, which is the multiplication of W
1
2 and the

Gram matrix U of basis function values /ðr; cÞ; and b is a

n � m vector, which is the multiplication of W
1
2 and window:

Both A and b are needed to rewrite Eq. (4) as the least

squares problem Aa � b: Then A is factored into Q and R

components, which are used to find coefficient vector a by

backward substitution. The function ‘House’ returns the

transformation vector v; and the Householder reflection

matrix H is computed from v: If x is an arbitrary column

vector of dimension q� n � m; then with a ¼ �sgnðx1Þkxk;
the first n � m� q components of v are zero, and the

remaining components of v are given by x�ae1

kx�ae1k ; where e1

is the canonical basis vector ð1; 0; . . .; 0ÞT and k � k is the

Euclidean norm. Transforming sequentially each column of

A yields an upper triangular matrix R: Details for the

Householder QR decomposition algorithm can be found in

[14]. The robust fit quality measure is given by the

‘FitQuality’ function whose parameters are E; p; and scale:

The process is repeatedly performed until MAD� � or the

maximum iteration limit has been reached.

Fig. 2 Overview of the robust facet image modeling algorithm

J Real-Time Image Proc

123

5 Approach

This section introduces two different computation-to-core

mapping schemes when implementing the robust FIM

algorithm on GPUs. These two mapping schemes exhibit

different levels of parallelism, thread-level facet processing

and block-level facet processing. Each of the schemes has

distinct memory requirements, posing different hardware

limitations with respect to the size of input data and the

order of the fitting function. As a result, a substantial

performance difference can be found between these two

GPU implementations.

We consider the thread-level facet processing scheme

first because it is a straightforward choice for implementing

image processing algorithms. Our results show that the

memory requirements of this thread-level mapping scheme

poses a significant limitation that may be explained by the

way in which memory resources in GPUs are allocated and

shared between threads. The explanation of the limitation

of the thread-level mapping scheme motivates the block-

level facet processing scheme that provides an intuitive

solution to the problem introduced by memory limitation of

the first scheme. Performance analysis of the second

mapping scheme shows that it properly addresses memory

limitation. We further discuss an optimization strategy and

block-level facet scheme for multiGPU processing in

Sect. 6.

5.1 Thread-level facet processing

As mentioned in Sect. 2.1, the massive parallelism of a

GPU is achieved by organizing a large number of con-

currently executed threads into thread blocks that are run

on the multiprocessors of the GPU. To determine the

thread-block organization for a specific algorithm, the

overall computation is segmented into units of operations

that can be mapped onto each GPU thread. Among various

criteria used for computation segmentation, independence

is paramount. It is obvious that if two processing units can

be executed independently, they can be scheduled to run in

parallel without synchronization. Consider a model where

‘each pixel sits on its own facet’ such that we use its

neighborhood pixels for the facet computation. For robust

FIM, an independent computational unit is the facet image

modeling of a pixel. Thus an input image with width�
height pixels has width� height independent computa-

tional units, each of which calculates the facet model for a

pixel. The first computation-to-core mapping scheme,

thread-level facet processing, is based on such a compu-

tation segmentation—simply map the facet processing of

one pixel onto a GPU thread.

Figure 3 illustrates a thread organization for thread-level

facet processing in detail. width� height threads are gen-

erated to process width� height pixels on the image. The

threads are grouped into a block of width N and height M as on

the left of the figure. The number of threads N �M in a block

is determined by the resource usage of an individual thread.

Consequently, width=N � height=M of thread blocks run on

the image as shown on the right of the figure.

Because of the uniformity of the algorithm across the

entire image, the algorithm may be implemented as a single

CUDA kernel function that is executed for all facets. Each

block of the input image is loaded onto the shared memory

array of the multiprocessor assigned to process the facet

associated with that block. The kernel function performs

Algorithm 1 four iterations of IRLS for each degree of

fitting function (constant fit, k ¼ 0; . . .; k ¼ 3). The

implementation is straightforward since the computation

within a kernel is sequential. However, the challenge is on

dealing with memory hierarchy to conserve memory

bandwidth and reduce the memory latency for the optimal

performance.

Fig. 3 Thread organization for thread-level facet processing

J Real-Time Image Proc

123

5.1.1 Thread-block configuration

We analyze the memory requirement for the robust FIM to

describe the thread-level facet processing in detail. Table 1

lists all the required variables and their memory usage in

Algorithm 1, with two additional temporary variables T

and t: The matrix T is used to store the intermediate result

of matrix-matrix multiplication (at line number 7 in

Algorithm 1), and the vector t is used to store the inter-

mediate result of matrix-vector multiplication (at line

number 4 in Algorithm 1). Robust FIM evaluates four

polynomial models from constant fit to cubic fit in one

kernel function to yield the best estimation, the vector a

must hold all the coefficients from all fits. Therefore, the

space needed for a is q ¼
P3

k¼0 pk ¼ 1þ 3þ 6þ 10 ¼ 20;

where pk is the number of coefficients for the k-th degree

polynomial model, e.g., p3 ¼ 10 for a cubic fit. The weight

matrix W only requires n� m elements of memory space,

because only diagonal elements contain an effective value.

The matrix R shares the same memory space with A (A is

not used after RÞ: Fit quality is evaluated for each poly-

nomial model, and stored in fit: Since d is a vector repre-

sentation of the window data, d requires no extra memory

space. Table 1 shows memory requirements for two win-

dow sizes, 5� 5 and 7� 7: Note that each element in the

vectors and matrices has data type float.

