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Abstract

Through the algorithmic design patterns of data paral-
lelism and task parallelism, the graphics processing unit
(GPU) offers the potential to vastly accelerate discovery and
innovation across a multitude of disciplines. For example,
the exponential growth in data volume now presents an
obstacle for high-throughput data mining in fields such as
neuroscience and bioinformatics. As such, we present a
characterization of a MapReduce-based data-mining appli-
cation on a general-purpose GPU (GPGPU). Using neuro-
science as the application vehicle, the results of our multi-
dimensional performance evaluation show that a “one-size-
fits-all” approach maps poorly across different GPGPU
cards. Rather, a high-performance implementation on the
GPGPU should factor in the 1) problem size, 2) type of
GPU, 3) type of algorithm, and 4) data-access method when
determining the type and level of parallelism. To guide the
GPGPU programmer towards optimal performance within
such a broad design space, we provide eight general perfor-
mance characterizations of our data-mining application.

1. Introduction

There is a growing trend in scientific computing towards
the use of accelerators to reduce the time to discovery.
Unlike current general-purpose multicore CPU architec-
tures, these accelerators combine hundreds of simplified
processing cores executing in parallel to achieve the high-
end performance demanded by scientists. Current examples
of accelerators include the Cell Broadband Engine (Cell
BE), field-programmable gate arrays (FPGAs), and general-
purpose graphics processing units (GPGPUs) such as the
NVIDIA CUDA-enabled GPU and AMD/ATI Brook+ GPU.
Furthermore, upcoming technologies like AMD Fusion and
Intel Larrabee point toward a future of accelerator-based
computing platforms.

Current top-of-the-line GPGPUs possess hundreds of
processing cores and memory bandwidth that is 10 times
higher than conventional CPUs. The significant increase in
parallelism within a GPGPU and the accompanying increase
in performance has been successfully exploited for scientific,
database, geometric, and imaging applications, which in
many cases, has resulted in an order-of-magnitude perfor-
mance improvement over top-of-the-line CPUs. GPGPUs

also provide many other tangible benefits such as improved
performance per dollar and performance per watt over con-
ventional CPUs. Combining high performance, lower cost,
and increasingly usable tool chains, GPGPUs are becoming
more programmable and capable of solving a wider range of
applications than simply three-dimensional triangle rasteri-
zation, and as such, is the target platform for our temporal
data mining research.

Although temporal data mining is a relatively new area of
data mining [15], this technique is becoming progressively
more important and is widely used in various application
fields, such as telecommunication control [7], earth sci-
ence [16], financial data prediction [11], medical data anal-
ysis [6], and neuroscience [19]. Specifically, neuroscientists
would like to identify how the neurons in the brain are
connected and related to each other. This usually involves
stimulating one area of the brain and observing which other
areas of the brain “light up.” Recent technological advances
in electrophysiology and imaging now allow neuroscientists
to capture the timing of hundreds of neurons [14], [17].
However, the amount of data captured results in “data
overload” and requires powerful computational resources.
Current technology, like GMiner [18], is a step in the right
direction, but being limited to a single CPU running a Java
virtual machine (VM), GMiner forces output to be processed
post-mortem.

What neuroscientists truly desire is real-time, interactive
visualization of the effects of their probes. This capability
would open up an entirely new window of opportunities
whereby patients can be tested, diagnosed, and operated
upon in a single, faster procedure – we believe that GPGPUs
can provide the necessary performance. As such, this paper
presents a characterization of a temporal data-mining ap-
plication in a multi-dimensional environment. Specifically,
we evaluate its performance across the following five di-
mensions: 1) parallel algorithm type, 2) data-access method,
3) problem size, 4) GPGPU generation, and 5) number of
threads.

Our results show that GPGPUs can provide the requisite
performance, but that a “one-size-fits-all” approach is un-
suitable for temporal data mining on graphics processors.
Instead, the problem size and graphics processor determine
which type of algorithm, data-access pattern, and number of
threads should be used to achieve the desired performance.
This result both corroborates and contrasts with previous,
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Figure 1. Overview of the NVIDIA Compute Unified
Device Architecture (CUDA) [2]

similar MapReduce algorithms on graphics processors. How-
ever, while previous works only provided results in an
optimal configuration, this paper presents general charac-
terizations to help explain how a MapReduce-based, data-
mining application should harness the parallelism in graphics
processors.

To this end, we first present a background of current
CUDA GPU technology and related MapReduce implemen-
tations in Section 2 followed by a detailed description of our
temporal data-mining algorithm in Section 3. Section 4 lists
relevant features of our testbed on which all of the tests were
conducted with the results and characterizations presented in
Section 5. Lastly, we offer some directions for future work
and conclusions in Sections 6 and 7, respectively.

