
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Programming Support for Sharing Resources Across
Heterogeneous Mobile Devices

Zheng Song, Sanchit Chadha, Antuan Byalik, and Eli Tilevich
Software Innovations Lab, Virginia Tech

{songz,schadha,antuanb,tilevich}@cs.vt.edu

ABSTRACT
Modern mobile users commonly use multiple heterogeneous mo-
bile devices, including smartphones, tablets, and wearables. En-
abling these devices to seamlessly share their computational, net-
work, and sensing resources has great potential benefit. Sharing
resources across collocated mobile devices creates mobile device
clouds (MDCs), commonly used to optimize application perfor-
mance and to enable novel applications. However, enabling hetero-
geneous mobile devices to share their resources presents a number
of difficulties, including the need to coordinate and steer the exe-
cution of devices with dissimilar network interfaces, application
programming models, and system architectures. In this paper, we
describe a solution that systematically empowers heterogeneous
mobile devices to seamlessly, reliably, and efficiently share their re-
sources. We present a programming model and runtime support for
heterogeneous mobile device-to-device resource sharing. Our solu-
tion comprises a declarative domain-specific language for device-to-
device cooperation, supported by a powerful runtime infrastructure.
we evaluated our solution by conducting a controlled user study
and running performance/energy efficiency benchmarks. The eval-
uation results indicate that our solution can become a practical tool
for enhancing the capabilities of modern mobile applications by
leveraging the resources of nearby mobile devices.

ACM Reference Format:
Zheng Song, Sanchit Chadha, Antuan Byalik, and Eli Tilevich. 2018. Pro-
gramming Support for Sharing Resources Across Heterogeneous Mobile
Devices. In Proceedings of MOBILESOFT conference (MOBILESOFT’18). ACM,
New York, NY, USA, Article 4, 11 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
The modern computing landscape is marked by several rapidly
evolving realities. A typical user owns multiple mobile devices that
differ in their types, platforms, and capabilities. For example, a
user may simultaneously own a smartphone, a tablet, an e-reader,
each of which runs a different operating system and offers vastly
dissimilar processing capabilities, sensory functionalities, and net-
working interfaces. Furthermore, the number and variety of mobile
devices in a typical household is even greater. Finally, the rapid
developments in wearable computing and the Internet of Things

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MOBILESOFT’18, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

(IoT) have the potential to increase these numbers for a typical user
by as much as an order of magnitude in the near future.

Mobile devices have traditionally used the cloud as a means of
enhancing their execution [25, 26, 43], both to improve the quality
of service and to extend their functionality. Nevertheless, accessing
cloud-based resources is not always feasible, beneficial, or safe.
On the other hand, with the rapid growth of capacity of mobile
devices, the computational power could be provided by nearby
mobile devices instead. All these scenarios give rise to the potential
of leveraging nearby mobile devices, often owned by the same
user or a community of users, as an alternative means of gaining
additional resources.

1.1 Motivating Scenarios
Figures 1, 2 and 3 depict three scenarios exemplifying the conditions
described above. In Figure 1, a smartphone application needs to
search for a given face from all photos in the phone’s album. Facial
recognition is known to be computation/energy-intensive thus
causing high latency/battery consumption, especially when the
user has hundreds of photos. In Figure 2, the driver is navigated
by smart glasses. However, keeping the GPS module on the glasses
all the way on could drain the battery of smart glasses quickly.
In Figure 3, a smartphone user on a short-term trip to a foreign
country needs to access the Internet. However, without a local

Search a face In

In

using

using

using

using

Search a face

Figure 1: Scenario 1: Photo Recognition

1

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

MOBILESOFT’18, 2018, Gothenburg, Sweden Zheng Song et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

GPS data

Figure 2: Scenario 2: GPS Sharing

Visitor’s Phone
using AT&T

Chine Mobile
Cell Tower

Chine Mobile
Cell Tower

Local phone using
 China Mobile

Local phone using
 China Mobile

Nearfield W
ireless

Com
m

unication

Figure 3: Scenario 3: Data Plan Sharing

mobile account, the phone cannot access any mobile data services
provided by the available cellular network providers.

Although the users mentioned above are all short of either
computational resources, context-related resources, or network
resources, various mobile devices (e.g., tablets, ereaders, and wear-
ables, etc.), owned by themselves or their acquaintances may be in
the immediate vicinity. These devices could provide the external
resources required to solve the problems above. One could rewrite
the mobile applications, so as to enable them to take advantage of
such external resources. In scenario 1, one can reduce the execu-
tion time of computationally intensive tasks if they are run in a
piecemeal fashion on nearby devices. In scenario 2, one can request
GPS sensory reading from a nearby mobile device with larger bat-
tery capacity. In scenario 3, one can access the Internet by using
a nearby mobile device, with a local mobile data plan, as a proxy
that forwards the network requests and responses.

1.2 Research Challenges and Contribution
The aforementioned scenarios demonstrate how by sharing the
resources of nearby devices, mobile applications can not only im-
prove their quality of service, but also provide new functionality.
However, several conceptual obstacles stand in the way of such
resource sharing across heterogeneous mobile devices. For example,
in scenario 1, one cannot execute offloaded mobile functionality
on a different platform (e.g., running Android code on iOS). In sce-
nario 2, one needs to be able to dynamically locate a nearby mobile
device, whose battery capacity can accommodate long-lasting GPS
sensor reading. In scenario 3, the programming interface to another
user’s mobile device must provide access to the device’s voluntarily
shared resources, while preventing misuse. The runtime in all sce-
narios must properly adapt to the mobility of the devices involved,
ensuring efficiency and robustness.

The prior state of the art has studied novel applications of sharing
resources across nearby mobile devices. However, these solutions
mostly have focused on specific mobile platforms, without the
overarching goal of supporting heterogeneous environments. These
prior solutions have lacked focus on programmability and thus
require the programmer to write complex logic for error handling
and performance/energy consumption optimization.

In this paper, we present solutions that address the deep, concep-
tual challenges of enabling mobile devices to provide/use resources
for/of nearby heterogeneous mobile devices. These solutions em-
brace heterogeneity, working with any pair of mobile devices, irre-
spective of their platforms, operating systems, or installed applica-
tions. Also, the presented solutions reduce the programmer’s effort
in creating reliable and efficient functionality for sharing resources.
This paper makes the following contributions:

• We study and reveal how existing applications can benefit
from shared resources of nearby devices.