As shown in Table 1, the overall memory required for

all four fits (from constant to cubic) is 10,196 bytes for the

window size of 5� 5 and 34,004 bytes for 7� 7: A

thread’s resource usage in low latency shared memory

should be maximized to improve the performance of an

individual thread. However, the total number of threads

running on each streaming multiprocessor decreases as

each thread’s shared memory usage increases, because of

the 16K space limit. This decrease in thread count leads to

a less thread-level parallelism, and results in GPU under-

utilization. It is necessary to have enough threads to hide

the long latency of global memory accesses and multicycle

arithmetic operations such as division and reciprocal

square root. The tradeoff of the performance of an indi-

vidual thread and the degree of concurrency among all

threads should be considered when we decide which vari-

ables in Table 1 are allocated in shared memory and how

many threads are assigned in each block.

Because of the high memory requirements of the robust

FIM algorithm, we minimize the use of high latency global

memory as it is one of the priority principles in CUDA

program optimization [23]. The thread-level facet pro-

cessing execution is set to have 32 threads per block and

ðwidth� heightÞ=32 blocks on the image. The most fre-

quently revisited space throughout the robust FIM algo-

rithm, i.e., a;window;E;W ; v; and fit, can reside in shared

memory with this configuration. One might consider

reducing the number of threads per block to increase the

amount of shared memory available for each thread.

However, the 32-thread warp is the atomic resource unit

that is scheduled by the GPU thread manager in CUDA.

The number of threads in a block should be a multiple of

32 threads, to achieve optimal computing efficiency and

facilitate coalescing.

5.1.2 Limitations

In the thread-level processing scheme, each thread requires

a large amount of global memory space. For a 5� 5 win-

dow, 8.7K of global memory is allocated for each thread

for the variables b; t;AðRÞ;H;Qt; and T (U is stored in

constant memory and the rest of the variables are allocated

in shared memory). All threads are executed in parallel on

the GPU, and global memory is preallocated for all threads

before calling the CUDA kernel function. Each thread runs

one instance of the algorithm on a single pixel, and the

whole input image is processed with many instances of the

algorithm running concurrently in their own global mem-

ory space. The required global memory for a large input

image, therefore, can exceed the hardware limit. To run the

thread-level processing implementation for a 5� 5 window

size on the GTX295 GPU, which has 876 MB of global

memory, the input image cannot be larger than 328� 328;

a significant limitation for the application of robust FIM. If

we raise the number of threads per block for a higher

concurrency, the global memory usage per thread increases

because of a decline in the amount of shared memory

available per thread. This results in further reduction of the

allowed image size.

Table 1 Memory requirement for executing the robust FIM algo-

rithm for a single facet

Variable Memory (bytes) 5� 5 7� 7

a q� 4 80 80

window n� m� 4 100 196

E n� m� 4 100 196

W n� m� 4 100 196

b n� m� 4 100 196

v n� m� 4 100 196

t n� m� 4 100 196

U n � m� p� 4 1,000 1,960

AðRÞ n � m� p� 4 1,000 1,960

H n � m� n � m� 4 2,500 9,604

Qt n � m� n � m� 4 2,500 9,604

T n � m� n � m� 4 2,500 9,604

fit 4� 4 16 16

Total 10,196 34,004

J Real-Time Image Proc

123

Even for a small size image, the large amount of high

latency global memory access by each thread causes a

performance issue. If there are not enough threads to

achieve a full multiprocessor occupancy, the multiproces-

sor will be forced to idle, and results in performance

degradation. We discuss this issue with performance

experiment results in Sect. 7.2.2.

5.2 Block-level facet processing

To address the limitation of the thread-level mapping

scheme, we propose a fine-grained computation-to-core

mapping scheme. This mapping scheme seeks block-level

parallelism where the estimation of a facet model is exe-

cuted on a block of threads instead of a single thread. All

the threads in a block work collaboratively to accelerate the

linear algebra, such as matrix multiplication. The config-

uration of block-level facet processing is shown in Fig. 4. Each

block consists of N �M threads as on the left of the figure, and

width� height blocks are created to process width� height

pixels on the image as on the right of the figure.

Each matrix and vector operation in Algorithm 1 is

further segmented into computational units. These units are

mapped onto different threads in a block and executed in

parallel. For example, in matrix-matrix multiplication, a

unit is defined as the calculation of an element in the

resulting matrix, which is the inner product between a row

vector from the first matrix and a column vector from the

second matrix. For matrix-vector multiplication, a unit is

defined as the calculation of an element in the resulting

vector, which is also an inner product. All the other oper-

ations in Algorithm 1 are segmented into units of compu-

tation in a similar fashion—a block of threads covers the

computation of all the units in the operation cooperatively.

This block-level mapping scheme allows all the com-

putation in Algorithm 1 of robust FIM to stay in the shared

memory space because only one instance of the algorithm

is executed in a multiprocessor. The image data is loaded

into shared memory at the beginning of the kernel function

execution. During the IRLS iteration, all threads in the

same block operate on the data in shared memory. Finally,

the result is written back to global memory. No global

memory allocation for the computation is needed, the

limitation associated with the thread-level mapping scheme

is obviated.

5.2.1 Thread-block configuration

The block-level mapping scheme generates one thread

block for each pixel/facet. The threads cover all the com-

putational units of each matrix/vector operation. Among

these operations, matrix-matrix multiplication has the

largest number of units. For example, for a 5� 5 window,

the largest matrix is 25� 25; which will result in 625 units

of computation. The hardware limitation for the maximum

number of threads per block is 512 in the GTX295.