2. Background and Related Work

2.1. Graphics Processors

GPUs have been used for many years to accelerate the
rendering of computer graphics. Fed by the increasing
demand for improved 3-D graphics at higher frame rates
and larger resolutions, GPUs diverged from standard CPUs
into exotic specialized architectures. In recent years, GPUs
are transitioning away from a single-purpose device into a
more general-purpose architecture, capable of doing more
than computing pixel values. This transition opens the doors
for a range of applications to be accelerated. We describe
here the architectural and programmatic features of state-of-
the-art NVIDIA GPUs.

2.1.1. CUDA Architecture. State-of-the-art NVIDIA GPUs
present a Compute Unified Device Architecture (CUDA) to
the programmer, as shown in Figure 1. This architecture
can be broadly separated into two primary features – core
organization and memory hierarchy.

The execution units of a CUDA-capable device are orga-
nized into multiprocessors, where each multiprocessor con-
tains 8 scalar processor cores. The multiprocessor architec-
ture is called SIMT (Single Instruction, Multiple Thread) and
executes in a similar manner as a SIMD (Single Instruction,
Multiple Data) architecture. While optimal performance is
attained when groups of 32 threads, i.e. a warp, follow the
same execution path, individual threads can diverge along
different thread paths. When divergence occurs within a
warp, every instruction of every thread path is executed,
with threads enabled or disabled depending on whether the
thread is executing that particular thread path or not. A single
instruction is completed by the entire warp in 4 cycles.

There are several forms of memory accessible by an
execution core on an NVIDIA GPU. Located on-chip, each
multiprocessor contains its own set of 32-bit registers along
with its own shared memory region which is quickly acces-
sible by any core on the multiprocessor. The exact number
of registers available and size of the shared memory depends
on the compute capability (i.e., “generation”) of the GPU.
In addition to shared memory, a multiprocessor contains
two read-only caches, one for textures and another for
constants, to improve memory access to texture and constant
memory, respectively. The device memory, containing both
local and global memory, resides off-chip and furthest from
the execution cores (excluding the host machine’s main
memory). It may seem odd that local memory is not in fact
locally on-chip, but logically it serves the same purpose in
that it is an overflow space for what will not fit in registers.

2.1.2. CUDA Programming Model. To enable the de-
veloper to harness the computing power of their GPUs,
NVIDIA extended the C programming language to allow
developers to easily offload computationally intensive ker-
nels to the GPU for accelerated performance. This new
programming model is commonly referred to as the CUDA
programming model.

When a kernel executes, N parallel threads execute si-
multaneously. The programmer can logically arrange the N
threads into one-, two-, or three-dimensional thread blocks.
The index of a thread within this block and the ID of the
thread have a one-to-one mapping to simplify identification.
While threads within a thread block can share data within the
same address space, each thread block has its own address
space. This arrangement allows for synchronization between
threads but not between thread blocks. To increase the
amount of parallelism further, M “equally-shaped” thread
blocks can be executed in parallel, increasing the total
amount of available parallelism to M ∗N .

As mentioned above, groups of 32 threads form a warp
with multiple warps composing a thread block and multiple
thread blocks forming a kernel. When a kernel executes,
the thread blocks are placed on different multiprocessors,
according to available execution capacity [2]. All of the



Worker

Worker

Worker

Worker

Worker

Worker

Worker

Map Reduce

Input

Files

Output

Files

Intermediary

Files

Figure 2. High-level view of the parallelism available in
a MapReduce programming model

threads (and by association, warps) of one thread block
will execute on the same multiprocessor. The instruction
unit on each multiprocessor schedules warps with zero-cycle
overhead and a single instruction of the warp executes in 4
cycles. Programmer-controlled placement and scheduling of
the warps and thread blocks on the hardware is not currently
available. As we will show in Section 5, this small, but rich,
feature has a huge impact on the realizable performance of
CUDA applications.

2.2. MapReduce

MapReduce is a programming model developed by
Google to provide a convenient means for programmers to
process large data sets on large parallel machines [8]. More-
over, programmers that utilize a MapReduce framework do
not need prior experience using parallel systems. While there
has been considerable debate over exactly how applicable
this programming model is [9], [10], the ability to process
large data sets in parallel is an important requirement for
real-time data-mining.

