DOI: 10.1111/j.1467-8659.2012.03018.x
EUROGRAPHICS 2012/ P. Cignoni, T. Ertl
(Guest Editors)

Volume 31 (2012), Number 2

A GPU-based Approach for Massive Model Rendering with
Frame-to-Frame Coherence

Chao Peng1 and Yong Cao'

Department of Computer Science, Virginia Tech, USA

@

(i)

(iii)

Figure 1: Models rendered in our system: (i) Boeing 777 model; (ii) The pilot room of Boeing 777; (iii) Power Plant model.

Abstract

Rendering massive 3D models in real-time has long been recognized as a very challenging problem because of the
limited computational power and memory space available in a workstation. Most existing rendering techniques,
especially level of detail (LOD) processing, have suffered from their sequential execution natures. We present a
GPU-based approach which enables interactive rendering of large 3D models with hundreds of millions of trian-
gles. Our work contributes to the massive rendering research in two ways. First, we present a simple and efficient
mesh simplification algorithm towards GPU architecture. Second, we propose a novel GPU out-of-core approach
that adopts a frame-to-frame coherence scheme in order to minimize the high communication cost between CPU
and GPU. Our results show that the parallel algorithm of mesh simplification and the GPU out-of-core approach
significantly improve the overall rendering performance.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms; 1.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—

Geometric algorithms.

1. Introduction

Rendering large-scale massive models has become a com-
monly requested task for scientific simulation, visualization
and computer graphics. Many research areas generate ex-
tremely complex 3D models, such as industrial CAD models
(e.g. airplanes, ships and architectures), composed of more
than hundreds of millions of geometric primitives. How-
ever, these complex datasets cannot be rendered efficiently
using brute-force methods on a desktop workstation. Thus,

(© 2012 The Author(s)

Computer Graphics Forum (©) 2012 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

the challenge is how to increase the rendering performance,
so that people can visualize massive models interactively.
To solve this problem, mesh simplification techniques have
been commonly used to reduce the complexity of 3D models
without losing visual fidelity.

The algorithms of mesh simplification replace tessel-
lated objects with coarser representations containing less
amount of primitives, such as Levels of Detail (LOD).
Hoppe [Hop96] introduced a well-known LOD-based al-

394 Chao Peng & Yong Cao /A GPU-based Approach for Massive Model Rendering with Frame-to-Frame Coherence

gorithm, Progressive Meshes, to simplify meshes using a
sequence of modifications (e.g. edge-collapsing). However,
given a massive 3D model, constructing its simplified rep-
resentations can be a very expensive process, which makes
online simplification impossible on a desktop workstation.

In recent years, graphics hardware, as a massively paral-
lel architecture and commoditized computing platform, has
been praised due to the significant improvements of perfor-
mance and the capability for general-purpose computation.
Since most simplification algorithms are not naturally data
parallel, they do not have trivial GPU implementations. In
addition, comparing to the computational power of GPU,
GPU memory is insufficient to store massive datasets. For
example, Boeing 777 model shown in Figure 1 requires ap-
proximately 6 GByte memory to hold its vertex and trian-
gle data, which is not applicable for most modern GPUs.
Although primitives can be directly streamed for rendering,
the cost of CPU-GPU communication could decrease per-
formance significantly, if a large number of primitives need
to be transferred constantly from CPU to GPU.

To address these issues, we introduce two contributions in
this paper.

1. Parallel mesh simplification. We present a parallel ap-
proach of mesh simplification to generate simplified rep-
resentations of an input model dynamically.

2. GPU out-of-core. We propose a novel out-of-core ap-
proach on GPUs that minimizes the overhead of data
streaming from CPU to GPU by exploiting the frame-to-
frame coherence.

The rest of the paper are organized as follows. We review
some related works in Section 2. Section 3 provides a brief
overview of data pre-processing and run-time algorithms. In
Section 4, we talk about the parallel approach of mesh sim-
plification. In Section 5, we present the GPU out-of-core ap-
proach. Section 6 describes our implementation and shows
the experimental results. Finally, Section 7 concludes our
work and discusses some future works.

2. Related Work

Interactively rendering massive 3D models is an active re-
search area. We discuss the related works with respect to
mesh simplification and out-of-core techniques.

2.1. Mesh Simplification

Mesh simplification algorithms have been an active research
for decades in computer graphics. Given an input 3D model,
a less complicated but visually faithful representation can be
approximated as an alternative for rendering. Current algo-
rithms of mesh simplification have been designed according
to a series of operations on geometric primitives, such as
vertex decimation [SZL92], edge collapse transformations
[Hop96, GH97], Region-Merging Measurement [RRR96]

and selective refinement [Hop97]. A well-known approach
of mesh simplification is Progressive Meshes [Hop96] sim-
plifying meshes with edge-collapsing criteria, then different
levels of detail of meshes can be recovered by applying a
prefix of splitting sequence to the base mesh.

Related to this paper, we emphasize on the techniques
of GPU-based mesh simplification. [JWLLO06] generated a
LOD mesh on GPU using a quad-tree structure constructed
from poly-cube maps. In their techniques, an adaptive mesh
is finalized in vertex shader. In [DT07], the authors used a
vertex-clustering method, and designed a GPU-friendly oc-
tree structure for efficient LOD generation. Although their
clustering method reduced the memory storage, the visual
quality was not well preserved. More recently, Hu et al.
[HSHO9] proposed a parallel algorithm for view-dependent
LOD on GPU. The authors introduced a cascaded update
method to split vertices without respecting their dependen-
cies. However, their approach did not demonstrate the ren-
dering efficiency of very complex 3D models. In this paper,
we tend to render large-scale 3D model that even cannot fit
into GPU memory. Our system will interactively render the
model with the approaches of parallel LOD generation and
coherence-based GPU streaming.