Therefore, each thread has more than one unit to complete

with the maximum thread allocation granularity.

To find an optimal thread block configuration, we varied

the number of threads per block and evaluated the perfor-

mance iteratively. This empirical optimization with vary-

ing configurations is a typical approach in GPU

programming because a general performance prediction

model for a GPU architecture is not available due to the

complexity of its parallel programming model [2, 28, 29].

Our experiments showed that the thread block with size

16� 26 yields the best performance in the block-level

facet processing implementation. We provide the experi-

mental results with varying thread counts in Sect. 7.2.2.

5.2.2 Advantages over thread-level mapping scheme

The proposed block-level mapping scheme has no global

memory constraint and can be applied to any size image. This

advantage over thread-level parallelism derives from the fact

that the GPU manages global memory and shared memory

differently. Figure 5 illustrates this difference, where n thread

blocks, TB1; . . .;TBn; are scheduled to execute on m stream

multiprocessors, SM1; . . .; SMm:On the top half of the figure,

CUDA first schedules m thread blocks, TB1 to TBm; assuming

that only one TB can execute on a SM: On the bottom half of

the figure, the second m TBs are scheduled, after the first

m TBs are completed. Focusing on global memory and shared

memory usage, notice that the shared memory space in SMi is

used by both TBi and TBmþi: Therefore, if the amount of

shared memory in a SM is enough for a thread block, no

additional memory is needed. In terms of global memory

usage, however, no space can be shared between different

TBs, because the scheduled order of the TBs is indeterminate.

All TBs have to pre-allocate global memory space. If the

image size n� m; n is limited by the hardware constraint on

global memory size.

Fig. 4 Thread organization for block-level facet processing

J Real-Time Image Proc

123

6 Optimization

Further optimization of memory utilization for the QR

decomposition is possible. First, a Householder reflection

matrix H can be formed implicitly. H applied to a column

vector x of A in place, overwriting the column vector, has the

form Hx ¼ ðI � 2vvtÞx ¼ x� 2ðvtxÞv: Second, since

Householder transformations are applied to both sides of the

equation Aa � b;Qtneed not be explicitly computed or stored.

The reflection vector v is saved instead at each step, and

products of the form QtA or Qtb can be computed efficiently.

A detailed explanation is found in [34]. Consequently, T for

the intermediate result of matrix-matrix multiplication in

Algorithm 1 is not used. Algorithm 2 illustrates the IRLS

estimation process for a k-th degree fitting polynomial, with

the efficient QR decomposition. Table 2 lists all the required

variables and their memory requirements for Algorithm 2. In

the remainder of this section, the implementation and thread-

block configuration for thread-level and block-level processing

with the algorithm modification are revisited. Then multi-

GPU processing with the block-level scheme is introduced

to show that further performance gain can be easily

obtained with the hardware extension.

6.1 Thread-level facet processing

6.1.1 Thread-block configuration

As shown in Table 2, the overall memory required for

all four fits (from constant to cubic) is 2,596 bytes for the

window size of 5� 5 and 5,092 for 7� 7: Again, U is

stored in constant memory. If the rest of the variables

a;window;E;W ; b; v;A; and fit in Table 2 are assigned in

shared memory, only ten threads are allowed in a block. To

maximize the number of variables that are allocated in

shared memory while having enough threads in a block, all

variables except A; b; and U are placed in shared memory.

A and b must use global memory. Then 32 threads are

generated per block, resulting in ðwidth� heightÞ=32

blocks in total. Comparing to the first trial of thread-level

facet processing in Sect. 5.1, the shared memory layout of

the optimized thread-level facet processing is exactly the

same. However, the global memory usage is 1.1K per

thread.

Though global memory usage decreased from 8.7K to

1.1K per thread with this approach, the required global

memory for a large image can still exceed the hardware

limit. The input image cannot be larger than 921� 921

with the GTX295 GPU.

6.2 Block-level facet processing

6.2.1 Thread-block configuration

In the original block-level facet processing in Sect. 5.2,

multiple threads operate on a single multiprocessor to

Fig. 5 CUDA thread block scheduling. Top half execution of first m
thread blocks. Bottom half execution of next m thread blocks

J Real-Time Image Proc

123

execute the robust FIM algorithm. This can be done

because all the variables needed for the computation of a

facet are the same across all the threads, and can be effi-

ciently represented in the shared memory of the block.

Building on this idea, the new algorithm keeps all variables

associated with a facet in shared memory with the excep-

tion of t;H;Qt: and T because they do not have to be

explicitly computed. The threads cover all the computa-

tional units of each matrix/vector operation cooperatively.

Furthermore, since H and Qt are not explicitly computed or

stored, the number of matrix-matrix multiplication units

decreases significantly. The largest computation unit is A;

which is the product of the weight matrix W and the basis

function (Gram) matrix U: For a 5� 5 window, the matrix

A is 25� 10; which will result in 250 units of computation.

With the iterative performance evaluation in Sect. 7.2.2,

we found a thread block of 8� 8 yields the best

performance.

6.2.2 MultiGPU processing

The use of multiple GPUs can bring more parallelism.

The block-level mapping scheme can be extended for

multiGPU processing, since the implementation can be

easily adapted to use multiple devices without modifying

kernel code. Once the input data is distributed among

several devices, each device runs the kernel function for

block-level facet processing. By hardware design, device

code can be executed on only one device at any given time.

To use multiple CUDA devices, host threads in the CPU

are required to launch a device code. As many CPU threads

as the number of GPUs are created. Each host thread feeds

each device with input data and launches the device code.