The general MapReduce algorithm leverages two func-
tional programming primitives, map and reduce in sequence.
First, the map function is applied to a set of inputs consisting
of a key/value pair to create a set of intermediate key/value
pairs. Then, the reduce function is applied to all intermediate
key/value pairs containing the same intermediate key to
produce a set of outputs. Due to the functional nature of
both map and reduce, each phase can be executed in parallel
in order to utilize the vast resources available in large data
centers. A high-level view of the parallelism available in the
algorithm is shown in Figure 2.

The original implementation of MapReduce was built and
optimized by Google to run on its private data centers.
Providing the same functionality to the public, Hadoop is
an open-source Java implementation that runs on everyday
clusters and is under active development [1]. Specialized
variations of the MapReduce framework also exist for mul-

ticore processors [5], the Cell processor [13], and graphics
processors [4], [12], [20]. However, obtaining high perfor-
mance within these frameworks is difficult (“... the cost of
the Map and the Reduce function is unknown, it is difficult
to find the optimal setting for the thread configuration.” [12])
and often left to the user (“... performance can be strongly
affected by the number of registers ... amount of local
memory ... number of threads ... algorithm ... among other
factors. ... We allow the programmer to expose these choices
through template parameters ...” [4]).

3. Temporal Data Mining

3.1. Overview

Association rule mining is a common data-mining tech-
nique used to discover how subsets of items relate to the
presence of other subsets. Temporal data mining is a re-
stricted variation of association rule mining, where temporal
relations between items will also be considered.

A prototypical example of temporal data mining can
be found in the area of market-basket analysis, where a
store might want to know how often a customer buys
product B given that product A was purchased earlier.
In other words, the store wishes to know how often
{peanut butter, bread} → {jelly}. We note that un-
like association rule mining, temporal data mining dif-
ferentiates {bread, peanut butter} → {jelly} from
{peanut butter, bread} → {jelly}.

In this paper, we focus on one specific area of temporal
data mining called frequent episode mining, where the aim
is to discover frequently appearing episodes (i.e., sequences
of items) in a time-ordered database [3]. We define frequent
episode mining as follows.

Let D = {d1, d2, ..., dn} be an ordered database of items
where di is a member of the alphabet I = {i1, i2, ..., im}. An
episode, Aj , is a sequence of k items < ij1 , ij2 , . . . , ijk

>,
where {ij1 . . . , ijk

} ∈ I . There is an occurrence of Aj in
database D if and only if there exists a sequence of indices
< r1, r2, . . . , rk > in increasing order such that ijl

= drl

for l = 1, . . . , k. The count of an episode, count(Aj), is
the total number of non-overlapped occurrences of Aj in
D. The task of frequent episode mining is to find all such
episodes, Aj , for which count(Aj) is greater than a given
threshold α.

The standard algorithm for frequent episode mining is
described in Algorithm 1. As seen, this algorithm generates
a set of candidate episodes for each level (i.e., length of
an episode), counts the number of occurrences for each
candidate episode, eliminates infrequent ones, and generates
the set of candidate episodes for the next level.

The elimination step prunes infrequent episodes so that
the generation step for the next level can exclude episode
candidates that are guaranteed to be infrequent. Without the



Algorithm 1 Frequent Episode Mining(D,α).
Input: supporting threshold α, sequential database D =
{d1, d2, ..., dn}

Output: frequent episode set SA = A1, A2, . . . Am

1: k ← 1, SA ← ∅
2: level k ← 1, A′k ← {{i1}, {i2}, . . . {im}}, (generate

candidate episode for level 1)
3: while A′k 6= ∅ do
4: Calculate count(A′kj

) for all episodes A′kj
in A′k

(counting step)
5: Eliminate all infrequent episodes, count(A′j)/n ≤ α,

from A′k (elimination step)
6: SA ← SA ∪A′k
7: k ← k + 1
8: Generate candidate episode set A′k from A′k−1 (gen-

eration step)
9: end while

10: return SA

elimination step, the total number of episode candidates can
grow exponentially as a function of the episode length k and
the alphabet size N , as shown in Table 1.

Episode Length (L) Episodes
1 N
2 N(N − 1)
3 N(N − 1)(N − 2)
... ...
N N !

(N−L)!

Table 1. Potential number of episodes with length L
from an alphabet of size N

When the culling threshold is low, fewer episode candi-
dates will be eliminated thereby resulting in an exponen-
tial growth of computation. To address such computational
challenges, advanced algorithms are designed to distribute
the computation among multiple processors [21]. With the
recent advances of graphics processors to more general
computing platforms with large I/O bandwidth, parallel
association rule mining and GPGPUs appear to be a natural
fit. While several data-mining algorithms exist on the GPU,
to the best of our knowledge, this paper presents the first
temporal data-mining algorithm ported to a GPU.