• We design the Resource Query Language (RQL)—a declara-
tive domain-specific language for accessing shared resources
of nearby devices. RQL makes it possible to declaratively
express resource sharing requests by simply specifying the
preferred devices, resource types, and the actions to be car-
ried out. The RQL runtime is designed with provisions for
energy efficiency, latency optimization, and privacy preser-
vation when executing across heterogeneous mobile devices.

• We provide a reference implementation of the RQL language
and runtime support on major mobile platforms, including
iOS and Android. We also describe example applications that
make use of RQL to access resources across the iOS and
Android platforms

• We evaluate the programmability and efficiency of our tech-
nical approach through a case study and experiments. Our
results indicate that the presented solutions can improve the
productivity of mobile programmers, as well as improve the
performance/energy efficiency of mobile applications.

The rest of this paper is organized as follows. Section 2 stud-
ies the functionality of existing applications that can benefit from
resource sharing. Section 3 introduces our design of the resource
sharing solution, focusing on the proposed RESTful language for
the programmers to specify their resource requirements. Section 4
describes the design of the runtime support, and the optimization

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Programming Support for Sharing Resources Across Heterogeneous Mobile Devices MOBILESOFT’18, 2018, Gothenburg, Sweden

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 1: Offloadable APIs

Book Business Game
Number of applications 27 27 18
Services per application 2.7 2.7 3.6
Computational-intensive: database 0.59 0.48 0.5
Computational-intensive: crypto 0.59 0.37 0.83
Context-related API: sensor 0.29 0 0.67
Specific API 1: gestures recognition 0.41 0 0
Specific API 2: sslconnection 0 0.26 0
Specific API 3: khronos (OpenGL) 0 0 0.56

strategies we designed for energy efficiency, latency optimality,
and privacy preservation. Section 5 introduces our reference im-
plementation of RQL and its runtime. We also describe how we
have applied RQL to realize the solutions motivated in this section.
Section 6 shows how our resource sharing method benefits the pro-
grammers, as well as improve the performance/energy efficiency of
mobile applications. Section 7 summarizes the related state of art,
and Section 8 concludes this paper and puts forward some future
research directions based on this work.

2 IDENTIFYING REQUIREMENTS
In this section, we demonstrate the potential benefits of resource
sharing across mobile devices by answering these two questions: 1)
for existing apps, how many kinds of local API calls may possibly
be replaced with remote calls? 2) how frequently such replaceable
APIs are called in existing applications?

2.1 Methodology
In the study, our use 574 of most popular Android applications in
different application domains, which we downloaded from Google
Play in September 2014. We carefully analyzed the APIs included
in these applications, and found that those APIs which can benefit
from nearby resources can be classified into three major cate-
gories: (1) context-providing sensors/media tools (e.g., GPS,
accelerometer, microphone, camera); (2) computational re-
sources (e.g., processors, memory, and storage); (3) service
resources (e.g., network connections, phone service, SMS).

Following the steps given below, we pick the API calls that belong
to the above listed three categories.

1) We disassemble the deployment archives of these applications,
and use a tool called Baksmali to de-compile Android DEX (VM
bytecode) files into Smali files (readable code in the smali language)
which can be analyzed. Regular expressions are then used to pick
out all API calls, as shown in Fig 4. (a).

2) We then remove the APIs of the packages irrelevant for re-
source sharing, such as java/lang/, java/io/, com/google/ads/, an-
droid/view; android/os/. Fig 4.(b) shows the remaining APIs.

3) Finally we manually remove those APIs that do not fall into
the three considered categories above. Fig 4. (c) shows the left
APIs, in which those marked in black are the APIs that involve
service resources, those marked in green stand for APIs that need
computational resources, and those marked in yellow show APIs
that are sensor related.

2.2 Results
We randomly picked applications from 3 application domains (Book,
Business, and Game) and listed their API usages in Table. I. From the
table we can see: 1) The APIs that provide HTTP services, including
webview→loadurl, url→openconnection, httpurlconnection→connect,
httpclient→execute, are widely used in every application domain.
By cooperatively providing HTTP services for a group of devices,
one can reduce the total energy consumption of the group because
some contents can be shared among nearby devices[18]. Consider
cellular links, which are energy intensive at low bit-rates and have
high round-trip times after idle periods. Here consolidating mul-
tiple users’ traffic on a subset of links would shorten the round
trip time as well as save the energy consumption[34]; 2) The APIs
for local database searching and crypto are frequently spotted in
game applications. Such APIs consume more computational power
than other APIs, so if they can be executed by another device with
greater computational power, it will save the overall energy con-
sumption and speed up the whole execution[1]; 3) The APIs for
obtaining sensors’ readings are frequently spotted in book and
game applications. As commercial sensors usually will not provide
enough accuracy to figure out the attitude of the phone and the
exact motion of users[47]; using other sensors from a nearby device
can provide a viable alternative.

By carefully analyzing existing applications, one can conclude
that most applications in different domains can generally benefit
from using the network service/ computational / sensory resources
of nearby devices. In the following sections, we will detail our
solutions that enable such resource sharing across nearby devices.

3 RQL DESIGN
In this section, we present the design of the resource sharing lan-
guage (RQL). RQL is a platform-independent, domain-specific lan-
guage that enables heterogeneous devices to seamlessly share their
resources. We designed RQL around the RESTful architecture [12],
a proven solution for many of the complexities of engineering
dynamic, heterogeneous distributed systems, including the WWW.

We next present RQL by example. Consider an RQL statement:
pull glass:sensor/orientation. This statement will retrieve
the readings of the orientation sensor of a glass device, if it happens
to be in the vicinity; it will return a null reading otherwise. The
specific details of locating a glass device, connecting to it, retrieving
its readings, etc. are handled by the RQL runtime. This example
shows that the design of RQL follows the verb/nouns paradigm:
nouns express the requested resources, while verbs express the
actions performed on these resources.

3.0.1 Nouns. RQL represents the resource intention with nouns.
Specifically, the nouns comprise the following parts: “device de-
scription:resource description/specific name”.