As shown in Fig. 6, the thread organization is the same as

that for block-level facet processing. The only difference is

that the input image is segmented into a number of pieces

equalling the number of GPUs, and each input segment is

processed by each GPU. 8� 8 is chosen as the thread block

size through the iterative optimization process.

7 Result and discussion

We measured the performance of our GPU implementa-

tions on a NVIDIA GTX295. The GTX295 is a dual-GPU

based graphics card, and each GT200 GPU has 240 pro-

cessor cores with a 1.24 GHz clock, 896 MB of device

memory, and compute capability 1.3. Each GPU imple-

mentation of different mapping schemes on Algorithms 1

and 2 is tested using a single GT200 among the two GPUs.

A multiGPU implementation is tested on a system with

four GTX295 cards, which allows up to 8 GPUs to run

concurrently. For comparison, a standard CPU implemen-

tation (single thread) of the robust FIM algorithm is written

in C?? and is compiled with the highest optimization

level. The CPU implementation is tested on a computer

with Intel Core i7-920 2.67 GHz CPU and 11.9 GB system

memory.

The implementation of robust FIM is tested with the

canonical Lena picture, and two other synthetic input

images, S1 and S2. The S1 and S2 images contain step

edges, four intersecting roof edges, and other complicated

geometric characteristics. Vertical stroke noise is added to

the S1 image, and impulse noise in addition to the vertical

stroke noise is synthesized in the S2 image. The Lena

image is also used for performance experiments with dif-

ferent image sizes in Sects. 7.2 and 7.3. To ensure a similar

pattern of computation is given to the multiprocessors, the

64� 64 Lena image is mosaicked to form a set of larger

size images. The facet model window size is 5� 5

throughout.

7.1 Accuracy of the GPU implementation

In this section the correctness of the GPU implementation

of the robust FIM algorithm is demonstrated. Figures 7

Table 2 Memory requirement for executing the robust FIM algo-

rithm for a single facet with the more efficient QR decomposition

Variable Memory (bytes) 5� 5 7� 7

a q� 4 80 80

window n� m� 4 100 196

E n� m� 4 100 196

W n� m� 4 100 196

b n� m� 4 100 196

v n� m� 4 100 196

U n � m� p� 4 1,000 1,960

AðRÞ n � m� p� 4 1,000 1,960

fit 4� 4 16 16

Total 2,596 5,092

Fig. 6 Thread organization for block-level facet processing with

multiple GPUs

J Real-Time Image Proc

123

and 8 show 256� 256 input images of S1 and S2, and the

processed images resulting from CPU and GPU implemen-

tations of Algorithm 2. The resulting outputs in Fig. 7 con-

firm that the typical action of smoothing and feature

preservation of the robust FIM algorithm [4, 9, 18] is present

in our CPU and GPU implementations. The processed out-

puts in Fig. 8 show that the robust computation (removing

outliers) worked correctly in both implementations.

Figure 9 shows a noisy input image (Lena with

impulse noise added) and two processed images resulting

from CPU and GPU implementations. 64� 64 selected

parts of the 512� 512 images are provided to show

details of input and output images for our ensuing

discussion.

As observed on the right in Fig. 9, the GPU version

appears to apply slightly greater smoothing than the CPU

version. This effect results from the differences in the CPU

and GPU floating point hardware. Floating point operations

between different devices are not guaranteed to be identical

owing to rounding errors, different size of FP registers,

different order of instructions, etc. [6]. In GT200 archi-

tecture based GPUs with compute capability 1.3 and

below, some single precision arithmetic operations do not

follow the IEEE 754 standard, and denormal numbers are

flushed to zero [38]. Consequently, GPU operations such

as division and square root may not always yield floating

point values of the same accuracy as CPU computations.

Furthermore, the GPU computes in single or double pre-

cision only, while the CPU may use an extended precision

for intermediate results. Due to these differences between

hardware, mathematical function libraries, and instruction

sets, GPU and CPU implementations do not yield identical

arithmetic results. Because the robust facet algorithm employs

extensive numerical computation for facet estimation, there

are inevitable differences in the images resulting from the

GPU and CPU implementations. We performed the paired

t-test to compare the CPU and GPU result images, and the t test

results showed that the images processed by the CPU and GPU

implementations are not significantly different (p values of

0.999 for all the three test images).

The results illustrate important computational trade-offs

when using GPUs for numerical computation in image

processing. Most of these trade-offs arise from numerical

precision issues in the generation of GPUs used in our

studies, as discussed in [38]. Fortunately, these issues are

being addressed in newer generations of CUDA architec-

ture, Fermi [24], as we expect the performance gains over

CPU computation for these new GPUs to be maintained or

increased.

7.2 The level of parallelism and performance

For the sake of brevity, we shall use the acronyms shown in

Table 3.

Both the T1 and T2 implementations use 15,872 bytes of

shared memory per block and 40 registers per thread. Each

thread uses 8:7K of global memory in T1 and 1:1K in T2.

The B1 implementation uses 8,824 bytes of shared memory

per block and 20 registers per thread. B2 runs with 1,524

bytes of shared memory per block and 19 registers per

thread. Both B1 and B2 do not access the global memory

for the facet computation. C1 and C2 process computations

with a single CPU thread.

Various image sizes ranging from 32� 32 to 256� 256

are used to compare the performance of T1, B1, and C1,

and T2, B2, and C2. For this test, the images are limited to

relatively small sizes due to the scalability issue of the

GPU thread-level mapping, as discussed in Sect. 5.1.2.