3.2. Core Algorithm

The core algorithm of Algorithm 1 is the counting step. To
discover the presence of an episode Aj =< a1, a2, . . . , aL >
of level L a finite state machine can be implemented as
shown in Figure 3. Each item ai in the episode is a state with
transitions to ai+1, a1, and to itself depending on the value
of the next character c. Because we are counting all episodes
present in the database, when the final state is reached, a

a2a1 finalstart a L-1

c = a1

c != a1,2,3 c != a1,2,…,L-1c != a1,2c != a1

c = a2 c = a3
c = aLc = aL-1

other

Figure 3. Finite state machine to discover the presence
of an episode

counter keeping track of the total number of episodes found
is incremented, and the finite state machine is reset back to
start where the process repeats until all of the characters in
the database are compared.

3.3. Parallelism on CUDA

Due to the wide range of parallelism available, we im-
plemented four algorithms using the CUDA programming
framework. These four algorithms can be generally classified
as the cartesian product of (1) thread-level parallelism or
block-level parallelism, with (2) local buffering or no local
buffering, following a MapReduce programming model.
The algorithms are shown graphically in Figure 4. In this
paper, we do not explore block placement or scheduling as
the programmer does not currently have an interface with
which to alter these parameters. One can choose what code
runs on which block, but one has no knowledge of what
multiprocessor the block is running on or in what order it
will be scheduled.

3.3.1. MapReduce. At a high level, our algorithms follow
a MapReduce programming model to achieve efficient par-
allelism. Using the observation that counting the number
of occurrences of Ak is independent from counting Al, the
map function returns the number of occurrences of Aj in
the database portion Di. The reduce function is dependent
on whether thread or block parallelism is used.

3.3.2. Thread-Level Parallelism. Our first two algorithms
implement strict thread-level parallelism to assign one thread
to search for one episode, Aj , in the database D. Using one
thread to search for one episode causes the reduce function
to be an identity function which simply outputs the value
produced by the map function.

Algorithm 1: Thread-Level Without Buffering. Since
each thread will scan the entire database, our first algorithm
places this database in the read-only texture memory such
that each thread will be able to utilize the high bandwidth
available on the GPGPU. With each thread starting from the
same point in the database, the spatial and temporal locality
of the data-access pattern should be able to be exploited
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Figure 4. Available parallelism for each of the four algorithms

by the texture cache on each multiprocessor. Furthermore,
threads are assigned to thread blocks in order until the
maximum number of threads per thread block is reached.
For example, if the maximum number of threads per thread
block is 512, then threads 1-512 are assigned to the first
thread block, threads 513-1024 to the second thread block,
and so on, until no threads are left.

Algorithm 2: Thread-Level With Buffering. Our second
algorithm also uses thread-level parallelism, but instead of
using texture memory, this algorithm buffers portions of the
database in shared memory in order to minimize the thread
contention for the memory bus. Following this approach, a
thread copies a block of data to a shared memory buffer,
processes the data in the buffer, then copies the next block
of data to the memory buffer, and so on, until the entire
database is processed. The scheduling of threads to thread
blocks follows the same approach in Algorithm 1.

3.3.3. Block-Level Parallelism. At a higher level of par-
allel abstraction, the CUDA programming model enables
parallelism at the block level. At this level, our two block-
level algorithms assign one block to search for one episode.
Within a block, the threads collaborate to perform the search
by having each thread search a portion of the database. With
multiple threads searching for the same episode, the reduce
function cannot be the identity function. Instead, the reduce
function sums the counts from each thread. However, since
an episode might span across threads, an intermediate step to

check for this possibility occurs between the map and reduce
functions. An example of an episode spanning across threads
is shown in Figure 5.

Algorithm 3: Block-Level Without Buffering. Similar to
Algorithm 1, we implement this version of our block-level
parallel algorithm without buffering of the database. Instead,
the threads within each block access the data through texture
memory. However, unlike Algorithm 1, each of the t threads
within a block start at a different offset in the database while
threads with the same ID in different blocks start at the same
offset. The total number of threads available using Algorithm
3 is t ∗ e where e is the number of candidate episodes to be
searched for.

Algorithm 4: Block-Level With Buffering. The final
algorithm we discuss in this paper uses block-level paral-
lelism with buffering of the database to shared memory. The
starting offset for each thread in Algorithm 4 is relative to
the buffer size and not the database size as in Algorithm 3.
Therefore, thread Ti will always access the exact same block
of shared memory for the entire search – the data within
the memory will change as the buffer is updated. The total
number of available threads is identical to Algorithm 3.