Device description defines device types (e.g., glass, smartphone,
tablet, etc.) or specific characteristics (e.g., name, owner, OS, etc.).
Resource description defines the type of resource (e.g., sensors, ser-
vices, files, etc.) followed by specific names (e.g., sensor/orientation,
sensor/gps, service/facerecognition, service/httpsend, etc.).

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

MOBILESOFT’18, 2018, Gothenburg, Sweden Zheng Song et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

 landroid/content/intent-><init> 568
 ljava/lang/object-><init> 568
 ljava/lang/stringbuilder-><init> 567
 ljava/lang/stringbuilder->append 567
 ljava/lang/stringbuilder->tostring 567
 landroid/app/activity-><init> 565
 landroid/app/activity->oncreate 561
 landroid/content/intent->putextra 556
 ljava/lang/string->equals 555
 landroid/widget/textview->settext 549
 landroid/net/uri->parse 549
 ljava/lang/string->length 549
 ljava/lang/string->substring 548
 ljava/util/arraylist-><init> 546
 ljava/lang/integer->valueof 544
 landroid/app/alertdialog$builder-><init> 540
 landroid/content/sharedpreferences$editor->commit 538
 landroid/util/log->e 537
 landroid/content/sharedpreferences->edit 536
 landroid/os/handler-><init> 535
 ljava/util/iterator->next 534

 landroid/net/uri->parse 549
 landroid/database/cursor->getstring 470
 landroid/database/cursor->movetofirst 441
 landroid/net/connectivitymanager->getactivenetworkinfo 441
 landroid/webkit/webview->loadurl 437
 ljava/net/url->openconnection 436
 landroid/webkit/websettings->setjavascriptenabled 436
 landroid/webkit/webview->getsettings 420
 ljava/net/httpurlconnection->getinputstream 414
 landroid/webkit/webview->setwebviewclient 410
 ljava/security/messagedigest->digest 398
 ljava/security/messagedigest->getinstance 398
 landroid/database/cursor->getint 395
 landroid/provider/settings$secure->getstring 389
 ljava/net/httpurlconnection->connect 382
 ljava/net/httpurlconnection->getresponsecode 382
 ljava/security/messagedigest->update 379
 landroid/net/uri->tostring 376
 landroid/database/cursor->close 370
 ljava/net/httpurlconnection->setrequestproperty 360
 landroid/database/cursor->getcolumnindex 360

Step 2:
Remove
Packages

 landroid/net/uri->parse 549
 landroid/webkit/webview->loadurl 437
 ljava/net/url->openconnection 436
 ljava/security/messagedigest->digest 398
 ljava/net/httpurlconnection->connect 382
 ljava/net/urlencoder->encode 348
 ljavax/crypto/cipher->dofinal 310
 landroid/database/sqlite/sqlitedatabase->execsql 289
 landroid/graphics/bitmapfactory->decodestream 279
 lorg/apache/http/client/httpclient->execute 272
 lorg/apache/http/impl/client/defaulthttpclient->execute 216
 landroid/graphics/bitmap->compress 209
 landroid/graphics/bitmapfactory->decodefile 140
 landroid/gesture/gestureoverlayview-
>addongestureperformedlistener 140
 landroid/gesture/gesturestore->recognize 138
 landroid/hardware/sensormanager->registerlistener 131
 landroid/graphics/bitmapfactory->decodebytearray 128

Step 3
Remove APIs

Step 1:
RegEx

Figure 4: Steps of Picking APIs

Pull:

Push:

Get Data Once

1. Send parameter

Delegate:

1.Send parameter

2.Get Result

Bind:

Get Data
persistently

2. Send Data

Figure 5: Defined RQL Verbs

3.0.2 Verbs. In accordance with the RESTful design principles,
there can be an infinite number of nouns, all of which are manipu-
lated by a small number of verbs. In particular, RQL defines only
four verbs: pull, push, delegate, and bind. As shown in Fig. 5,
“pull” retrieves data from the service interface of another device
immediately; “push” sends data from the source device to the target
device; “delegate” sends some parameters and then gets the execu-
tion results back; finally “bind” establishes a persistent connection
to a device to obtain the value changes of a specific sensor.

3.0.3 Adverbs. Although traditional RESTful interfaces consists
of only verbs and nouns, RQL integrates adverbs as informed by
some prior research on fault-tolerance RESTful services [11]. In
RQL, adverbs can express how commands should be executed
in terms of time or quality constraints. For example, an adverb
can express the timeout value for a pull command (in ms)(e.g.,
pull external:alg/OCR -latency < 500ms). Another adverb is
-blocking (e.g., pull external:sensor/GPS -blocking, which
expresses that the RQL call to retrieve the GPS reading should be
blocking, returning only when a GPS reading is available or the call
has failed. By default, all RQL statements are non-blocking with the

results communicated via an asynchronous callback mechanism.
We discuss a programming scenario involving the -blocking ad-
verb in Section 5.

Fig. 6 depicts several examples of using RQL. The first example is
concerned with getting GPS readings from another device. The sec-
ond example sends a data file to a remote device (belonging to user
John) to use as a parameter to a facial recognition algorithm. The
third example directs a remote device to perform an HTTP request
for a given URL and send back the obtained output. The fourth ex-
ample establishes a persistent connection to get orientation sensor
updates from John’s smart glasses device.

Sometimes the source device may need to execute a sequence
of RQL statements on the same target device consecutively. To
that end, RQL features the “|” binary operator, which specifies
that its operands are to be transmitted in bulk to the target device
and executed in sequence. Consider the source device needing to
execute both the OCR and language translation algorithms one after
another on the same target device. The programmer can express
this functionality in RQL as shown in line 2 of Fig. 6. It is worth
mentioning that such batching of RQL requests may also reduce
the aggregate latency.

4 RUNTIME DESIGN
To meet its design goals, RQL requires sophisticated runtime sup-
port for mainstream platforms (i.e., Android, iOS, and Windows
Phone). In this section, we identify the requirements and outline
design of such runtime support. With respect to requirements, the
RQL runtime must reconcile the need for efficiency with that of
portability and ease of implementation. Hence, we have deliberately
constrained our runtime design to the application space, so as to
avoid low-level, platform-specific system changes. In other words,
the user should be able to install the RQL runtime as if it were a
regular mobile application, albeit with extended permissions (e.g.,
access to all sensors, the ability to connect to remote services via
all available network interfaces, access to local application data and
external storage, etc.)