2.2. Out-of-Core Techniques

Various out-of-core techniques have been proposed to solve
the problem of huge amounts of static LODs, multi-
resolution geometries or multi-level vertex hierarchies con-
structed for interactively rendering massive models, such
as [CGG*03,1G03, CGG* 04, YSGMO04, GM08]. [CGG* 03]
used a binary tree for mesh partitioning, and allowed the
construction of multi-resolution and per-node simplification.
[CGG*04] used a geometry-based multi-resolution structure
for out-of-core data management. The approach constructed
a hierarchy of tetrahedra by recursively partitioning the in-
put dataset. Each tetrahedral node contained a simplified
mesh representation (or a patch) precomputed in a fine-to-
coarse manner. During the run-time, the hierarchy was top-
down traversed to fetch the appropriate patches from disk to
CPU. [YSGMO04] represented a 3D model as multiple pro-
gressive meshes in a clustered hierarchy (CHPM). At run-
time, based on a list of fetched clusters, the desired model
was generated by performing the refinement operations and
cluster merging. However, both approaches of [CGG*04]
and [YSGMO4] relied on heavy pre-processing stages to
build all levels of mesh details or densely clustered PMs,
which enlarged the data size dramatically. Although cache-
coherent layouts have been used for their out-of-core tech-
niques, it is still a major performance overhead to fetch and
access data in a slow bulk memory (e.g. hard drive). In our
approach, we will not construct spatially complex structures,
so that CPU main memory can hold original meshes suffi-
ciently; and the simplified versions of meshes will be gener-
ated dynamically by taking advantage of GPU parallel com-

(© 2012 The Author(s)
(© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Chao Peng & Yong Cao /A GPU-based Approach for Massive Model Rendering with Frame-to-Frame Coherence 395

Runtime |
System:

LOD
Selection

=P

,»,

LOD Model }

GPU . Triangle
Out-of-Core }’ { Reformation Rendering

—
Re-arranged
Data
Collapsing AABBS

Criteria

V Map
— Information
Preprocess:-{ Massive | ,,q,,,
P 3D Model
Collapse

Information

‘:I On CPU memory
[j On GPU memory
E] Parallel process

Figure 2: The overview of our approach.

putational architectures along with an efficient coherence-
based CPU-GPU streaming.

3. Overview

The goal of our system is to simplify complex 3D models for
real-time rendering. An input model consists of multiple tri-
angulated meshes. Our approach includes a preprocess stage
and a run-time stage, which are illustrated in Figure 2.

In the preprocess stage, we generate a new representation
of the original model by re-arranging the vertices and tri-
angle information based on edge-collapsing operations. We
also compute other data, such as bounding boxes for the
meshes, to be used in the run-time. Our run-time approach
contains a series of parallel processing steps. We first de-
termine the complexity of the model in the step of level-
of-detail(LOD) selection. Second, the data is streamed from
CPU main memory to GPU memory using our GPU out-
of-core approach. We employ a frame-to-frame coherence
scheme to minimize the size of the streamed data. Third, the
meshes are simplified in parallel on GPU at the step of tri-
angle reformation. Finally, the simplified model is rendered
using OpenGL.

4. Parallel Mesh Simplification

Our simplification method is based on the idea of collaps-
ing edges of a mesh, where the edge-collapsing operations
are applied to an original mesh iteratively according to a
pre-defined order. Therefore, dependencies have to be in-
troduced between the iterations of collapsing. At an edge-
collapsing iteration, an edge is removed based on a specified
cost, and the topological structure of the mesh is modified.
The next iteration has to rely on the resulted mesh of the
previous iteration. Such dependencies make the design of a
parallel algorithm very difficult. In this section, we will in-
troduce an approach that can remove the dependencies effec-
tively to support the parallel process of mesh simplification.

(© 2012 The Author(s)
(© 2012 The Eurographics Association and Blackwell Publishing Ltd.

4.1. GPU Friendly Pre-processing

At each edge-collapsing iteration, an edge (vi,vp) is re-
moved. There are two steps involved during the removing
process: (1) collapsing the edge by merging the two vertices,
vy and vy, to a target vertex, V; (2) removing vy, vo and all
triangles having both vertices.

In order to eliminate the dependencies between the iter-
ations, we process the mesh and record the collapsing in-
formation into an array structure, called ecol. Similar to the
data structure described in [Swa99], each element of ecol
corresponds to a source vertex, and its value is the target
vertex that it merges to. We define that the value of the ith
element of ecol can be recovered from the function ecol(i).
Meanwhile, we also record the vertex count and triangle
count remaining after each collapsing iteration. Since an
edge-collapsing operation removes only one vertex but var-
ied number of triangles, we employ a structure, named as
map, to record the relationship between the vertex count and
the triangle count. If i is the remaining vertex count after a
collapsing operation, the value, recovered from the function
map(i), is the triangle count of currently simplified mesh.