4. Experimental Testbed

To analyze the performance characteristics of temporal
data mining on graphics processors, we performed a series
of tests on three generations of NVIDIA GPGPUs repre-
senting recent and current technology. An overview of the
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Graphics Card GeForce 8800 GTS 512 GeForce 9800 GX2 GeForce GTX 280
GPU G92 2xG92 GT280
Memory (MB) 512 2x512 1024
Memory Bandwidth (GBps) 57.6 2x64 141.7
Multiprocessors 16 16 30
Cores 128 128 240
Processor Clock (MHz) 1625 1500 1296
Compute Capability 1.1 1.1 1.3
Registers per Multiprocessor 8196 8196 16384
Threads per Block (Max) 512 512 512
Active Threads per Multiprocessor (Max) 768 768 1024
Active Blocks per Multiprocessor (Max) 8 8 8
Active Warps per Multiprocessor (Max) 24 24 32

Table 2. Feature summary of GeForce 8800 GTS 512, GeForce 9800 GX2, and GeForce GTX 280

architectural features are shown in Table 2 with a more
detailed description of each graphics card along with the
host machine in which the tests were performed presented
below. A complete list of the specifications for the different
compute capability levels of the GPUs found in these cards
can be found in Appendix A of [2].

4.1. Host

The host machine consists of an E4500 Intel Core2 Duo
running at 2.2 GHz with 4 GB (2x2GB) of 200-MHz DDR2
SDRAM (DDR2-800). The operating system is a 64-bit
version of the Ubuntu GNU/Linux 7.04 distribution running
the 2.6.20-16-generic Linux kernel as distributed through
the package management system. Programming and access
to the GPUs used the CUDA 2.0 toolkit and SDK with the
NVIDIA driver version 177.67. Furthermore, all processes
related to the graphical user interface (GUI) were disabled
to limit external traffic to the GPU.

4.2. Cards

4.2.1. NVIDIA GeForce 8800 GTS 512 with G92 GPU.
To evaluate a recent generation of NVIDIA CUDA tech-

nology, we ran our tests on an GeForce 8800 GTS 512
graphics card with NVIDIA G92 GPU and 512 MB of
onboard GDDR3 RAM. NVIDIA lists the G92 GPU as
having compute capability 1.1, where compute capability
determines the features and specifications of the hardware.
Informally speaking, different compute capabilities signify
different hardware generations. The GeForce 8800 GTS
512 contains 16 multiprocessors with each multiprocessor
containing eight 1625-MHz execution cores, 8196 registers,
and 16 KB of shared memory. The warp size is 32 threads
with warps scheduled in intervals of four cycles. There can
be at most 512 threads per block with 768 active threads
per multiprocessor implying that two blocks of 512 threads
cannot be active simultaneously on the same multiprocessor.
Furthermore, there can be at most 8 active blocks and 24
active warps per multiprocessor. The texture cache working
set is between 6 and 8 KB per multiprocessor.

Beginning with compute capability 1.1, the GPU supports
atomic operations between threads on 32-bit words in shared
or global memory allowing programmers to write thread-
safe programs. It is worth recalling, however, that this
improvement does not allow for threads in different blocks
to synchronize as each block is independent of other blocks.



4.2.2. NVIDIA GeForce 9800 GX2 with G92 GPU.
We also evaluated an NVIDIA GeForce 9800 GX2, which
contains two NVIDIA G92 GPUs and two units of 512MB
of GDDR3 RAM. Essentially, the 9800GX2 is two 8800
GTS 512 cards merged onto a single graphics card with the
execution cores running at 1500 MHz instead of 1625 MHz
as in the 8800 GTS 512. Additionally, the 9800 GX2 has a
modest 10% increase in memory bandwidth over the 8800
GTS 512 (64 GBps versus 57.6 GBps).

4.2.3. NVIDIA GeForce GTX 280 with GT200 GPU.
The current generation of CUDA technology has compute
capability 1.3. For our tests, we used a GTX 280 graph-
ics card with GT200 GPU. With 1024 MB of GDDR3
RAM and 30 multiprocessors, this card has the largest
amount of device memory, number of processing cores
(240), and memory bandwidth (141.7 GBps) of the cards
tested. Furthermore, this GPU has 100% more registers per
multiprocessor (16384), 33% more active warps (32), and
25% more active threads (1024) than the G92 GPUs.