The runtime support, whose basic flow appears in Figure 7, in-
cludes three basic modules: client, server, and monitor. The client
module of Device A accepts an RQL request and determines whether
the request can be executed by a nearby device (Device B) by query-
ing a distributed registry of nearby devices and resources they
provide. The devices communicate by means of near field commu-
nication interface (e.g., Bluetooth). The server module of Device B

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Programming Support for Sharing Resources Across Heterogeneous Mobile Devices MOBILESOFT’18, 2018, Gothenburg, Sweden

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

1 . p u l l any : s en so r / GPS
2 . push John : f i l e / myphoto . j pg − i /DCIM/ 2 0 1 7 0 3 1 9 3 2 3 . j pg | d e l e g a t e s e r v i c e / f a c e R e c o gn i t i o n
3 . d e l e g a t e any : s e r v i c e / h t t p − t h t t p : / /www. goog l e . com
4 . b ind John / g l a s s e s : s en so r / o r i e n t a t i o n

Figure 6: RQL Examples

Device A

Third Party
APPs

Runtime

RQL Calls

Device B

Runtime

Results

Decision makerRQL parser

Device Monitor
Task Monitor

RQL parser

Device Monitor
Task Monitor

Service Provider

Results

Figure 7: General Design of Runtime Support
parses the request, executes it, and returns the result back to the
client module of Device A. The monitor module comprises two
parts: device and service status. The device status monitor keeps
track of the battery levels, resource usage status, and locations of
nearby devices. The service status module monitors the energy con-
sumption/latency of the services provided by the nearby devices.

In the remainder of this section, we will further demonstrate
how we optimized the runtime design for energy efficiency, latency
reduction, and privacy preservation.

4.1 Ensuring Energy Efficiency
4.1.1 Choosing Communication Channels. In our runtime de-

sign, Bluetooth Low Energy (BTLE) serves as the major commu-
nication mechanism for two reasons: 1) BTLE is known to be the
most energy efficient way to discover/announce external services.
Although WiFi and Bluetooth are popular device-to-device commu-
nication mechanisms, their energy consumption levels are larger
than that of BTLE, both in active and idle modes; 2) to support
heterogeneity, the runtime must be able to use a communication
mechanism supported by major mobile platforms. Mainstream mo-
bile communication mechanisms, including WiFi-direct and tradi-
tional Bluetooth, cannot connect a recent (i.e., 4.4.2 and up) Android
device with an iOS device.

However, BTLE does have some limitations. Chief among them
is the primary use-case for BTLE: command transmission and small
data-size transmissions. The main purpose of BTLE is to send small
bursts of data for extended periods of time while consuming min-
imal energy. The largest size package BTLE will send is 20 bytes.
Therefore, when the runtime needs to send a data file to another
device, using a different communication mechanism can provide
performance advantages.

To overcome the limitations of BTLE when transferring larger
data volumes, our design includes an optimization that makes use

of edge servers. When transferring a data file, the runtime at the
source device uploads the file to an edge server, and send the URL
of that file to the target device via a BTLE connection for the target
device to download. Nevertheless, it is worth noting that, with
both Android and iOS constantly improving the relatively new
inter-device communication mechanisms, our runtime is capable
of communicating via WiFi-direct, once it becomes available for
heterogeneous devices.

4.1.2 Choosing Target Device. When multiple devices can be
used for a given task, selecting the correct device could save the
overall energy consumption of all devices. For tasks that require
the service to send HTTP requests, as the 3G chips would still
cost energy when the data transmission is finished, combining
multiple requests and sending them at once could greatly save
the overall energy consumption. For tasks that require a specific
sensory reading like GPS, the major energy consumption happens
when the target device tries to obtain the sensory reading. Therefore,
combining multiple sensory requirement tasks to the same device
could also reduce the overall energy consumption.

We intend to use an incentive strategy to encourage batching
HTTP requests and sensory data requests to the same target device.
The basic idea is to let the device which has already been the dele-
gation of such requests to ask for lower bid prices for other tasks
of the same kind. The details are described in Sec. 4.3.

4.2 Reducing Latency
Different from the HTTP requests and sensory data requests, RQL
requests which need to perform computationally intensive tasks
can not be energy-optimized by being batched to a same delegation.
On the contrary, when such tasks are combined to the same target
device, their time/latency usually gets larger. Therefore, in the
runtime, for those RQL requests that want to process an amount of
computation intensive tasks through multiple devices, the runtime

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

MOBILESOFT’18, 2018, Gothenburg, Sweden Zheng Song et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

needs to act as the load balancer: it needs to divide the necessary
tasks into chunks between multiple devices in a way that the overall
waiting time is minimized.

The most accurate way to balance loads across numerous avail-
able devices is to get real-time loads from each devices and also
the execution time of each task in advance. However, the frequent
communication among devices costs extra energy and clogs the
channel as it is occupied for a larger amount of time. In such cases,
the solution we take is to log the load of each device in the for-
mat of how many tasks are running or waiting. The running tasks
of surrounding devices are updated through the device monitor’s
scanning action. When the runtime assigns one task to a device,
the device’s load of is incremented by one; when it get the result
back from a device, its load is decremented by one. Therefore, each
time when the runtime needs to assign a task, it assigns it to one
of all the devices providing that service with the lowest load.

4.3 Incentive Strategy
In the presence of multiple unrelated mobile users, the adopters of
this technology may face the problem of having to motivate them
to share the resources of their devices. One approach that can be
effective in this setting is putting in place an incentive strategy. The
basic idea is to employ micro-transactions for devices to pay for the
external resources consumed. The payments can be represented as
marketplace credits that can be used to pay for shared resources in
the future or even as a standard currency.

The RQL runtime’s design includes an incentive strategy that is
based on the reversed auction model, as shown in Fig. 8. When a
device wants to start an RQL request, the runtime scans all nearby
devices and gets their bid prices for each service. It then chooses a
device with the lowest bid price as the target of offloading. When
other devices have the same bid prices, it randomly picks one, or
choose one according to their loads. After the task is finished and
the results are returned, it pays the chosen device the bid price as
incentive. This strategy would help motivate unrelated users to
make the resources of their devices available for sharing.