According to the order of edge-collapsing operations, we
re-arrange the vertex and triangle data of the original mesh.
The order of storing re-arranged data reflects the sequential
order of edge-collapsing operations. In our implementation,
the vertex and triangle data of a mesh are stored as arrays; the
first removed vertex by the collapsing operations is stored at
the last position in the vertex array; and the last removed
vertex is stored at the first position. The triangle array is also
re-arranged in the same manner. With such a representation,
a level of detail of the mesh can be simply determined by
using a certain number of vertices and triangles starting from
the beginning of the vertex and triangle array, respectively.
The smaller amount of data is selected, the lower level of
detail the mesh is represented in.

4.2. Key Criteria of Edge-collapsing

Position of target vertex. To collapse an edge (vq,v7), two
vertices are merged to a target vertex v. Obviously, the posi-
tion of v can be either edge endpoints vy, v,, or a new posi-
tion (e.g., v = (v1 +v2)/2). Based on [GH98], our approach
uses an endpoint for v, since it requires much less storage.

Boundary edge constraint. In many 3D models, discon-
nected faces separated by borders and holes are important
visual features. To preserve them, we restrict that Boundary
Edges are not collapsible. A Boundary Edge is the edge only
existing in one triangle, and the two vertices of the edge are
Boundary Vertices. Note that any edge containing boundary
vertices cannot be collapsed by moving a boundary vertex to
the other. Using this kind of constraint, the lowest level of
detail of the mesh is represented by the mesh with only the
boundary vertices, rather than a single triangle.

396 Chao Peng & Yong Cao /A GPU-based Approach for Massive Model Rendering with Frame-to-Frame Coherence

Error function for computing the costs. An error func-
tion is used to ensure the visual quality of simplification.
The value of the error function, usually defined as the cost,
indicates the amount of visual changes after an edge is col-
lapsed. Based on the description in [Mel98], we collapse the
minimal-cost edge after computing the costs of all edges us-
ing Equation 1.

cost(va,vp) = |[va — vp|| X max{ min {1—
1i€1y, 1j€Tyy,

(€]

Note that, 7y, is the set of triangles containing vertex vq,
and Ty,y, is the set of triangles containing both vertices vq
and v,,. In Equation 1, the cost of an edge is affected by both
edge length and curvature.

4.3. Level of Detail Selection

The task of LOD selection is to determine a desired com-
plexity of a model at each rendering frame. In our system,
the input 3D model is defined as a collection of the meshes,
{M,Mj;,...,M,}.For each mesh M;, we define its complex-
ity level as a tuple (vc;,tc;), where vc; is the desired vertex
count, and f¢; is the desired triangle count. In addition, we
pre-calculate a tight Axis-Aligned Bounding Box (AABB)
for each mesh. An AABB serves two purposes for LOD se-
lection: (1) view-frustum culling: the visibility of a mesh is
determined by testing its AABB against the view frustum;
(2) the complexity level determination: if a mesh is inside
the view frustum, we use the projected area (on image plane)
of its AABB to compute the desired level of complexity, oth-
erwise, vc; and t¢; are set to be zero. Figure 3 shows an ex-
ample of view-frustum culling.

Figure 3: An example of view-frustum culling. The green
lines define the volume of camera view frustum. The red
bounding boxes indicate those meshes outside the view frus-
tum by our LOD selection method.

To determine the complexity level of a visible mesh (af-
ter the view-frustum test), we use the projected area of its

t;.normal-t;.normal }}

AABB. In addition, we restrict the total number of the vis-
ible vertices using a pre-defined maximum, as discussed in
[FS93, WS98]. Therefore, the complexity level of mesh M;
is computed by Equation 2.

ab
vej=N—"——F, ?2)
L A7
where N is the pre-defined maximal vertex count, which is
wisely chosen based on a desired rendering frame rate or vi-
sual quality; A; denotes the projected area of the AABB on
the image plane; o is a parameter to control the perceptive
contribution of the mesh to the overall model, introduced
in [FS93]. To provide an efficient computation of A;, we ap-
proximate it by using the area of the bounding rectangle of
the projected region on the image plane. To have a fast exe-
cution, we use CUDA CUDPP [HSOO07] to implement Equa-
tion 2 on GPU.

Given the value of vc¢; calculated in Equation 2, the trian-
gle count ¢¢; can be obtained based on the map structure for
mesh M; , described in Section 4.1, as tc; = map;(vc;).

4.4. Triangle Reformation

Using the computed complexity levels of the meshes, we
first select the amounts of vertices (vc¢;) and triangles (tc;)
from the original meshes, which will be the active data for
generating the simplified version of the input model. Since
the vertices and triangles of original meshes have already
been re-arranged in the preprocessing step by following the
edge-collapsing order, we simply select the first vc; vertices
and first z¢; triangles of mesh M;. Then, we need to reform
each of active triangles of M; to reflect the changes of its
three vertex indices during edge-collapsing by looking up
the corresponding ecol of M;, as mentioned in Section 4.1.

GPU parallelization. Obviously, we can parallel the ref-
ormation process at mesh-level, e.g. one GPU thread for a
mesh. As we know, the design of modern graphics chips al-
lows tens of thousands threads to be executed concurrently.
If we choose the mesh-level parallelization, GPU resources
will be underutilized when the number of visible meshes is
less than the number of concurrent threads. In addition, using
the mesh-level parallelization can lead to the load-balancing
problem, since different meshes contain different number of
triangles after LOD selection. To avoid these issues, we em-
ploy a triangle-level parallel approach, e,g. one triangle per
thread, so that a sufficient number of GPU threads are cre-
ated simultaneously, and the workload is also balanced.

