
GPU Accelerated Fuzzy Connected Image Segmentation by using CUDA

Ying Zhuge, Yong Cao, Jayaram K. Udupa, and Robert W. Miller

Abstract— Image segmentation techniques using fuzzy con-
nectedness principles have shown their effectiveness in seg-
menting a variety of objects in several large applications
in recent years. However, one problem of these algorithms
has been their excessive computational requirements when
processing large image datasets. Nowadays commodity graphics
hardware provides high parallel computing power. In this paper,
we present a parallel fuzzy connected image segmentation
algorithm implementation on Nvidia’s Compute Unified Device
Architecture (CUDA) platform for segmenting large medical
image data sets. Our experiments based on three data sets of
small, medium, and large data size demonstrate the efficiency
of the parallel algorithm, which achieves a speed-up factor of
7.2x, 7.3x, and 14.4x, correspondingly, for the three data sets
over the implementation of the algorithm on CPU.

I. INTRODUCTION

Image segmentation is one of the most crucial tasks in
image processing and computer vision. In spite of nearly
four decades of research, image segmentation remains a
challenging problem. Recently developed fuzzy connected-
ness framework and it extensions have been extensively
utilized in many medical applications [1], [2], [3], [4]. These
include multiple sclerosis lesion detection and quantification
via MR imaging [5], upper airway segmentation in children
via MRI for studying obstructive sleep apnea [6], electron
tomography segmentation [7], abdominal segmentation [8],
automatic brain segmentation [9] in MR images with the
assistance of an atlas, clutter-free volume rendering and
artery-vein separation in MR angiography [10], in brain
tumor delineation via MR imaging [11], and automatic breast
density estimation [12] via digitized mammograms for breast
cancer risk assessment. However, one problem with the fuzzy
connected image segmentation algorithms has been their high
computational requirements for large image data [13].

Parallel computing using a Graphics Processing Unit
(GPU) can address this problem. The GPU’s substantial
arithmetic and memory bandwidth capabilities, coupled
with its recent addition of user programmability, has al-
lowed for general-purpose computation on graphics hardware
(GPGPU)[14]. Many non-graphics-oriented computationally
expensive algorithms have been implemented on the GPU.
Developers prefer GPUs over other alternative parallel pro-
cessors such as cluster of workstations owing to several

Ying Zhuge and Robert Miller are with Radiation Oncology Branch,
National Cancer Institute, National Institutes of Health, Bethesda, MD
20892, USA {zhugey, rwmiller}@mail.nih.gov

Yong Cao is with Computer Science Department, Virginia Poly-
technic Institute and State University, Blacksburg, VA 24060, USA
yongcao@vt.edu

Jayaram Udupa is with Medical Image Processing Group, Department
of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
jay@mail.med.upenn.edu

advantages including their low cost and wide availability.
Owens et al. presented a comprehensive survey of latest
research in GPU computing [15]. Since medical imaging
applications intrinsically have data-level parallelism with
high compute requirements, they are very suitable to be
implemented on the GPU. Several studies of medical imaging
applications on GPU have been reported recently [16], [17].

The purpose of this paper is to present a parallel fuzzy
connected image segmentation algorithm implemented on
GPU by using CUDA to achieve interactive speed when
segmenting large medical image data sets. The paper is
organized as follows. In Section II, we first briefly present the
fuzzy connectedness principles and its sequential algorithm.
In Section III, we describe the NVIDIA GPU architecture
and the CUDA programming model, and explain how to
implement parallel fuzzy connected image segmentation by
using CUDA. The experimental results are presented in
Section IV. Finally, we state our concluding remarks in
Section V.

II. FUZZY CONNECTEDNESS PRINCIPLES AND
SEQUENTIAL ALGORITHM

We shall briefly describe the concepts related to fuzzy con-
nectedness in this section to make this paper self-contained.
We refer to a volume image as a scene and represent it by a
pair C = (C, f), where C is a rectangular array of cuboidal
volume elements, usually referred to as voxels, and f is the
scene intensity function which assigns to every voxel c ∈ C
an integer called the intensity of c in C in a range [L,H].