An incentive strategy can also take energy consumption into con-
sideration when offering bids. For example, a mobile device already
delegating HTTP or sensory tasks, should be able to offer lower bid
prices than idle devices, as performing additional tasks would incur
smaller energy costs. Therefore, the probability of forwarding the
majority of HTTP requests or sensory reading tasks to the same
device would increase. In such cases, the energy consumption of
all the participating devices becomes minimized. Hence, the initial
investment into recruiting mobile users to participate in resource
sharing will be amortized by the future improvements in usability
and performance. Incentive strategies thus constitute a promising
future research direction for this work.

4.4 Privacy and Security
Fig. 9 describe the potential threat of privacy leakage and security
issues, where device A and device B are the source and the target,
respectively. The security threats could arise in the following sce-
narios: 1) When the runtime on device A broadcasts the result of
some third party application, it could be wiretapped by a malware
installed on that device. 2) when the runtime on device A receives

Device 2Device 1

Two other devices
subscribing GPS

Bid Price: 1 Bid Price: 5

1. Bid 1. Bid

2. Select

No other devices
subscribing GPS

Figure 8: Flow of Reversed Auction
Device A

Third Party
APPs

Runtime

RQL Calls

Device B

Decision makerRQL parser

Device Monitor
Task Monitor

BroadCastBroadCast

Send Data

Figure 9: Possible Attacks
the broadcast from device B through Bluetooth, another device C
binding to the same Bluetooth channel might get that message as
well. One can counter this security threat by encrypting the mes-
sage. To solve the problem, the third party application will need to
provide a public encryption key for each RQL request, so that the
runtime can encrypt the result with that key. This way, it is only
the third party application with the private key that can decrypt
the result. Although our reference implementation does not yet
include this security mechanism, our design makes it possible to
straightforwardly add it to the runtime.

5 REFERENCE IMPLEMENTATION
Our reference implementation of RQL and its runtime concretely
reifies the design decisions we described in Sections 3 and 4. While
we have implemented all the described features of RQL including
the required runtime support, some of the optimization and privacy
provisioning features of the runtime remain a work in progress.

To demonstrate our implementation, we next describe how we
used it to address the resource sharing needs in the three motivat-
ing examples from Section 1. The snippets of Java code in Fig 10
show how the three source devices use RQL to access resources
of nearby target devices. Fig 11. (a) gives an overview of the com-
munication flow between the source device’s applications and the
runtime, while Fig 11. (b) shows a sequence diagram of an iOS
device communicating with an Android device by means of RQL.

On Android, the RQL runtime executes as a background service.
Android applications communicate with the runtime by establish-
ing an Android Interface Definition Language (AIDL) connection,
a standard Android mechanism for inter-application/service com-
munication. The Android API provides methods for sending RQL
requests over the established AIDL connection. Upon receiving an
RQL request, the runtime immediately returns a unique identifier
for that request. The application can then use this identifier to lo-
cate the request’s results once it has been carried out. The runtime

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Programming Support for Sharing Resources Across Heterogeneous Mobile Devices MOBILESOFT’18, 2018, Gothenburg, Sweden

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

:Connect to runtime

:Send RQl calls for querying GPS data
and record Task ID

Send RQl calls for face recognition
and record Task ID

Send RQl calls for http delegation
and record Task ID

Check if the broadcast is sent from RQL runtime

Get results with Task ID

Handle the result for each task

Figure 10: Mobile Application Code using RQL

Decision maker

get any/GPS

A RQL Request

Task Queue

Devices:
Services, bids and Loads

Periodically Scan

How, what and
who to send

(a) Communication Flow

Third Party App

Device A: Android Phone Device B: iPhone

Runtime

1. RQL call through AIDL

Runtime

2. RQL Task ID

3. Query Available Devices through BTLE

4. Query Available characteristics through BTLE

Case 1: Pull GPS

5. read data from BTLE GPS service

Case 2: Push File

5. send notification through BTLE

6. send File through WIFI direct / Edge Server

Case 3:Delegate

5. Send RQL parameters through BTLE

6. receive result from BTLE result service

7. Result with Task ID

(b) Runtime Sequence Diagram

Figure 11: Third Party Application
is responsible for several functionalities, including parsing the RQL
commands, determining which device should be the target for a
given command, controlling the communication (over Bluetooth
LE) with other devices, and receiving the results from target devices.
The returned results are made available to mobile applications via a
broadcast-based callback mechanism. The unique identifiers must
be discarded once the results of the RQL requests associated with
them have been received.

In some rare cases, the programming scenario at hand may re-
quire that the results of an RQL command be received prior to
executing any subsequent program statements. In other words, the
RQL command needs to be executed in a blocking fashion. To en-
able this blocking behavior, albeit ill-advised for performance and

fault-tolerance reasons, the programmers can simply add the ad-
verb -blocking to any RQL command. The runtime processes this
directive by finishing the specified command first and returning
the results back to the caller.

One peculiarity of BTLE communication is that each device can
serve either a peripheral or central role, roughly corresponding to
the traditional server/client functionalities, respectively. In other
words, the peripheral role entails advertising services, each having
potentially multiple characteristics, while the central role entails
locating or accessing the services of the devices playing the periph-
eral role. This clear role separation is currently only supported by
iOS devices and Android devices with the latest OS distribution.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

MOBILESOFT’18, 2018, Gothenburg, Sweden Zheng Song et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

To accommodate these distinct roles, the RQL runtime enables
mobile devices communicating via BTLE to seamlessly process and
advertise resources. The runtime keeps track of the available ser-
vices bymeans of unique ids (UUIDs). Since the UUIDs are universal
and guaranteed to be globally unique by the BTLE standard, the
RQL runtime can easily keep track of the available services and
their associated characteristics. These characteristics can have read,
write, and notify properties. Reading allows a central device to read
a value, writing allows it to write a new value into the characteristic,
and notify allows the central device to subscribe to the characteris-
tic’s value, so any changes to it will cause a notification update on
the central device.

The RQL runtime currently provides five peripheral device’s
characteristics: GPS, accelerometer, file writing, HTTP request, and
facial recognition. As a means of getting updated values, it provides
a special-purpose, subscribable result characteristic. As shown in
Fig 11. (a), the RQL runtime of an Android device first scans for
nearby devices, and then scans for the services they are advertising.
If the RQL verb is “pull”, the Android device directly reads the GPS
readings from the corresponding BLE characteristic on the iOS side.
If the RQL verb is “push”, the runtime sends a file in chunks of 20
bytes to the file writing characteristic. Otherwise, it writes the RQL
command to the BLE service with the unique taskid, and then reads
the results back from the BLE result characteristic.