5. Results

We present several performance characterizations of our
algorithms running on different graphics cards at different
episode levels with varying numbers of threads per block.
At episode level L, an algorithm is searching for an episode
Aj of length L, where Aj =< a1, a2, . . . , aL >. In
the results presented, L ∈ {1, 2, 3}, al is a member of
the set of upper-case letters in the English alphabet (i.e.,
al ∈ {A,B, . . . , Z}), and the database contains a total of
393, 019 letters. In our experiments, level 1 contains 26
episodes, level 2 contains 650 episodes, and level 3 contains
15,600 episodes.

A single test consists of selecting a single episode level,
algorithm, card, and block size with the execution time
counted as the amount of time between the moment the
kernel is invoked, to the moment that it returns. Although
we restricted access to the GPU by disabling all non-vital
graphical services to minimize the effect of errant GPU
calls, each test was performed ten times with the average
used to represent the test time. However, the minimum and
maximum execution times are also displayed to show the
range of times that the execution can take, which in some
cases is quite large.

While the complete results from our tests include 12
different tests with different dimensions of criteria, we detail
below some characterizations from these tests with respect
to three higher-level criteria – level, algorithm, and card
– and their impact on execution time. We also note that
because some of the low-level architectural information of
the NVIDIA GPUs is unavailable to the public, that the
characterizations presented are general in nature; we dis-

cuss plans to uncover some of these low-level architectural
features in Section 6.

5.1. Impact of Level on Execution Time

To understand the impact of the problem size on execution
time, we performed a series of tests where the hardware and
algorithm remained constant, but the level L varied. Because
the number of episodes to search for increases exponentially
as a function of L, as noted earlier in Table 1, the scalability
of an algorithm with respect to problem size is important.

5.1.1. Characterization 1: Thread Parallel Algorithm
has O(C) Time Complexity Per Episode. Algorithm 1
and 2 are constant time algorithms per episode. Whether
performing 26, 1560, or 25,320 searches, the amount of time
to complete each individual search is essentially the same.
Since a search for each episode is completely independent
of other searches, and each search is assigned to one thread,
there is no added complexity needed during the reduce
phase to identify episodes that span thread boundaries. In
addition, the search is based on a simple state machine the
complexity of searching for a single episode in a single
dataset stays constant regardless of the level. Therefore,
the entire execution time can be spent performing the map
function across the entire database. We explain in Section 5.2
whether Algorithm 1 or Algorithm 2 has an overall faster
execution time for various levels.

Since these algorithms are constant time per search, we
actually find that they are effectively constant time for up to
a rather large number of searches when executed on the GPU
as can be seen in Figures 6(a) and 6(b). By this we mean
that 26, 650, or even several thousand searches complete in
the same amount of time on the GPU, reasons for this will
become more clear in Characterizations 4 and 7.

5.1.2. Characterization 2: Buffering Penalty in Thread
Parallel Can be Amortized. Algorithm 2 uses buffering to
combine the memory bandwidth of all threads in a block and
reduce contention on texture memory. This does not how-
ever, come without a cost. The initial load time is high, and
since only one block may be resident on a multiprocessor
during this time, no computation is done during the load. As
more threads are added to a block Algorithm 2 exponentially
decreases in execution time as shown in Figure 6(b). This
characteristic shows that Algorithm 2 is able to make use
of the processing power of a greater number of threads,
largely thanks to the fact that the load time is either equal
to or lower than the search time for smaller numbers of
threads. Since the load cost is approximately constant, and
all threads can access the resulting shared memory block
with minimal contention, results will be calculated faster
the more threads there are in a block up to the point where
scheduling overhead on the multiprocessor overwhelms the
computation time.
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Figure 6. Impact of problem size on the GTX 280 on
different algorithms

5.1.3. Characterization 3: Block Parallelism Does Not
Scale with Block Size. Unlike Algorithm 2, Algorithms 3
and 4 actually lose performance per episode as the number
of threads per block and level increase. Figures 6(c) and 6(d)
show a general trend of larger execution times as the number
of threads increases with Algorithm 4 at an almost constant
slope when solving the problem size at Level 3. Furthermore,
the change in execution time between Level 1 and Level 2
and between Level 2 and Level 3 is also increasing. These
two trends are due to the extra complexity of finding
episodes that span thread boundaries and the cost of loading
more blocks than can be active on the card simultaneously.

As the number of threads increases, the number of
boundaries increases. As the level (i.e., episode length)
increases, the likelihood that an episode spans the boundary
between threads increases. With the number of boundaries
increasing and the probability that an episode will span a
boundary increasing as well, the computation needed to be
performed after the map function and before the reduce
function increases producing longer overall execution times.