A. Fuzzy adjacency and affinity

Independent of any image data, we think of the digital grid
system defined by the voxels as having a fuzzy adjacency
relation. This relation assigns to every pair (c, d) of voxels a
value between zero and one. The closer c and d are spatially
to each other, the greater is this number. This is intended to
be a “local” phenomenon. How “local” it ought to be should
perhaps depend on the blurring property of the imaging
device. We denote the fuzzy adjacency relation by α and
the degree of adjacency assigned to any voxels (c, d) by
µα(c, d).

Now consider the voxels as having scene intensities as-
signed to them. We define another local fuzzy relation called
affinity on voxels denoted by κ. The strength of this relation
between any voxels c and d, denoted µκ(c, d), lies between
zero and one, and indicates how the voxels “hang together”
locally in the scene. µκ(c, d) is determined on µα(c, d),
as well as on how similar are the intensities or intensity-
based properties at c and d. The properties of fuzzy affinity

relations are studied extensively and a guidance as to how
to setup fuzzy affinities in practical applications is given in
[2]. In this paper, we used the following functional form for
µκ,

µκ(c, d) = µα(c, d)
√
g1(f(c), f(d))g2(f(c), f(d)), (1)

where g1 and g2 are Gaussian functions of f(c)+f(d)
2 and

|f(c)−f(d)|
2 , respectively. In this equation, g1 is a Gaussian

with mean and variance that are related to the mean and
variance of the intensity of the object we wish to define in
the scene. That is, this component of affinity takes on a high
value when c and d are both close to an expected intensity
value for the object. g2 is a 0-mean Gaussian, the underlying
idea being to capture the degree of local hanging togetherness
of c and d based on intensity homogeneity.

B. Fuzzy connectedness and fuzzy objects

Our aim is to capture the global phenomenon of “hanging
togetherness” in a global fuzzy relation on voxels called
fuzzy connectedness, denoted K. The strength of this relation
µK(c, d) between any voxels c and d, indicating the strength
of their connectedness, lies between zero and one, and is
determined as follows: There are numerous possible “paths”
within the scene domain C between c and d. Each path
for our purposes is a sequence of voxels, starting from c
and ending in d, with the successive voxels being nearby.
We think of each pair of successive voxels as constituting a
link and the whole path to be a chain of links. We assign
a strength (between zero and one) to every path which is
simply the smallest pairwise voxels affinity along the path.
Finally, the strength of connectedness between c and d is the
strength associated with the strongest of all paths between c
and d.

Let θ be any number in [0,1], a fuzzy connected object
O in C of strength θ, and containing a voxel o, consists of
a pool O ⊂ C of voxels together with a value indicating
“objectness” assigned to every voxel. O is such that o ∈ O,
and for any voxels c ∈ O and d ∈ O, the strength of
connectedness between them µK(c, d) ≥ θ, and for any
voxel c ∈ O and e 6∈ O , the strength µK(c, e) < θ.

The fuzzy connectedness algorithm is presented below.
For any voxel affinity κ in a scene C = (C, f), we define
the κ-connectivity scene of C with respect to a voxel o ∈ C
by CKo = (C, fKo), where, for any c ∈ C, fKo = µK(o, c).
The algorithm uses Dijkstra’s implementation of dynamic
programming to find the best path from o to each voxel in C.

Algorithm κFOE

Input: C = (C, f), any o ∈ C and any fuzzy affinity κ.
Output: A κ-connectivity scene CKo = (C, fKo) of C with
respect to o.
Auxiliary Data Structures: A 3D array representing the
connectivity scene CKo = (C, fKo) and a queue Q contain-
ing voxels to be processed. We refer to the array itself by
CKo for the purpose of the algorithm.

Fig. 1. Architecture of the NVIDIA GTX280 GPGPU in detail.

begin
1 set all voxels of CKo to 0 except o which is set to 1;
2 push o to Q;
3 while Q is not empty do
4 remove a voxel c from Q for which fKo(c) is maximal;
5 for each voxel e such that µκ(c, e) > 0 do
6 set fmin = min{fKo(c), µκ(c, e)};
7 if fmin > fKo(e) then
8 set fKo(e) = fmin;
9 if e is already in Q then
10 update the location of e in Q;
11 else
12 push e in Q;
end

III. PARALLEL FUZZY CONNECTED IMAGE
SEGMENTATION ON GPU

A. NVIDIA GPU Architecture and Programming Model

The performance of a state-of-the-art GPU is compatible
to a supercomputer. For example, a NVIDIA GTX280 GPU
has 240 processing cores with a clock rate of 1.3G Hz for
each core, delivering nearly 1 Tera FLOPS of computational
power. To support an intuitive and flexible programming
environment to access such computing power, NIVIDA
provides CUDA framework [18], which is based on a C-
language model instead of Graphics Shader-Programming
concept. CUDA enables generation and management of a
massive number of processing threads, which can be ex-
ecuted in parallel on GPU cores with efficient hardware
scheduling.