In the runtime of the central device, as shown in Fig 11. (b), the
runtime keeps track of the status of surrounding devices and under-
going tasks. Once the runtime receives a RQL request, it enqueues
that request into a task queue and returns a task-id immediately.
Meanwhile, the device manager periodically scans the Bluetooth
advertisements of surrounding devices to discover the provided
services. When a task is popped from the task queue, the runtime
parses the RQL command to decide on which peripheral device’s
characteristic it should query or write.

In the runtime of the peripheral device, all received requests are
queued up. Each item contains the id of that request and the RQL
command associated with it. When a RQL request is received with
an adverb defining latency constraints, the request is added to the
head of the queue, so as to prioritize its processing. Otherwise, if
no adverb is specified, it is added to the end of the queue. When
the runtime wants to process a request, it removes a task from the
head of the queue, ensures that the task is unexpired, and executes
it using the designated service.

6 EVALUATION
In this section, we describe how we evaluated various aspects of
the reference implementation of RQL, detailed in Section 5. Our
evaluation comprises a small user study, various performance/en-
ergy efficiency micro-benchmarks, and a robustness assessment of
our retrofitting approach.

6.1 Programmability
First, we evaluated the software engineering benefits of our pro-
gramming model. To that end, we compared two different imple-
mentations of the same resource-sharing scenario: original with
all resource sharing functionality implemented from scratch and

Table 2: Lines of Code

Runtime Based Built from scratch
GPS request 20 370
HTTP request 20 556
Facial Recognition 32 883

Table 3: Study Results

Group 1 2
Familiarity with Android Development Beginner Familiar
Number of students 6 4
Number of students completed the task 3 0

RQL-based with the major functionality provided by the RQL run-
time. In Table 2, for each implementation, we report the total lines
of uncommented code (ULOC).

As one can see, using RQL reduces the amount of code the pro-
grammer has to write by a factor ranging between 20 and 28. Con-
sidering that the written code involves complex asynchronous,
distributed processing, this code size reduction is likely to have a
high positive impact on the code quality.

To empirically assess howwell RQL can assist the programmer in
putting in place the inter-device resource sharing functionality, we
conducted a user study. To that end, we recruited 10 Junior to Senior
level Computer Science students from an intermediate Android de-
velopment class at Virginia Tech. We divided the recruited students
into 2 groups, the experimental and control groups, for novice and
experienced Android developers, respectively. The experimental
group comprised 6 students with no prior experience in Android
programming, while the control group comprised 4 students with
several years of Android development experience.

In the beginning, we briefly introduced the concepts of AIDL ser-
vices, broadcast receivers, and Bluetooth LE. Then, each group was
given 90 minutes to complete the programming task of obtaining
the GPS sensor reading from an iOS device to an Android device.
The experimental group was asked to use RQL, while the control
group was asked to use any existing, mainstream Android API. The
control group was also given an Android chat sample application
as an example from which to draw device-to-device coding idioms.

Table 3 presents the results of the study. To our surprise, none
of the students in the control group were able to complete the
task successfully, which demonstrates the non-trivial nature of
device-to-device communication. The results of the experimental
group, armed with RQL, were mixed, with 3 students successfully
completing the task, with the remaining 3 giving up before the
experiment concluded. Because the group using RQL comprised
non-experienced Android programmers, the results above indicate
that our programming abstraction provide value by streamlining
the process of implementing device-to-device interactions and can
become a pragmatic tool for future applications.

6.2 Experiment Setup
The hardware setup for the following experiments include 4 An-
droid mobile devices (1.5GHz dual-core CPU, 2GB RAM) used as

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Programming Support for Sharing Resources Across Heterogeneous Mobile Devices MOBILESOFT’18, 2018, Gothenburg, Sweden

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Table 4: Energy Consumption per Second

Status Energy (mA) Status Energy (mA)
ScreenOn 100
BluetoothOn 1 BluetoothActive 66
CpuIdle 92 CpuActive 242
WiFiOn 6 WiFiActive 102
GpsOn 60 GpsActive 300
3GOn 10 3GActive 250

source devices, and 2 iOS devices (1 iPhone 6 and an iPad mini)
used as target devices.

To evaluate the energy consumption of these devices, we recorded
the execution time between “Start" and “Stop" tags, adding tags for
actions, such as “Screen On", “Bluetooth On", “Bluetooth Active",
“3G Active", “GPS Active", “CPU Idle/Active” etc. Table 4 shows the
manufacturer provided values for energy consumption of these
operations. For all graphs, we refer to ’local’ and ’remote’ meaning
requests processed on the user’s local device and some external
nearby device, respectively.

6.3 Local and Remote Energy Evaluation
First, we examine the motivating examples’ performance in terms of
the energy usage in both the local API calls and the corresponding
remote RQL calls. Figure 12 shows how much energy is used by 100
identical RQL requests on the same and across different devices,
respectively. Because of the vastly different energy consumption
levels between sensor data and heavy HTTP requests, presenting
the results requires the use of both linear and logarithmic vertical
scales.

The graphs show that, excluding some outliers, both local and
remote RQL calls consume energy consistently throughout the ex-
periments. The baseline of both figures is identical and essentially
shows how an idle application would be consuming energy. In both
local and remote calls, the GPS sensor retrieval consumes far less
energy than either of HTTP requests or Facial recognition. To com-
pare various protocols, we also benchmark a “Heavy” HTTP request,
representative of work-intensive web-based processing. Given the
extensible nature of the RQL runtime, one can easily add emerging
communication mechanisms, which can outperform BTLE when ex-
ecuting heavy HTTP requests or other high-throughput processes.

Because communicating with nearby devices consumes addi-
tional energy, local RQL calls increase their energy efficiency when
processing small loads of requests. However, for requests that can
be distributed across several available devices, both energy costs
and processing latencies decrease precipitously. Figure 12 also re-
veals cache correspondences between the same device, primarily for
sensor data (GPS). Thus reading the GPS data incurs a single large,
upfront cost of connecting to the device, but internally optimizes
the subsequent request via the assumption that the GPS readings
have not changed. This internal optimization explains the plummet
in energy costs of accessing remote sensor data, such as GPS.