5.2. Impact of Algorithm on Execution Time

While the scalability of an algorithm with respect to
problem size is important, it is often the case that a user
wishes to examine a problem of specific size and only has
access to one type of hardware. That is, a user wants to solve
the same problem on the same card and can only vary the
algorithm and number of threads to use for that algorithm.
For example, a neuroscientist may want to examine a neural
dataset from one experiment in minute detail before deciding
to perform subsequent experiments. In this case, the user
would want to use the fastest algorithm for the specific
problem. Our characterizations below are in relation to the
GTX 280 as it is the most recent of the cards tested.

5.2.1. Characterization 4: Thread Level Parallelism
Alone is Not Sufficient for Small Problem Sizes. When
evaluating small problem sizes, e.g., L = 1, there are not
enough episodes to generate enough threads to utilize the
resources of the card. It is necessary to first add parallelism
at the block level and then to incorporate multiple threads
within each block. Since the number of episodes is defined
by the threshold and there is 1 thread per episode, having
more than 26 threads active in Algorithm 1 or Algorithm
2, only increases contention for the processing cores which
is why these algorithms have an uptrend as the number
of threads increases (Figure 7(a)). Algorithms 3 and 4, on
the other hand, are orders of magnitude faster as they first
create 26 blocks and add threads to help search for same
episode. As such, the execution times for these algorithms
trend downwards but plateau since the 26 thread blocks are
not sufficient to fully utilize all 30 multiprocessors on the
GTX 280 graphics card.
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Figure 7. Impact of algorithm on the GTX 280 at
different problem sizes

5.2.2. Characterization 5: Block Level Depends on Block
Size for Medium Problem Sizes. As seen in Figure 7(b), a
medium problem size (L = 2) contains enough parallelism
at the thread level such that the thread-parallel Algorithm
2 outperforms the block-parallel Algorithm 4 for small
numbers of threads per block and therefore larger numbers
of blocks. That is, Algorithms 1 and 2 decrease the total
number of thread blocks as the number of threads per block
increases due to the fixed number of episodes equating to
a fixed number of total threads. At Level 2, the number of
blocks varies as a function of threads per block starting at
650
16 and decreasing to 650

512 . Unlike Level 1, a value of 32

threads per block or greater results in more thread blocks
contributing positively to the search.

For the block-level algorithms, Algorithm 4 eventually
outperforms Algorithm 3 (at 64 threads per block), but it
never achieves the best execution time which is Algorithm
3 at 64 threads. An explanation of this is hard to pinpoint
exactly as the internal workings and scheduling of the
NVIDIA GPGPUs are not publicly available. However, we
believe that by using texture memory and heavy caching
Algorithm 3 will obtain close to optimal bandwidth with
fewer threads per block resulting in less contention (which
will only increase as more threads are added). Additionally,
the buffering to texture memory is a one-time penalty which,
as we mentioned in Characterization 2, is amortized over
the total number of threads and alleviated by accessing the
shared memory in read-only fashion.

5.2.3. Characterization 6: Thread-Level Parallelism is
Sufficient for Large Problem Sizes. The GTX 280 has
30 multiprocessors with a maximum of 1024 active threads
per multiprocessor for a total of 30, 720 potentially active
threads available. When L = 3, there are 25, 230 episodes
to be searched. As seen in Figure 7(c), the thread-level
parallel algorithms (Algorithm 1 and 2) are significantly
faster than the block level algorithms (Algorithms 3 and
4). This performance difference can be attributed to the fact
that with 25, 230 episodes to be searched, Algorithms 1 and
2 can have more episodes being searched simultaneously
than Algorithms 3 and 4 for a given number of threads per
block. Algorithms 3 and 4 are limited to 240 episodes being
searched due to the limitation of 8 active blocks on each
of the 30 multiprocessors in the GTX 280 and each block
searching for a single episode. Algorithms 1 and 2 on the
other hand, can have up to 30, 720 active episodes as each
thread within a block will search for a unique episode. The
actual number of active episodes for Algorithms 1 and 2 is
determined by the resources that each thread consumes and
the available resources on each multiprocessor.

5.3. Impact of Hardware on Execution Time

The other major decision which can affect performance
is the choice of hardware on which the algorithm will be
run. Some users may have a variety of hardware and wish to
know which will return results the fastest, or still others may
wish to determine the optimal card for their problem when
considering a new purchase. The characterizations below
showcase two of the major factors which come into play
in determining the right card for the job.