Structure of GPU data storage. The natural way of or-
ganizing meshes on GPU is storing them separately into dif-
ferent memory blocks, then they can be rendered one-by-one
after reformation. Because a 3D model can potentially have
many meshes (718,727 meshes in our Boeing 777 model),

(© 2012 The Author(s)
(© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Chao Peng & Yong Cao /A GPU-based Approach for Massive Model Rendering with Frame-to-Frame Coherence 397

the overhead of multiple rendering calls to all the meshes is
very high. Therefore, we concatenate the array data for all
the meshes together into a single array as an OpenGL buffer
object, as illustrated in Figure 4-(i), and render the entire
model with one rendering call.

Given the GPU parallelization and storage scheme, our
parallel triangle reformation approach is described in detail
in Algorithm 1. Since we store all the selected (or active)
triangles in a single array, when reforming a triangle #; of
this array, we first need to find which mesh it belongs to, so
that we can reform it by using the ecol of the mesh. To do
this, we perform a prefix-sum on the array rc. The prefix-
summed fc indicates the offsets (or ranges) of triangles of
the meshes. We then use the triangle index, k, to conduct a
binary search in fc to find the index of mesh that #; belongs
to. For example, if k falls into a range (z¢;,fc;11], # belongs
to mesh M;. This is the process of line 3 in Algorithm 1.

During the reformation, each of three vertex indices of
1 is replaced with a target one by looking up the ecol of
M;. A vertex index may need to be updated multiple times
until its value is below the total desired number of vertices,
indicated in vc;. To be consistent with z¢, we also prefix-sum
the array vc (also required by GPU out-of-core); thus, the
desired vertex count is recovered by vcy | — vc;. The process
of triangle reformation is illustrated in Figure 4-(ii) and in
the line 5-10 of Algorithm 1. Note that a vertex index of #,
vidx, is a local index in mesh M;.

Algorithm 1 Triangle Reformation

procedure ReformingTriangle(
in active triangles, array fc, array vc, the list of ecols;
out reformed active triangles)
1: for kth triangle 7, in active triangles in parallel do
2: i+ 0; /Il the mesh index that t; belongs to

3: binary search array ¢c return i;

4: ecol + corresponding ecol of mesh M;;
5: N < VCit1 — VCi,

6: for j=1to3do

7: vidx < jth vertex index of #;;

8: while vidx > n do

9: vidx «— ecol (vidx);
10: end while
11: end for
12: end for

5. GPU Out-of-Core with Frame-to-Frame Coherence

Due to the limited memory, a GPU cannot hold the entire
set of a massive 3D model. However, as described in Sec-
tion 4.1, by using the re-arranged data, a GPU needs only
a small portion of the original vertices and triangles to gen-
erate the LOD model. At a given frame, after the levels of
complexities (the necessary amount of data) have been de-
termined by our LOD selection approach (see Section 4.3),

(© 2012 The Author(s)
(© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Mesh index: Mi Mj

Active triangles: [..] ta [... [t [.. [te [ta] . \
List of ecols: | ecoli] [_ecol]
Reformed i i i i i §

active triangles:

. Element
Value is target
corresponds to

vertex index
b\/\/\ A source vertex
ecol: [..[g|n] ... [s] .. [u].. Jw] ... |

gsn |n<h<s<u<w
(i)
Figure 4: An example of triangle reformation. (i) shows the
parallel reformation process. The selected triangles are or-
ganized in a block of continuous memory, then each triangle
is reformed by finding and using its corresponding ecol. (ii)
shows how to replace a vertex with a target one by walking

through ecol backwards. n is the amount of selected vertices
of M, and we find the target index to be g by satisfying g < n.

we access the original data stored on CPU main memory, and
fetch only those active portions to the GPU memory. Since
the overhead for transferring data from CPU to GPU is a sig-
nificant factor impacting the overall rendering performance,
we propose a GPU out-of-core approach that transfers much
smaller amount of data by exploiting frame-to-frame coher-
ence. As such, we can re-use most of existing data on the
GPU, which has been devoted to the last rendered frame, so
that the overhead of transferring data is minimized.

Our GPU out-of-core algorithm takes the following two
steps at each rendered frame:

1. CPU-GPU data streaming. In this step, we first need to
collect the vertices and triangles not existing on the GPU
but required to render the next frame, and store them in
a block of continuous CPU memory. Then, we transfer
this data block to GPU memory with a single memory
transfer call.

2. GPU data defragmentation. For the reason of efficient
processes in triangle reformation and rendering, the ge-
ometry data of all the meshes are concatenated into a
single continuous memory block. However, the frame-to-
frame coherence approach does not preserve the continu-
ity and the order of geometry data in the GPU memory.
To solve this problem, we introduce a parallel defragmen-
tation algorithm to re-organize GPU-ready data for effi-
ciently rendering the 3D model.