6.4 Local and Remote RQL Latency
Experiments

Consider Figure 13 that shows local and remote latency, respectively.
These two graphs demonstrate an important practical advantage
of accessing resource of nearby devices. When examining GPS,
latency drops steeply similar to energy in the previous section, after
incurring the upfront cost of connection. This amortization of initial
connect requests ensures far better median latency for these remote
calls. In fact, we see that for a computationally intensive operation,
such as Facial Recognition, the latency is smaller in remote RQL
calls by a factor of nearly 1.4 for only a small request size. If we
consider sending large requests for Facial Recognition across even
a small subset of nearby devices (say only 3 external devices), the
resulting latency reduction far outweighs the additional energy use
incurred across all devices in use.

Figure 14 presents a full comparison of median energy and la-
tency measurements. This graph supports our initial assumption
about the trade off in energy for decreased latency when processing
various request types. It is clear that the only outlier is processing
HTTP requests remotely. Given the nature of BTLE small packet
transmission size restriction, we observe a larger latency since
each piece of the HTTP request is broken up and sent individually.
Referring back to one of our motivating examples, consider the
traveler to a foreign country who is unable to access local mobile
data towers. Providing this functionality to the end user is impor-
tant irrespective of the resulting performance, as long as it is not
prohibitively poor. In other words, not outperforming local requests
is a minor hindrance in comparison with not being able to process
any requests at all. Nevertheless, this limitation of BTLE motivated
our efforts to optimize the RQL runtime.

7 RELATEDWORK
Using nearby mobile devices to cooperatively implement new func-
tionality was originally proposed as a means of exchanging private
information over devices for data sharing and data mining [23].
Subsequent research took user mobility into account [19, 24, 35].

Besides data sharing, another avenue for device cooperation is
runningmap reduce [46] onmobile devices to execute computational-
intensive tasks [9, 29, 42]. These approaches, however, are oblivious
to device mobility and the preference of users to participate.

In addition to traditional mobile devices, the IoT setups can
provide resources for device-to-device resource sharing. Computa-
tional tasks have been offloaded to such setups (e.g., Road Side Unit)
[16], while mobile messages have been stored and forwarded by a
wall-mounted Estimote device [3]. The proposed project will focus
on the software engineering aspects of mobile device cooperation,
thus benefiting the implementation practices of many of the prior
state-of-the-art approaches.

Traditional middleware has been adapted for peer-to-peer re-
source sharing, includingOpenCORBA[27], Globe[44] and JXTA[15],
although without taking device mobility into account.

Device mobility-aware peer-to-peer resource sharing has started
from content sharing [36], with numerous subsequent approaches
[2, 6, 10, 20, 21, 32, 33, 40]. Special purpose middleware support
face-to-face interactions [41] and cooperative display[4]. These

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

MOBILESOFT’18, 2018, Gothenburg, Sweden Zheng Song et al.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

0

1000

2000

3000

4000

5000

6000

7000

0

200

400

600

800

1000

1200

1400

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

4
9

5
1

5
3

5
5

5
7

5
9

6
1

6
3

6
5

6
7

6
9

7
1

7
3

7
5

7
7

7
9

8
1

8
3

8
5

8
7

8
9

9
1

9
3

9
5

9
7

9
9

M
IL

LI
A

M
PE

R
ES

A
M

P
ER

ES

CONTINOUS API CALLS (1-100)

Local Application Calls' Energy Use

Local HTTP Local Face Recognition Local HTTP Heavy Local Baseline Local GPS

(a) Local Energy Tests

1

10

100

1000

10000

100000

1000000

10000000

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

4
9

5
1

5
3

5
5

5
7

5
9

6
1

6
3

6
5

6
7

6
9

7
1

7
3

7
5

7
7

7
9

8
1

8
3

8
5

8
7

8
9

9
1

9
3

9
5

9
7

9
9

M
IL

LI
A

M
PE

R
ES

CONTINOUS API CALLS (1-100)

Remote Application Calls' Energy Use

Local Baseline Remote GPS Remote Face Recognition Remote HTTP

(b) Remote Energy Tests

Figure 12: Various local and remote RQL command energy usage

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

1

10

100

1000

10000

CONTINUOUS API CALLS (1-100)

M
IL

LI
SE

CO
N

D
S

Local Application Calls' Latency

Latency GPS Latency HTTP Latency Heavy HTTP Latency Face Recognition

(a) Local Latency Tests

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

4
9

5
1

5
3

5
5

5
7

5
9

6
1

6
3

6
5

6
7

6
9

7
1

7
3

7
5

7
7

7
9

8
1

8
3

8
5

8
7

8
9

9
1

9
3

9
5

9
7

9
9

1

10

100

1000

10000

100000

1000000

CONTINUOUS API CALLS (1-100)
M

IL
LI

SE
CO

N
D

S

Remote Application Calls' Latency

Latency HTTP Remote Latency GPS Remote Latency FR

(b) Remote Latency Tests

Figure 13: Various local and remote request latency use

0

2000

4000

6000

8000

10000

12000

14000

16000

0

200000

400000

600000

800000

1000000

1200000

Baseline GPS HTTP Face Recognition Heavy HTTP

M
IL

LI
SE

CO
N

D
S

M
IL

LI
A

M
PE

R
ES

SERVICE TYPE

Median Energy and Latency

Local Energy Remote Energy Local Latency Remote Latency

Figure 14: Median Energy and Latency Across Various
Requests

middleware approaches are platform-specific and require modifi-
cations at the system level. By contrast, the proposed project aims
at heterogeneous device-to-device applications running on top of
unmodified system stacks.

The MANET project leverages assistance from devices through
multi-hop wireless communication [7]. Various middleware ap-
proaches have focused on various aspects of inter-device coop-
eration, including LIME[31], TOTA[28], Limone[13], CAST[39],
MESHmdl[17], Preom [22], MobiPeer [5], Peer2Me [45], Steam
[30], Transhumance [37], QAM [14], and MobiCross [8]. These
middleware approaches provide programming to control network
topologies, network traffic, peer management, etc. By contrast,
the proposed approach focuses on supporting mobile application
programmers, who are primarily concerned with obtaining the
hardware resources they need for their applications.