5.3.1. Characterization 7: Thread Level Parallelism is
Dependent on Processor Clock Frequency for Small
and Medium Problems. Algorithms 1 and 2 are greatly
dependent on the processor clock frequency for small and
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Figure 8. Impact of hardware on execution time

medium problem sizes, and scale essentially linearly by this
measure as one can see in Figure 8(a). Referring back to
Table 2, the frequencies of the three cards tested are 1625
MHz (8800 GTS 512), 1500 MHz (9800 GX2), and 1296
MHz (GTX 280). With this information and the results in
Figure 8(a), it is clear to see that the relationships between
frequency speed closely match the relationships between
execution times. This trend is due to the fact that levels 1
and 2 are incapable of filling enough multiprocessors for the
number of processors or contention to become a determining
factor in performance. In the Appendix, one can see in that
the same test at Level 3 produces a very different picture,
where the 30-multiprocessor GTX 280 outperforms the 16-
multiprocessor 9800 GX2 and the 8800 GTS 512 at nearly
all thread counts.

5.3.2. Characterization 8: Block-Level Algorithms are
Affected by Memory Bandwidth. Algorithm 3 can be
greatly effected by memory contention when searching large
problem sizes. This occurs due tot the fact that the total
number of threads accessing memory is active episodes ∗
threads per block. Given the massive number of blocks
needed for large problem sizes, this algorithm requires a
very high thread count per multiprocessor over a long
period producing a large and constant amount of memory

contention. The two slowest performing cards, the 8800 GTS
512 and 9800 GX2, actually have fewer processors (128)
contending for memory than the GTX 280 (240), but also
have memory bandwidth in the range of 62 to 64 GBps
as compared to the 141GBps on the GTX 280. The wide
variance in individual execution times and higher overall
execution times resulting from these hardware differences
can be seen in Figure 8(b).

6. Future Work

Although we have successfully developed a high-
performance, parallel, temporal data mining application on a
GPU, we are pursuing three improvements to make real-time
temporal data mining available to neuroscientists.

First, we wish to add support for arbitrarily large episodes
and observe the impact on performance of both the thread
level and block level algorithms. We are particularly inter-
ested in observing whether the thread level algorithms (e.g.,
Algorithm 1 and 2) will continue to scale.

We are also looking at the effect of feature changes
on the algorithm execution time. One feature is episode
expiration where A ⇒ B iff B.time() − A.time() < δ.
With episode expiration, episodes will be less likely to span
multiple thread boundaries as they will be constrained by
the value of δ. Correspondingly, we expect the reduce phase
in Algorithms 3 and 4 to decrease as fewer episodes will
span boundaries on average.

Lastly, while being able to identify general performance
characteristics, it is difficult to identify how optimal perfor-
mance can be obtained due to the unavailability of low-level
architectural information on specific hardware. To remedy
this, we plan to create a series of micro-benchmarks to
discover the underlying hardware and architectural char-
acteristics such as scheduling and caching. The CUDA
Occupancy Calculator made available by NVIDIA is a
useful resource, but is insufficient in identifying how optimal
performance can be obtained as it makes basic assumptions
on the algorithm in use.

7. Conclusion

The ability to mine data in real-time will enable scientists
to perform research in ways that have only been dreamed
about. However, as the sheer volume of data grows, the
algorithms used to mine this data need to keep pace or the
utility of the data is lost. In the field of neuroscience the
inability to analyze the data can have fatal consequences.

One approach to this problem of “data overload” is to
create new parallel algorithms capable of extracting the
computational performance available on GPGPUs. In this
paper, we have developed and characterized the performance
of a parallel temporal data mining application on NVIDIA
CUDA graphics processors.



As one might expect, the best execution time for large
problem sizes always occurs on the newest generation of
the hardware, the NVIDIA GeForce GTX 280 graphics card.
What is surprising however, is that the oldest card we tested
was consistently the fastest for small problem sizes. Beyond
this, our results showed that the extent to which a GPGPU
MapReduce-based frequent episode mining implementation
must dynamically adapt the type and level of parallelism
with respect to episode length and algorithm in order to
obtain the best performance is inconsistent. For example,
when searching for episodes of length 1, an algorithm using
blocks with 256 threads and buffering to shared memory
achieves the best performance. However, episodes of length
2 require block sizes of 64 without buffering, and episodes
of length 3 should use 96 threads per block with every thread
searching for a unique episode.

None-the-less, due to the ever-increasing volume of data
and demand for high performance in neuroscience and bioin-
formatics, we have provided 8 performance characterizations
as a guide for future temporal data mining applications on
GPGPUs.
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