The 240 cores of GTX280 GPU are grouped into 30 multi-
processors, as shown in Figure 1. Each multi-processor has
8 processing cores, organized in a SIMD (Single Instruction
Multiple Data) fashion. GTX280 has 1 GB of onboard device
memory, which can be used as read-only texture memory
or read-write global memory. GPU device memory features
very high bandwidth, recorded at 141 GB per second, but
it suffers from high access latency. In each multi-processor,
there is 16 KB of user-controlled L1 cache, called shared
memory. If it is used efficiently, it can be used to hide the
latency for global memory access.

CUDA programming model is based on concurrently
executed threads. CUDA manages threads in a hierarchical

structure. Threads are grouped into a thread block, and thread
blocks are grouped into a grid. All threads in one grid
share the same functionality, as they are executing the same
kernel code. Each thread block is mapped onto one multi-
processor, and threads in each block are scheduled to run on
8 processing cores of the multi-processor, using a scheduling
unit of 32-thread warp. Since the threads in a block are
executed on the same multi-processor, they can use the same
shared memory space for data communication. On the other
hand, the threads between different blocks can communicate
only through low-speed global memory.

B. CUDA Implementation

In CUDA, programs are expressed as kernels. In order
to map a sequential algorithm to the CUDA programming
environment, developers should identify data-parallel por-
tions of the application and isolate them as CUDA kernels.
In the fuzzy connectedness segmentation method, there are
two major computational tasks: (i) computing the fuzzy
affinity relations, and (ii) computing the fuzzy connectedness
relations. We shall refer to (i) as “affinity computation” and
(ii) as “tracking” a fuzzy object. We implement these two
tasks as CUDA kernels, and a dramatic improvement for
both tasks can be achieved in their speed.

1) Affinity computation kernel : The CUDA implementa-
tion of fuzzy affinity computation is straightforward. The
fuzzy affinity computation of every pair (c, d) of voxels
where µα(c, d) is greater than zero is totally independent
of other pair of voxels. Thus for the pair (c, d), one thread
computes corresponding g1(c, d) and g2(c, d) in equation 1,
and writes the fuzzy affinity µκ(c, d) to GPU global mem-
ory. For computational simplicity, we use the six-adjacency
relation for α.

2) Tracking kernel: Computing the fuzzy connectedness
values for a fuzzy object is a variation of the single-source-
shortest-path (SSSP) problem. Dijkstra’s algorithm is an
optimal sequential solution to the SSSP problem. Paral-
lel implementations of Dijkstra’s SSSP algorithm is quite
challenging [19]. As far as we know, there is no efficient
parallel algorithm of the SSSP in a SIMD model. Harish and
Narayanan [20] proposed using CUDA to accelerate large
graph algorithms (including SSSP) on the GPU, however
they implemented only a very basic version and did not gain
much performance improvement. We use a similar imple-
mentation, but take advantage of a newer version of CUDA
hardware which supports atomic read/write operations in
the device global memory. Our CUDA implementation is
presented below.
Algorithm CUDA-κFOE

Input: C = (C, f), any o ∈ C and any fuzzy affinity κ.
Output: A κ-connectivity scene CKo = (C, fKo) of C with
respect to o.
Auxiliary Data Structures: Two 3D arrays representing
binary scenes Cm1 = (C, fm1) and Cm2 = (C, fm2). We
refer to arrays themselves by Cm1 and Cm2 for the purpose

of the algorithm.

begin
1 set all voxels of CKo to 0 except o which is set to 1;
2 set all voxels of Cm1 to 0 except o which is set to 1;
3 while Cm1 is not all zero do
4 set all voxels of Cm2 to 0;
5 for each voxel in parallel do
6 Invoke TRACKING-KERNEL(CKo, Cm1, Cm2, µκ) on
grid ;
7 Copy Cm2 to Cm1;
end