5.1. CPU-GPU Data Streaming

In order to minimize the overhead of CPU-GPU communi-
cation, we only transfer the additional data that is required

398 Chao Peng & Yong Cao /A GPU-based Approach for Massive Model Rendering with Frame-to-Frame Coherence

(W (ii)

(iii) (iv)

Figure 5: A sequence of simplified versions of Power Plant model (originally 12 million triangles). The amounts of trian-

gles and vertices in the scene (triangle/vertex) are: (i) 4,193,422/2,199,478; (ii) 91,325/90,466; (iii) 25,091/20,950; (iv)

2,369/1,799.

in the next frame compared against the currently rendered
frame. Let us denote the arrays of vertex counts and triangle
counts for the current frame f as ve! and tef , respectively,
and for the next frame as ve/ 7! and rc/ 11, respectively. The
number of the additional vertices required between frame f
and frame f + 1 is defined as

f vcf1rJrl — vclf if vcif+1 — vclf >0,

0 ifvclf'H —vc{ <0,

where i is the mesh index of the array. The similar definition
is applied to the array of triangle counts, i’

In order to avoid multiple CPU-GPU memory copies,
which impose a significant performance cost, we prepare
the additional vertices and triangles on the CPU by assem-
bling the data from each mesh into a block of continuous
CPU memory, and only copy the block to GPU memory
once per frame. To do this, we first perform a prefix sum
on the count arrays of the additional vertices and triangles,
ve! and e/, respectively, so that we can obtain the position
offset for each mesh in the continuous memory block. We
then copy the addition data from each mesh into this block
at its corresponding position offset. According to the data re-
arrangement scheme used in the preprocessing step, the ad-
dition vertex and triangle data from each mesh is also stored
together in a continuous memory space, as illustrated in Fig-
ure 6. As such, preparing the additional data on CPU can
be efficiently implemented, because the data copy for each
mesh will only require a single call of memory copy.

5.2. GPU Data Defragmentation

Between rendering frames, the desired complexity level for
a mesh sometimes decreases. In this case, we do not need to
transfer any data of the mesh to the GPU. Instead, we need to
remove the unnecessary data for this mesh from the GPU, so
that we can use the space for other meshes with additional
storage requirement. Such operation will make the contin-
uous GPU memory block fragmented. For example, many
small and unusable “holes” will be created in the block. In
addition, since our parallel triangle reformation approach re-
quires that the geometry data for each mesh has to be stored

To-be-transferred data
prepared on CPU: %——Vl

Re-arranged .
3D model: Mz | L]

—_————

Ms: | [[|

Figure 6: An example of data preparation on CPU. The pur-
ple blocks replicated from the re-arranged meshes stand for
the new data required by GPU. The blue blocks are equiva-
lent to those data already existing on GPU.

in an ordered and continuous fashion, we have to reshuffle
the existing data on the GPU and copy the additional data
into the right position in the GPU block. The goal of this
data defragmentation process is to make sure that, (1) the
active data selected for the frame is still continuously stored;
(2) the vertex and triangle data for each mesh is stored in the
same order as it is re-arranged in the preprocessing step; (3)
the appearance of each mesh in the block is also stored in the
same order as indicated in the arrays ve/ 1 and e,

At this step, on GPU memory, we have a block of existing
data from the current frame, f, and a block of additional data
required by the next frame, f + 1. To assemble them into the
block reserved by active data, a straightforward method is
using the system calls of GPU memory copy. For mesh M;,
we copy its vertices and triangles from both existing data
block and additional data block to the active data block at
the position with the offsets vc{ 1 and tclf +1, respectively.
However, there will be a large number of system calls of
GPU memory copies, and they have to be initiated by the
CPU and executed sequentially, which would be a significant
cost on performance.

An alternative way of memory copy is to manipulate each
element of the block in parallel. On the GPU, it has been
shown that it is much more efficient than the direct mem-
ory copy when the data size is large. We design a parallel
process of data defragmentation that each GPU thread only
copies the data for one triangle into its required position. Our

(© 2012 The Author(s)
(© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Chao Peng & Yong Cao /A GPU-based Approach for Massive Model Rendering with Frame-to-Frame Coherence 399

algorithm, as illustrated in Algorithm 2, defragments the tri-
angle data of all the meshes with one kernel call to the GPU,
instead of one call for a mesh, in order to avoid the high cost
of multiple GPU calls.

As described in Algorithm 2, each GPU thread copies the
data for one triangle, #;, of the active triangles from either the
existing triangles or the additional triangles, as illustrated in
Figure 7. First, we identify the mesh index, i, that #; belongs
to, since the source triangle for #; has to come from the mesh
M;. To find the mesh index quickly, we perform a binary
search on the array te/*1, in the same way as we do in Al-
gorithm 1. Second, we identify if the source triangle for #;
should be an existing one or an additional one of M;. To do
this, we convert the index of #; in the active triangles to a
local triangle index in M;. We denote this local index as tidx
(see line 4 of Algorithm 2). If #idx is smaller than the number
of existing triangles, we copy the triangle from the existing
ones (see line 6-8); otherwise, we copy from the additional
triangles (see line 9-11). At the end, the block of existing
triangles is replaced with the completed active triangles, so
that we can use it to defragment the following frame.

Existing triangles: [] | | |

Active triangles: [| I | | [|]
v b4

-
—— ,

Additional triangles: Tl

Figure 7: An example of defragmenting triangles on GPU.
ta, tp, tc, tg and te. will be substituted with a source triangle
from existing or additional block of triangles in parallel.