Section 7.3 presents the performance evaluations of B1,

B2, C1, and C2 with larger images up to 2;048� 2;048:

Table 4 provides speedups of T1 and B1 over C1, B1 over

T1, T2 and B2 over C2, and B2 over T2. The speedup

values are rounded up to the second decimal place. In the

rest of this section, we present the performance charac-

terizations of robust FIM with different mapping schemes.

Fig. 7 Synthetic test image with stroke noise (left), processed images

from CPU (middle) and GPU (right) implementations

Fig. 8 Synthetic test image with stroke and impulse noise (left),
processed images from CPU (middle) and GPU (right)
implementations

Fig. 9 Lena with impulse noise added (left), processed images from

CPU (middle) and GPU (right) implementations

J Real-Time Image Proc

123

7.2.1 Impact of mapping scheme on execution time

Figure 10 shows the comparison of execution times for T1,

B1, and C1. For all image sizes, B1 runs �20 times faster

than C1, and �32 times faster than T1. The execution time

difference between the two GPU implementations is lar-

gely due to the performance gain from accessing high

speed shared memory instead of global memory in B1.

Interestingly, C1 has a faster execution time than T1 for

all image sizes. This is because only one warp is resident

on a multiprocessor for the T1 computation. Since 15,872

bytes of shared memory are consumed by a 32 thread

block, the maximum number of thread blocks per multi-

processor is limited to one. Each thread of the warp

accesses a large amount of global memory, and no com-

putation is done while data is accessed from global mem-

ory. This low concurrency in computation causes a failure

to hide the long latency of global memory access, hence

deteriorates the performance of T1. From this result we

observe that a parallel implementation can be slow when

execution resources are saturated.

The execution times of T2, B2, and C2 are shown in

Fig. 11. In comparison to C2, T2 and B2 achieve speedups

from 2.04 to 3.21 and �4:2 respectively. B2 runs �1:3

times faster than T2. The performance gap between the

thread-level and block-level mappings is not as significant

as for Algorithm 1, mostly because: (1) A decrease of 7:6K

in global memory usage in T2 promotes a performance

improvement in the thread-level mapping approach, by

alleviating the memory latency issue. (2) There is not as

much data parallel computation in Algorithm 2 as in

Algorithm 1. The chunks of 625 matrix-matrix multipli-

cation units of the QR decomposition in Algorithm 1 have

decreased to chunks of 25 matrix-vector multiplications

units in Algorithm 2. This result indicates that the granularity

of parallelism would not have a great impact on execution

time if there were not a significant latency problem due to the

global memory access and multicycle operations.

7.2.2 Impact of mapping scheme on scalability

As for the CPU computation, all four GPU implementa-

tions exhibit a trend of less performance gain with small

image sizes, see Table 4. For example, a speedup of 4.17 is

obtained with a 32� 32 image while one of 4.28 is gained

on a 256� 256 input with B2. Though T1 has larger

execution times than C1, this trend toward better perfor-

mance for larger images persists. This trend is more pro-

nounced for thread-level mapping (going from 0.49 to 0.63

for T1:C1, and 2.04 to 3.21 for T2:C2) than for block-level

mapping (going from 19.41 to 20.01 for B1:C1, and 4.17 to

4.28 for B2:C2).

In Fig. 12, the speedup values of each GPU imple-

mentation in Table 4 are normalized with respect to its

speedup factor on a 32� 32 image. The speedups of B1

and B2 over the CPU implementation remain almost con-

stant through varying image sizes, while those of T1 and

T2 show upward trends as the image size increases. When

T1 and T2 evaluate a small image, e.g., 32� 32; they

launch 1,024 threads and each thread processes its own

pixel individually. A GPU on the GTX295 has 30 multi-

processors, with each capable of carrying out a maximum

of 8 active blocks at a time, and a total of 240 potentially

active blocks are available. Given a 32� 1 thread block

size 1,024 threads are grouped into 32 blocks, which is far

less number than the 240 available blocks. Hence, T1 and

T2 suffer from the GPU underutilization problem. How-

ever, a 256� 256 image requires 2,048 blocks with 65,536

threads for 65,536 pixel computations, and gives enough

parallelism to the GPU. From this observation we can char-

acterize thread-level parallelism as not efficient for small

input images due to the GPU resource underutilization.

To further understand the impact of the level of paral-

lelism on the performance, the block-level mapping

implementations are tested with varying thread block sizes

Table 3 Acronyms for different computations

Algorithm 1 Algorithm 2

GPU thread-level T1 T2

GPU block-level B1 B2

CPU C1 C2

Table 4 Speedups of each

algorithm with respect to the

other

Img. size T1:C1 B1:C1 B1:T1 T2:C2 B2:C2 B2:T2

32� 32 0.49 19.41 39.26 2.04 4.17 2.04

64� 64 0.61 19.71 32.25 2.81 4.16 1.48

96� 96 0.61 19.58 31.90 3.04 4.22 1.39

128� 128 0.61 19.84 32.36 3.04 4.24 1.39

160� 160 0.61 19.86 32.31 3.05 4.24 1.39

192� 192 0.62 19.91 31.88 3.07 4.23 1.38

224� 224 0.63 19.92 31.86 3.11 4.24 1.35

256� 256 0.63 20.01 31.98 3.21 4.28 1.33

J Real-Time Image Proc

123

on three sizes of inputs, 32� 32; 512� 512; and 1;024�
1;024: Figure 13 shows plots of execution time as a func-

tion of the number of threads per block for a 1;024� 1;024

image for both B1 and B2. We show only a graph for the

largest image (1;024� 1;024) for both implementations in

Fig. 13, since exactly the same pattern is observed with the

other two images, with respect to each approach. For B1,

the execution times improve rapidly as the number of

threads per block increase from 64 to 160, and then it levels

off up to 384. Above 416 threads per block, the compu-

tation times are virtually constant. For B2, the execution

times increase steadily as the number of threads per block

increase from 64 to 288. It then levels off up to 384 threads

per block. There is a large performance hit as we go to 416

threads-per-block after which the execution times plateau.