Algorithm TRACKING-KERNEL(CKo, Cm1, Cm2, µκ)

begin
1 if fm1(c) = 1 then
2 for each voxel e such that µκ(c, e) > 0 do
3 set fmin = min{fKo(c), µκ(c, e)};
4 if fmin > fKo(e) then
5 set fKo(e) = fmin;
6 set fm2(e) = 1;
end

In our implementation, TRACKING-KERNEL is called
in each iteration. Each voxel c ∈ C checks if it is true
in the binary array Cm1. If yes (which means its neigh-
bor’s connectivity values need to be updated), it fetches
its connectivity value fKo(c) from the connectivity array
CKo and the affinities µκ(c, e) between voxel c and its
adjacent voxel e. Then the connectivity value of voxel e is
updated if the minimum of µκ(c, e) and fKo(c) is greater
than its original connectivity value fKo(e). Note in line 5 of
Algorithm TRACKING-KERNEL, we used atomic operation
for consistency because update operations might happen by
multiple threads simultaneously. The two binary arrays Cm1

and Cm2 are used to avoid inconsistency too. When voxel
c has been processed by one thread, whether or not it
needs to be processed further in the next iteration depends
on processing results of its adjacent voxels. The algorithm
CUDA-κFOE terminates when there is no update from all
threads.

IV. EXPERIMENTAL RESULTS

In this section, we compare the running times of our GPU
and CPU implementations of the fuzzy connectedness for
data sets with different sizes. The CPU version of fuzzy
connectedness is implemented in C++. The computer used
is a DELL PRECISION T7400 with a quad-core 2.66GHz
Intel Xeon CPU. It runs Windows XP and has 2GB of
main memory.The GPU used is the NVIDIA GTX280 with
240 processing cores and 1GB device memory. CUDA SDK
2.0 is used in our GPU implementation. Three image data
sets – small, medium, and large – are utilized to test
the performance of the GPU and CPU implementations.
Table I lists the image data set information and shows the
performance of our GPU implementation with respect to the
CPU implementation. We have achieved from 7.2x to 14.4x

(a) (b)

(c) (d)
Fig. 2. A slice of T1-weighted MRI scene from the medium data set (a),
the corresponding slices of the scenes depicting the affinity values (b), the
connectedness values (c), and the final hard object (d).

speedup over the CPU implementation. The larger the size
of the data set, the more speedup we can achieve. We note
that the segmentation results produced from both GPU and
CPU implementations are identical.

TABLE I
DATA SET INFORMATION AND PERFORMANCE OF GPU

IMPLEMENTATION WITH RESPECT TO CPU IMPLEMENTATION.

Dataset small medium large
Protocol PD MRI T1 MRI CT
Domain (256,256,46) (256,256,124) (256,256,459)

Voxel Size (mm) (0.98,0.98,3.0) (0.94,0.94,1.5) (0.68,0.68,1.5)
CPU time(sec) 6.17 13.36 27.88
GPU time(sec) 0.86 1.84 1.94

speedup 7.2 7.3 14.4

Figure 2 shows one example from the medium data set,
which is a SPGR T1-weighted MRI scene of the head of
a clinically normal human subject we downloaded from the
web site of National Alliance for Medical Image Computing
(http://www.na-mic.org). Figure 2(a) shows one slice of the
original scene, and Figures 2(b), 2(c), and 2(d) show corre-
sponding slices depicting the affinity values, connectedness
values, and the final hard segmented white matter object.

V. CONCLUDING REMARKS

The data sets produced in radiological exams are growing
larger everyday, which creates a severe demand on comput-
ing power for image segmentation algorithms. To address
such demand, we have introduced a CUDA implementa-
tion of a widely used fuzzy connected image segmentation
method on low-cost GPUs. Our results show that the CUDA
implementation achieves a speedup from 7.2x to 14.4x
over an optimized CPU implementation. Interactive speed
of fuzzy object segmentation is reached. We would like to

further improve the performance of our CUDA implemen-
tation by taking advantage of fast GPU shared memory. In
addition, we will eliminate the limitation of device memory
and support processing of images larger than what the GPU
memory allows.

REFERENCES

[1] J. K. Udupa and S. Samarasekera, Fuzzy connectedness and object
definition: theory, algorithms, and applications in image segmentation,
Graphical Models and Image Processing, vol. 58, 1996, pp 246-261.

[2] P. K. Saha, J. K. Udupa and D. Odhner, Scale-based fuzzy connected
image segmentation: theory, algorithms, and validation, Computer
Vision and Image Understanding , vol. 77, 2000, pp 145-174.