Algorithm 2 Defragmenting triangles on GPU

procedure TriangleDefragmentation(

in array e/, array te’, array il existing triangles, addi-

tional triangles;

out active triangles)

1: for kth triangle #; in active triangles in parallel do

i<—0;
binary search array ¢
tidx «— k—tc{“;
n <—tc{+1 —tc{;

2

3 S+1
4

5:

6: iftidx <n then

7.

8

9

return i;

Jj— tidx—i—tcf ;
t; < jth existing triangle;

: else
100 jetide—n+icl;
11: t; < jth additional triangle;
12: endif
13: end for

14: replace existing triangles with active triangles for the
following frame;

(© 2012 The Author(s)
(© 2012 The Eurographics Association and Blackwell Publishing Ltd.

/"_“*\

~ g - -
6] (i)
Figure 8: The setups of Camera movements. (i) The path

of camera for Boeing Model; (it) The path of camera for
Power Plant model.

6. Experiments and Performance Results

We have implemented our approach on an Intel Core i7
2.67GHz PC with 12 GB of RAM, and a Nvidia Quadro
5000 graphics card with 2.5 GB of GDDRS5 device mem-
ory. It is developed using Nvidia CUDA Toolkit v4.0, and
runs on a 64-bit Windows system. Our approach has been
applied to two complex 3D models. One is a Boeing 777
airplane model composed of about 332 million triangles and
223 million vertices. The other one is a coal fired power plant
model composed of about 12 million triangles and 6 million
vertices.

Since Boeing model requires approximately 6 GB mem-
ory space, the data is streamed for rendering based on the
GPU approach explained in Section 5. But for Power Plant
model, it can fit into GPU memory, so that the cost of CPU-
GPU communication is completely eliminated.

We generate two 360-degree camera turning movements
for each model (see Figure 8). We run 300 frames for each
of four camera setups, and use them to test the performance.

6.1. Overall System Performance

The performance results show that we can achieve interac-
tive rendering rates: 26-226 fps for Power Plant model and
6-22 fps for Boeing 777 model. Figure 9 demonstrates the
live-captured images on the path of camera movements. To
reach decent visual quality, we have set o of Equation 2 to
3, since [WS98] claimed that o0 = 3 produces equivalent of
Funkhouser’s benefit function [FS93].

Table 1 shows the breakdown of timing results of the run-
time steps, which are the averaged values over 300 frames.
For Boeing model, since there is always a considerable num-
ber of data being transferred at each frame, GPU out-of-
core becomes the most time-consuming part (44.14%(a) and
48.41%(b) out of total time). To understand its importance
and efficiency, Section 6.3 provides an insight analysis of
the step of GPU out-of-core. And the rendering step never
becomes the bottleneck, even with more than 10 million tri-
angles to be rendered.

400 Chao Peng & Yong Cao /A GPU-based Approach for Massive Model Rendering with Frame-to-Frame Coherence

(a) (b)
©) ()]
Figure 9: The rendered 3D models in our experiments. Boeing 777 model is rendered in (a) and (b); Power Plant model is
rendered in (c) and (d).
Table 1: Overall system performance.
Avg. Avg. Avg. Avg. Avg.
Model | Cam. FPS LOD Selection GPU Out-of-Core | Triangle Reformation Rendering
Boeing (a) 9.26 11.05 ms (10.23%) | 47.67 ms (44.14%) 19.66 ms (18.21%) 29.61 ms (27.42%)
777 (b) 9.04 7.34 ms (6.64%) 53.55 ms (48.41%) 18.95 ms (17.13%) 30.78 ms (27.82%)
Power (c) 92.98 2.74 ms (25.46%) N/A 4.39 ms (40.80%) 3.63 ms (33.74%)
Plant (d) 192.45 | 2.38 ms (45.77%) N/A 0.77 ms (14.81%) 2.05 ms (39.42%)

Table 2: Visible triangles and vertices in Power Plant model.

Model | Cam. | Avg. Visible Triangles / Vertices
Power (©) 3.158M / 1.468M
Plant (d) 0.510M / 0.265M

6.2. Evaluation of Parallel LOD

Our parallel LOD approach reduces the number of triangles
and vertices significantly. For example, in Table 2, Experi-
ment (d) has only 0.510 million triangles (in average) to be
rendered, which is 4.25% out of the total 12 million trian-
gles; The computation time of LOD selection depends on
the number of meshes that a model contains originally, since
we have to do view-frustum culling for each mesh. But our

triangle reformation method only operates the visible trian-
gles on GPU, so that the time of reformation is scaled with
the changes of the visible triangle count. In Figure 10-(i),
we scatter the value pairs of reformation time and visible tri-
angle count. Each dot corresponds to a rendered frame, and
there are totally 600 dots (frames) on each graph. Usually,
the overheads of thread management and data access would
prevent the performance to be linear while dealing with large
amount of data on the GPU. But with our implementation,
Figure 10-(i) shows that the time of reformation increases
linearly towards the increase of visible triangle count.

6.3. Evaluation of GPU Out-of-Core

To evaluate our coherence-based GPU out-of-core method,
we compare our implementation, Streaming with Coher-

(© 2012 The Author(s)
(© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Chao Peng & Yong Cao /A GPU-based Approach for Massive Model Rendering with Frame-to-Frame Coherence 401

ence (SC), with two other approaches: Streaming without
Coherence (SnC) and No Streaming (NS), which are com-
mon brute-force strategies. Streaming without Coherence
first collects all of them to a continuous CPU memory block,
then streams the entire block to GPU with one call. No
Streaming approach sequentially copies all selected vertices
and triangles from CPU memory space to GPU one-by-one.
Neither SnC nor NS approach needs the step of defragmenta-
tion. And NS approach even has no cost of preparing data on
CPU. We show the performance comparisons of these three
approaches in Figure 10-(ii). Our coherence-based stream-
ing transfers only new-added vertices and triangles, and has
a better overall performance than the other two approaches.