In B1, since 8,824 bytes of shared memory are required

per block, only one thread block can reside on a multi-

processor at a time, owing to the 16K space limit. More

threads in a block add more parallelism to the computation.

As such, the execution times for B1 go downwards but

plateau after 416 ð¼16� 26Þ threads. In B2, a configura-

tion of 64 ð¼8� 8Þ threads produces the best performance.

A thread block size of 64 allows 8 blocks resident on a

multiprocessor, given 1,524 bytes of shared memory usage

per block in B2, the GTX295 hardware specification of a

maximum of 512 threads per block. The 64 threads are

grouped into 2 warps, and 16 warps reside on a multipro-

cessor in total. Compared to this, with a thread block size

of 512, we have a single block and 16 warps per multi-

processor. Though the occupancy is the same, this con-

figuration results in a lower number of thread blocks and

therefore takes a longer execution time. When a lower

number of threads per block is specified for the algorithm

B2, CUDA assigns more blocks to the computation. This

presents the opportunity for greater concurrency since if

one block is waiting (e.g., for multicycle arithmetic oper-

ations), the other blocks can keep operating (this is auto-

matically scheduled by CUDA). This explains the increase

in performance for lower thread per block in B2.

7.3 Performance gain over CPU, and multiGPU

processing

In this section the performance evaluations of GPU and

CPU implementations are presented. We consider only

the execution time for the facet computation in this

Fig. 10 Execution time of T1, B1, and C1

Fig. 11 Execution time of T2, B2, and C2

Fig. 12 Normalized speedup of T1, B1, T2, and B2 with respect to

CPU implementations

(a)

(b)

Fig. 13 Execution times as a function of number of threads per block

for a 1;024� 1;024 image for a B1, and b B2

J Real-Time Image Proc

123

comparison. The times are measured in seconds and

rounded up to the second decimal place in Table 5.

Figure 14a compares the performance of B1 and C1. B1 on a

single GPU shows a speedup of 20 for a 2;048� 2;048 image.

As the number of GPUs increases, the performance increases

linearly; a four-GPU implementation shows a speedup of

79.99, and the eight-GPU one shows a speedup of 159.88.

The performance comparison of the B2 and C2 imple-

mentations is presented in Fig. 14b. B2 on a single GPU

shows a speedup of 4.1 for a 2;048� 2;048 image. As the

number of GPUs increases, the performance increases

linearly; a four-GPU implementation shows a speedup of

16.28 and the eight-GPU one shows a speedup of 32.72.

Overall performances for Algorithms 1 and 2 are sig-

nificantly different as shown in Fig. 15. The speedup graph

is plotted normalized for the B1 speedup on a single GPU.

B2 on a single GPU shows a speedup of 6.60 over B1 for a

2;048� 2;048 image. For this size of image, the block-

level mapping scheme with Algorithm 2 on the four-GPU

and eight-GPU systems shows speedups over Algorithm 1

of 24.99 and 50.21, respectively.

8 Conclusion and future work

This paper investigated the computation-to-core mapping

strategies to probe the efficiency and scalability of

the robust facet image modeling algorithm on GPUs. Our

(a)

(b)

Fig. 14 GPU performance gain over CPU for a Algorithm 1, and

b Algorithm 2

Table 5 Execution time

measured in second of CPU and

GPU implementations

Img. size C1 B1 (1 GPU) B1 (4 GPU) B1 (8 GPU)

32 9 32 2.11 0.11 0.03 0.02

64 9 64 8.67 0.44 0.12 0.06

128 9 128 34.78 1.75 0.45 0.23

256 9 256 140.29 7.01 1.79 0.89

512 9 512 558.99 27.94 7.03 3.55

1,024 9 1,024 2,233.40 111.63 28.03 14.03

2,048 9 1,024 8,977.32 448.79 112.23 56.15

Img. size C2 B2 (1 GPU) B2 (4 GPU) B2 (8 GPU)

32 9 32 0.08 0.02 0.01 0.01

64 9 64 0.28 0.07 0.02 0.01

128 9 128 1.13 0.27 0.07 0.04

256 9 256 4.5 1.06 0.29 0.14

512 9 512 18.24 4.25 1.12 0.57

1,024 9 1,024 73.06 17.00 4.49 2.26

2,048 9 1,024 292.44 68.05 17.96 8.94

Fig. 15 The performance comparison of B1 and B2 with multiGPUs

J Real-Time Image Proc

123

fine-grained mapping scheme showed a significant perfor-

mance gain over the standard pixel-based mapping scheme.

This work suggests two principles for optimizing future

image processing applications on the GPU platform.

Firstly, when considering a parallel decomposition (the

problem to processor mapping) for implementation on a

GPU, choose the mapping that results in simple and com-

pact kernel functions, so that each thread can work effi-

ciently with limited hardware resources, such as shared

memory. In the robust FIM algorithm, estimating a local

facet model for a pixel is too heavy a workload for a thread,

which makes the execution inefficient. Secondly, since

GPU memory resources are allocated and used differently

in a thread block for global memory and for shared

memory, it is important to consider memory constraints

when deciding on the parallel decomposition for the

application. In the robust FIM algorithm, a large amount of

global memory is required for thread-level parallelism,

which makes large input images impossible to process.