[3] J. K. Udupa, P. K. Saha and R. A. Lotufo, Relative Fuzzy connect-
edness and object definition: Theory, algorithms, and applications in
image segmentation, IEEE Trans. Pattern Anal. Machine Intell., vol.
24 (11), 2002, pp 1485-1500.

[4] G.T. Herman and B.M.Carvalho, Multiseeded segmentation using fuzy
connectedness, IEEE Trans. Pattern Anal. Machine Intell., vol. 23,
2001, pp 460-474.

[5] J. K. Udupa, L. Wei, S. Samarasekera, Y. Miki, M. A. Buchem and
R. I. Grossman, Multiple sclerosis lesion quantification using fuzzy
connectedness principles, IEEE Trans. Med. Imag., vol. 16 (5), 1997,
pp 598-609.

[6] J. Liu, J, K. Udupa, D. Odhner, J. M. McDonough and R. Arens,
System for upper airway segmentation and measurement with MR
imaging and fuzzy connectedness, Academic Radiology, vol.10 (1),
2003, pp 13-24.

[7] E. Garduño, M. Wong-Barnum, N. Volkmann and M. Ellisman,
Segmentation of electron tomographic data sets using fuzzy set theory
principles, Journal of Structural Biology, vol.162, 2008, pp 368-379 .

[8] Y. Zhou and J. Bai, Multiple abdominal organ segmentation: an
atlas-based fuzzy connectedness approach, IEEE Trans. Information
Technology and Biomedicine, vol. 11, 2007, pp 348-352.

[9] Y. Zhou and J. Bai, Atlas-based fuzzy connectedness segmentation and
intensity nonuniformity correction applied to brain MRI, IEEE Trans.
Biomedical Engineering, vol. 54, 2007, pp 121-129.

[10] T. Lei, J. K. Udupa, P. K. Saha and D. Odhner, Artery-Vein Separation
via MRA–An Image Processing Approach”, IEEE Trans. Med. Imag.,
vol. 20 (8), 2001, pp 689-703.

[11] G. Moonis, J. Liu, J. K. Udupa and D. Hackney, Estimation of tumor
volume using fuzzy connectedness segmentation of MRI, American
Journal of Neuroradiology, vol. 23, 2002, pp356-363.

[12] P. K. Saha, J. K. Udupa, E. F. Conant, D. P. Chakraborty and D. Sulli-
van, Breast Tissue density Quantification via Digitized Mammograms,
IEEE Trans. Med. Imag., vol. 20 (11), 2001, pp 792-803.

[13] G. Grevera, J. K. Udupa, D. Odhner, Y. Zhuge, A. Souza, S. Mishra
and T. Iwanaga, CAVASS - A Computer Assisted Visualization and
Analysis Software System, Journal of Digital Imaging, vol. 20, Suppl
1, 2007, pp 101-118.

[14] GPGPU - General Purpose Computation Using Graphics Hardware,
http://www.gpgpu.org/.

[15] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A.
E. Lefohn, and T. Purcell, A survey of general-purpose computation
on graphics hardware, Computer Graphics Forum, vol. 26, 2007, pp
80-113.

[16] J. E. Cates, A. E. Lefohn, and R. T. Whitaker, GIST: an interactive,
GPU-based level set segmentation tool for 3D medical images, Med-
ical Image Analysis, vol. 8, 2004, pp 217-231.

[17] S. S. Samant, J. Xia, P. Muyan-Özçelik, and J. D. Owens, High
performance computing for deformable image registration: Towards
a new paradigm in adaptive radiotherapy, Medical Physics, vol. 35(8),
2008, pp 3546-3553.

[18] NVIDIA Corporation, NVIDIA CUDA compute unified device ar-
chitecture programming guide, http://developer.nvidia.com/cuda, Jan.
2007.

[19] A. S. Nepomniaschaya, M. A. Dvoskina, A simple implementation of
dijkstra’s shortest path algorithm on associative parallel processors,
Fundam. Info., vol. 43 (1-4), 2000, pp 227-243.

[20] P. Harish, P. J. Narayanan, “Accelerating large graph algorithms on the
GPU using CUDA”, High Performance Computing 2007, vol. 4873,
Lecture Notes in Computer Science, Springer, pp. 197-208.