In average, our approach achieves about 1.66X speedup
comparing to SnC approach, and achieves about 51.96X
speedup comparing to NS approach. Table 3 shows the av-
eraged timing results and the averaged data amounts of our
comparison experiments. Note that “Avg. Visible Meshes"
means the average number of meshes with non-zero com-
plexity. “Avg. Streamed Meshes" means the average num-
ber of meshes with the increased complexity, so that some
of their vertices and triangles will be CPU-GPU streamed.
Our SC approach requires much less amounts of “Streamed
Meshes" and “Streamed Triangles/Vertices" than the other
two approaches, so that much less cost of memory transfer-
ring is required by our approach. For example, in camera
(a), only 0.68% of total 12.884 million visible triangles and
0.69% of total 10.721million visible vertices are transferred.

Performance factors of CPU-GPU streaming. Based on
our experiments, the time spent on CPU-GPU streaming de-
pends on CPU side, because to-be-transferred data is pre-
pared sequentially on CPU, which is the major cost of the
streaming. Two Factors influences the time of data preparing
on CPU: the size of to-be-transferred data and the number of
meshes with increased complexities between frames.

Performance factors of GPU defragmentation. The de-
fragmentation re-organizes the data on GPU. The more data
is used for rendering a frame, the more time is required to
defragment them. Based on our experimental results from
(a) and (b), we notice that the time of GPU defragmentation
is scaled with respect to the number of visible triangles and
visible vertices determined by our LOD selection method. In
Figure 10-(iii), we plot the relationship between defragmen-
tation time and the number of visible data; and each dot rep-
resents a frame. It shows that defragmentation time changes
linearly over different numbers of triangles and vertices.

7. Conclusion and Future Work

We presented a novel GPU approach to visualize massive 3D
models at interactive rates. First, we design a parallel algo-
rithm of mesh simplification that supports real-time genera-
tion of LOD model. Second, we propose a GPU out-of-core
approach by employing frame-to-frame coherence. A paral-

(© 2012 The Author(s)
(© 2012 The Eurographics Association and Blackwell Publishing Ltd.

lel defragmentation algorithm is developed to maintain the
data continuity in GPU memory.

Limitations. Our approach assumes the high temporal co-
herence between frames. If the camera is changed dramati-
cally from one frame to the next, the amount of transferred
data based on the frame difference could be increased signif-
icantly. As a result, it may lead to a noticeable performance
lost. Another limitation of our system is that we require the
entire 3D model can fit into CPU main memory.

Future works. There are some future works that can
strengthen our approach. First, LOD selection metric is an
important factor for managing the amount of selected data
and preserving visual fidelities. We would like to explore
other metrics applicable for massive model rendering. Sec-
ond, during the phase of defragmentation, the data used for
rendering the previous frame is stored at its own memory
allocation. However, it is not the best method to optimize
memory usage. In the future, we would like to explore some
in-place algorithms to assemble GPU data.

Acknowledgements

This work is partially funded by National Science Foun-
dation, IIS 0940723, titled “EAGER: Drummer Game: A
Massive-Interactive Socially-Enabled Strategy Game". We
also thank Dave Kasik of Boeing for providing the 3D model
of Boeing 777 airplane.

References

[CGG*03] CIGNONI P., GANOVELLI F., GOBBETTI E., MAR-
TON F., PONCHIO F., SCOPIGNO R.: Bdam — batched dy-
namic adaptive meshes for high performance terrain visualiza-
tion. Computer Graphics Forum 22, 3 (2003), 505-514.

[CGG*04] CIGNONI P., GANOVELLI F., GOBBETTI E., MAR-
TON F., PONCHIO F., SCOPIGNO R.: Adaptive tetrapuzzles: ef-
ficient out-of-core construction and visualization of gigantic mul-
tiresolution polygonal models. In ACM SIGGRAPH 2004 Papers
(New York, NY, USA, 2004), SIGGRAPH *04, ACM, pp. 796—
803.

[DTO07] DECORO C., TATARCHUK N.: Real-time mesh simplifi-
cation using the gpu. In Proceedings of the 2007 symposium on
Interactive 3D graphics and games (New York, NY, USA, 2007),
13D ’07, ACM, pp. 161-166.

[FS93] FUNKHOUSER T. A., SEQUIN C. H.: Adaptive display
algorithm for interactive frame rates during visualization of com-
plex virtual environments. In Proceedings of the 20th annual con-
ference on Computer graphics and interactive techniques (New
York, NY, USA, 1993), SIGGRAPH °93, ACM, pp. 247-254.

[GH97] GARLAND M., HECKBERT P. S.: Surface simplifica-
tion using quadric error metrics. In Proceedings of the 24th
annual conference on Computer graphics and interactive tech-
niques (New York, NY, USA, 1997), SIGGRAPH 97, ACM
Press/Addison-Wesley Publishing Co., pp. 209-216.