Our test results on the multiGPU implementations show

that multiGPU systems have great potential for enhancing

the performance of an algorithm with computationally

intensive workloads. However there is a caveat to consider

in the adoption of a multiGPU cluster for a real-time per-

formance. In a multiGPU system, several GPUs are con-

nected to a host CPU through a shared bus. As the number

of GPUs attached to the shared bus grows, the increased

pressure on the bus affects the transfer latencies, and can

result in an overall performance degradation. For example,

our system has four GTX295s installed in a single moth-

erboard, where each card has two GT200 GPUs. When a

program launches, the CPU communicates with the eight-

GPUs to distribute the input image, and this causes an

initial overhead delay. If an application stores a processed

image onto a disk rather than directly displays it to a

screen, each GPU has to transfer its result back to a CPU,

an extra overhead.

The performance bottleneck due to data transfer

between the CPU and GPU is a serious concern in hybrid

computing [8, 31], and a next generation of GPU archi-

tectures will address this problem. For example, AMD has

been in development of Fusion to integrate the CPU and

GPU on the same silicon die, and this will allow unified

address space and fully coherent memory access between

the CPU and GPU [1, 3].

Our future work will address memory limitation

problems associated with a larger window size, such as

7� 7: In this case, the shared memory is not enough for

the computation of a single facet even in the block-level

processing scheme. The solution to this problem may be

found in other computation-to-core mapping schemes,

e.g., multiple blocks per facet and controlled block

scheduling.

References

1. AMD Inc.: AMD Accelerated Processing Units. Retrieved Feb.

2012 (2011). http://www.amd.com/us/products/technologies/fusion/

Pages/fusion.aspx

2. Archuleta, J., Cao, Y., Scogland, T., Feng W.: Multi-dimensional

characterization of temporal data mining on graphics processors.

In: Proceedings of the 2009 IEEE International Symposium on

Parallel and Distributed Processing (IPDPS ’09), IEEE Computer

Society, pp. 1–12 (2009)

3. Branover, A., Foley, D., Steinman, M.: AMD’s Llano Fusion

APU. IEEE Micro 99 (PrePrints, 2012)

4. Besl, P., Birch, J., Watson, L.: Robust window operators. Mach.

Vis. Appl. 2(4), 179–191 (1989)

5. Bui, P., Brockman, J.: Performance analysis of accelerated image

registration using GPGPU. In: Proceedings of 2nd workshop on

General Purpose Processing on Graphics Processing Units, ACM,

pp 38–45 (2009)

6. Goldberg, D.: What every computer scientist should know about

floating-point arithmetic. ACM Comput Surv 23(1), 5–48 (1991)

7. Golub, G., Van Loan, C.: Matrix Computations, 3rd edn. Johns

Hopkins University Press, Baltimore (1996)

8. Gregg, C., Hazelwood, K.: Where is the data? Why you cannot

debate CPU vs. GPU performance without the answer. In: 2011

IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS), pp. 134–144 (2011)

9. Haralick, R.M., Watson, L.T.: A facet model for image data.

Comput. Graph. Image Process. 15(2), 113–129 (1981)

10. Haralick, R.M., Watson, L.T., Laffey, T.J.: The topographic

primal sketch. Int. J. Robot. Res. 2(1), 50–72 (1983)

11. Haralick, R.M.: Digital step edges from zero crossing of second

directional derivatives. IEEE Trans. Pattern Anal. Mach. Intell.

{\bf PAMI-6}(1):58–68 (1984)

12. Harish, P., Narayanan, P.: Accelerating large graph algorithms on the

GPU using CUDA. In: Proceedings of the 14th International Confer-

ence on High, Performance Computing (HiPC’07), pp. 197–208 (2007)

13. Huang, J., Ponce, S., Park, S.I., Cao, Y., Quek, F.: GPU-accel-

erated computation for robust motion tracking using the CUDA

framework. In: 5th International Conference on Visual Informa-

tion Engineering, VIE 2008, pp. 437–442 (2008)

14. Householder, A.: Unitary triangularization of a nonsymmetric

matrix. J. ACM 5(4), 339–342 (1958)

15. Huber, P.J.: Robust estimation of a location parameter. Ann.

Math. Stat. 35(1), 73–101 (1964)

16. Jankowski, M.: Iterated facet model approach to background

normalization. SPIE 2238, 198–206 (1994)

17. Luo, Y.M., Duraiswami, R.: Canny edge detection on NVIDIA

CUDA. In: 2008 IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition Workshops, Vol. 43(1),

pp. 1–8 (2008)

18. Mainguy, J., Birch, J.B., Watson, L.T.: A robust variable order

facet model for image data. Mach. Vis. Appl. 8, 141–162 (1995)

19. Matalas, I., Benjamin, R., Kitney, R.: An edge detection tech-

nique using the facet model and parameterized relaxation label-

ing. IEEE Trans. Pattern Anal. Mach. Intell. 19, 328–341 (1997)

20. Mizukami, Y., Tadamura, K.: Optical flow computation on

compute unified device architecture. In: ICIAP 07: Proceedings

of the 14th International Conference on Image Analysis and

Processing, pp. 179–184 (2007)

21. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel

programming with CUDA. Queue 6(2), 40–53 (2008)

22. NVIDIA Corporation: NVIDIA’s Compute Unified Device

Architecture. Retrieved Feb. 2012 (2010). http://developer.down

load.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_

Programming_Guide.pdf

J Real-Time Image Proc

123

http://www.amd.com/us/products/technologies/fusion/Pages/fusion.aspx
http://www.amd.com/us/products/technologies/fusion/Pages/fusion.aspx
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf

23. NVIDIA Corporation: NVIDIA CUDA Best Practices Guide.

Retrieved Feb. 2012 (2009). http://developer.download.nvidia.com/

compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_BestPractices

Guide_2.3.pdf

24. NVIDIA Corporation: NVIDIA’s Next Generation CUDA

Compute Architecture: Fermi. Retrieved Feb. 2012 (2010).