[GH98] GARLAND M., HECKBERT P.: Simplifying surfaces with
color and texture using quadric error metrics. In Ninth IEEE Vi-
sualization(VIS "98) (1998), p. pp.264.

402 Chao Peng & Yong Cao /A GPU-based Approach for Massive Model Rendering with Frame-to-Frame Coherence

Experiment (a) & (b)

g ~
Y &
£ £
e E
<

: A Z
% Experiment (¢) & (d) K
3 P
L g
o g
g 63
E

Visible Triangle Numbers

@

Experiment (a)

Experiment (b)

(i)

Rendered Frame Numbers

Experiment (a) & (b)

Defragmentation Time (ms)

Visible Data Numbers

(iii)

Figure 10: (i) The scattered value pairs of reformation time and visible triangle numbers from all rendered frames; (ii) Compar-
ison of rendering rates per frame in experiment (a) and (b) with three different GPU out-of-core approaches; (iii) The scattered
value pairs of defragmentation time and visible triangle/vertex numbers from all rendered frames.

Table 3: Comparison of three different streaming approaches: Streaming with Coherence (our work), Streaming without Co-

herence, and No Streaming.

Avg. Avg. Avg. Avg. Avg. Avg. Visible Avg. Streamed
Cam. | App. | FPS | CPU-GPU GPU Visible | Streamed | Triangles/Vertices | Triangles/Vertices
Streaming Defrag. | Meshes Meshes
N& 9.26 15.70 ms 31.97 ms 6,056 58 12.884M / 10.721M 0.088M / 0.074M
(a) SnC | 5.39 126.29 ms N/A 6,056 6,056 12.884M /10.721M | 12.884M/10.721M
NS 0.19 | 5218.20 ms N/A 6,056 6,056 12,884M / 10.721M | 12.884M/10.721M
Ne 9.04 22.45 ms 31.10ms | 20,676 1,404 12.544M / 10.437TM 0.448M /0.370M
(b) SnC | 5.64 127.77 ms N/A 20,676 20,676 12.544M /10.437M | 12.544M/10.437M
NS 0.17 | 5825.70ms N/A 20,676 20,676 12.544M / 10.437M | 12.544M/10.437M
[GMO08] GOBBETTI E., MARTON F.: Far voxels: a multireso- ment of multiresolution meshes using programmable graphics

lution framework for interactive rendering of huge complex 3d
models on commodity graphics platforms. In ACM SIGGRAPH
ASIA 2008 courses (New York, NY, USA, 2008), SIGGRAPH
Asia ’08, ACM, pp. 32:1-32:8.

[Hop96] HOPPE H.: Progressive meshes. In Proceedings of the
23rd annual conference on Computer graphics and interactive
techniques (New York, NY, USA, 1996), SIGGRAPH 96, ACM,
pp. 99-108.

[Hop97] HOPPE H.: View-dependent refinement of progressive
meshes. In Proceedings of the 24th annual conference on Com-
puter graphics and interactive techniques (New York, NY, USA,
1997), SIGGRAPH 97, ACM Press/Addison-Wesley Publishing
Co., pp. 189-198.

[HSH09] Hu L., SANDER P. V., HOPPE H.: Parallel view-
dependent refinement of progressive meshes. In Proceedings of
the 2009 symposium on Interactive 3D graphics and games (New
York, NY, USA, 2009), I3D 09, ACM, pp. 169-176.

[HSO07] HARRIS M., SENGUPTA S., OWENS J. D.: Parallel
prefix sum (scan) with cuda. In GPU Gems 3, Chapter 39 (2007).

[IGO3] ISENBURG M., GUMHOLD S.: Out-of-core compression
for gigantic polygon meshes. In ACM SIGGRAPH 2003 Papers
(New York, NY, USA, 2003), SIGGRAPH ’03, ACM, pp. 935—
942.

[JWLL06] Ji1J., WUE., L1S., Liu X.: View-dependent refine-

hardware. The Visual Computer 22 (2006), 424-433.

[Mel98] MELAX S.: A simple, fast, and effective polygon reduc-
tion algorithm. In Game Developer (1998), pp. 44-49.

[RRR96] RONFARD R., ROSSIGNAC J., ROSSIGNAC J.: Full-
range approximation of triangulated polyhedra. In Proceed-
ing of Eurographics, Computer Graphics Forum (August 1996),
Rossignac J., Sillon E, (Eds.), vol. 15(3), Eurographics, Black-
well, pp. C67-C76.

[Swa99] SWAROVSKY J.: Extreme detail graphics. In Game De-
velopers Conference (1999), pp. 899-904.

[SZLL92] SCHROEDER W. J., ZARGE J. A., LORENSEN W. E.:
Decimation of triangle meshes. SIGGRAPH Comput. Graph. 26
(July 1992), 65-70.

[WS98] WIMMER M., SCHMALSTIEG D.: Load Balancing for
Smooth Levels of Detail. Tech. Rep. TR-186-2-98-31, Vienna
University of Technology, 1998.

[YSGMO04] YOON S.-E., SALOMON B., GAYLE R., MANOCHA
D.: Quick-vdr: Interactive view-dependent rendering of massive
models. In Proceedings of the conference on Visualization 04
(Washington, DC, USA, 2004), VIS 04, IEEE Computer Soci-
ety, pp. 131-138.

(© 2012 The Author(s)
(© 2012 The Eurographics Association and Blackwell Publishing Ltd.