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_

Fermi_Compute_Architecture_Whitepaper.pdf

25. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Kr}uger, J.,

Lefohn, A.E., Purcell, T.J.: A survey of general purpose computation

on graphics hardware. Comput. Graph. Forum 26(1), 80–113 (2007)

26. Pathak, S.D., Kim, Y., Kim, J.: Efficient implementation of facet

models on a multimedia system. Opt. Eng. 35(6), 1739–1745 (1996)

27. Qiang, J., Haralick, R.M.: Efficient facet edge detection and

quantitative performance evaluation. Pattern Recognit. 35(3),

689–700 (2002)

28. Ryoo, S., Rodrigues, C., Baghsorkhi, S., Stone, S., Kirk, D., Hwu,

W.: Optimization principles and application performance evalu-

ation of a multithreaded GPU using CUDA. In: Proceedings of

the 13th ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, ACM, pp. 73–82 (2008a)

29. Ryoo, S., Rodrigues, C.I., Stone, S.S., Stratton, J.A., Ueng, S.Z.,

Baghsorkhi, S.S., Hwu, W.: Program optimization carving for

GPU computing. J. Parallel Distrib. Comput. 68(10), 1389–1401

(2008b)

30. Park, S.I., Cao, Y., Watson, L.T.: A novel computation-to-core

mapping scheme for robust facet image modeling on GPUs. In: The

2010 International Conference on Parallel and Distributed Processing

Techniques and Applications (PDPTA 2010), pp. 189–195 (2010)

31. Schaa, D., Kaeli, D.: Exploring the multiple-GPU design space.

In: Proceedings of the 2009 IEEE International Symposium on

Parallel and Distributed Processing (IPDPS ’09), pp. 1–12 (2009)

32. Scheuermann, T., Hensley, J.: Efficient histogram generation

using scattering on GPUs. In: Proceedings of the 2007 Sympo-

sium on Interactive 3D Graphics and Games, pp. 33–37 (2007)

33. Sinha, S., Frahm, J.M., Pollefeys, M., Genc, Y.: Feature tracking

and matching in video using programmable graphics hardware.

Mach. Vis. Appl., 22(1), pp. 207–217 (2007)

34. Trefethen, L.N., Bau, D.: Numerical linear algebra. SIAM Press,

Philadelphia (1997)

35. Terzopoulos, D.: The computation of visible-surface representa-

tion. IEEE Trans. Pattern Anal. Mach. Intell. 10(4), 417–438

(1988)

36. Torr, P.H.S., Zisserman, A.: MLESAC: a new robust estimator

with application to estimating image geometry. Comput. Vis.

Image Underst. 78(1), 138–156 (2000)

37. Vineet, V., Narayanan, P.J.: CUDA cuts: Fast graph cuts on the

GPU. In: 2008 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition Workshops, pp. 1–8 (2008)

38. Whitehead, N., Fit-Florea, A.: Precision and Performance:

Floating Point and IEEE 754 Compliance for NVIDIA GPUs,

White Paper, NVIDIA Corporation (2011)

39. Yang, R., Pollefeys, M.: Multi-resolution real-time stereo on

commodity graphics hardware. In: Proceedings of the 2003 IEEE

Computer Society Conference on Computer Vision and, Pattern

Recognition (CVPR’03), pp. 211–217 (2003)

40. Yang, R., Pollefeys, M., Li, S.: Improved real-time stereo on

commodity graphics hardware. In: Proceedings of the 2004

Conference on Computer Vision and Pattern Recognition work-

shop (CVPRW’04), p. 36 (2004)

41. Yixun, L., Zhang, E.Z., Shen, X.: A cross-input adaptive

framework for GPU program optimizations. In: Proceedings of

the 2009 IEEE International Symposium on Parallel and Dis-

tributed Processing, pp. 1–10 (2009)

J Real-Time Image Proc

123

http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_BestPracticesGuide_2.3.pdf
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_BestPracticesGuide_2.3.pdf
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_BestPracticesGuide_2.3.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

	Performance analysis of a novel GPU computation-to-core mapping scheme for robust facet image modeling
	Abstract
	Introduction
	GPU architecture
	Thread organization
	Memory hierarchy

	Related work
	Robust facet image modeling
	Algorithm overview
	M-estimation
	Iterative reweighted least squares (IRLS)
	The algorithm

	Approach
	Thread-level facet processing
	Thread-block configuration
	Limitations

	Block-level facet processing
	Thread-block configuration
	Advantages over thread-level mapping scheme

	Optimization
	Thread-level facet processing
	Thread-block configuration

	Block-level facet processing
	Thread-block configuration
	MultiGPU processing

	Result and discussion
	Accuracy of the GPU implementation
	The level of parallelism and performance
	Impact of mapping scheme on execution time
	Impact of mapping scheme on scalability

	Performance gain over CPU, and multiGPU processing

	Conclusion and future work
	References