To support platform independence, [38] proposed using anHTTP
server. By contrast, this project focuses on P2P communication, thus
reducing communication latencies and processing overhead.

8 CONCLUSION
This research focuses on the problem of engineering seamless re-
source sharing among nearby mobile devices to improve the per-
formance, energy consumption and latency of mobile applications.
Although there have been many research publications that have
focused on using cooperative device resource sharing to enable new
functionalities or to optimize energy and performance, there has not
been a push towards software engineering support for application
developers to leverage shared resources between heterogeneous
mobile devices. To address this problem, we first studied the re-
quirements for leveraging nearby resources in terms of API calls,
and then proposed a domain-specific declarative language and a
runtime support on two major mobile platforms to enable resource
sharing. The results of our case study, user study and efficiency
evaluation indicate that our programming model and runtime sup-
port can work as a bridge among nearby heterogeneous mobile
devices to both improve the programmers’ productivity, and opti-
mize the energy consumption and latency of mobile applications.
By facilitating the process of implementing cooperative resource
sharing among devices, we hope to be able to add this support in
the standard toolset for mobile application developers.

ACKNOWLEDGMENT
This research is supported by the National Science Foundation
through the Grants CCF-1717065 and CCF-1649583.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Programming Support for Sharing Resources Across Heterogeneous Mobile Devices MOBILESOFT’18, 2018, Gothenburg, Sweden

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

REFERENCES
[1] Saeid Abolfazli, Zohreh Sanaei, Ejaz Ahmed, Abdullah Gani, and Rajkumar Buyya.

2014. Cloud-based augmentation for mobile devices: motivation, taxonomies,
and open challenges. Communications Surveys & Tutorials, IEEE 16, 1 (2014),
337–368.

[2] Ardalan Amiri Sani, Kevin Boos, Min Hong Yun, and Lin Zhong. 2014. Rio: a
system solution for sharing i/o between mobile systems. In Proceedings of the
12th annual international conference on Mobile systems, applications, and services
(MobiSys’14). ACM, 259–272.

[3] Fehmi Ben Abdesslem and Anders Lindgren. 2014. Demo: mobile opportunistic
system for experience sharing (MOSES) in indoor exhibitions. In Proceedings
of the 20th annual international conference on Mobile computing and networking
(MobiCom’14). ACM, 267–270.

[4] Christian Berkhoff, Sergio F Ochoa, José A Pino, Jesus Favela, Jonice Oliveira, and
Luis A Guerrero. 2014. Clairvoyance: A framework to integrate shared displays
and mobile computing devices. Future Generation Computer Systems 34 (2014),
190–200.

[5] Mario Bisignano, Giuseppe Di Modica, and Orazio Tomarchio. 2005. JMobiPeer: a
middleware for mobile peer-to-peer computing in MANETs. In Proceedings of the
25th IEEE International Conference on Distributed Computing Systems Workshops
(ICDCS’05 Workshop). IEEE, 785–791.

[6] Mauro Caporuscio, P-G Raverdy, and Valerie Issarny. 2012. ubiSOAP: A service-
oriented middleware for ubiquitous networking. Services Computing, IEEE Trans-
actions on 5, 1 (2012), 86–98.

[7] Eduardo da Silva and Luiz Carlos P Albini. 2014. Middleware proposals for
mobile ad hoc networks. Journal of Network and Computer Applications 43 (2014),
103–120.

[8] Mieso K Denko, Elhadi Shakshuki, and Haroon Malik. 2007. A mobility-aware
and cross-layer based middleware for mobile ad hoc networks. In Proceedings
of the 21st International Conference on Advanced Information Networking and
Applications (AINA’07). IEEE, 474–481.

[9] Adam Dou, Vana Kalogeraki, Dimitrios Gunopulos, Taneli Mielikainen, and
Ville H Tuulos. 2010. Misco: a MapReduce framework for mobile systems. In
Proceedings of the 3rd International Conference on Pervasive Technologies related
to Assistive Environments. ACM, 32.

[10] Daniel J Dubois, Yosuke Bando, Konosuke Watanabe, and Henry Holtzman.
2013. ShAir: Extensible middleware for mobile peer-to-peer resource sharing. In
Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering
(FSE’13). ACM, 687–690.

[11] John Edstrom and Eli Tilevich. 2014. Improving the survivability of RESTful
Web applications via declarative fault tolerance. Concurrency and Computation:
Practice and Experience (2014), n/a–n/a. DOI:http://dx.doi.org/10.1002/cpe.3197

[12] Roy Thomas Fielding. 2000. Architectural styles and the design of network-based
software architectures. Ph.D. Dissertation. University of California, Irvine.

[13] Chien-Liang Fok, Gruia-Catalin Roman, and Gregory Hackmann. 2004. A light-
weight coordination middleware for mobile computing. In Coordination Models
and Languages. Springer, 135–151.

[14] Abhrajit Ghosh, Shih-wei Li, C Jason Chiang, Ritu Chadha, Kimberly Moeltner,
Syeed Ali, Yogeeta Kumar, and Rocio Bauer. 2010. QoS-aware Adaptive Middle-
ware (QAM) for tactical MANET applications. In MILCOM’10. IEEE, 178–183.

[15] Li Gong. 2001. JXTA: A network programming environment. Internet Computing,
IEEE 5, 3 (2001), 88–95.

[16] Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan Pillai, and
Mahadev Satyanarayanan. 2013. Towards wearable cognitive assistance. Technical
Report. DTIC Document.

[17] Klaus Herrmann. 2003. Meshmd1-a middleware for self-organization in ad hoc
networks. In ICDCS’03 Workshop. IEEE, 446–451.

[18] Mohammad Ashraful Hoque, Matti Siekkinen, and Jukka K Nurminen. 2014.
Energy efficient multimedia streaming to mobile devicesâĂŤa survey. Communi-
cations Surveys & Tutorials, IEEE 16, 1 (2014), 579–597.

[19] Pan Hui, Augustin Chaintreau, James Scott, Richard Gass, Jon Crowcroft, and
Christophe Diot. 2005. Pocket switched networks and human mobility in con-
ference environments. In Proceedings of the 2005 ACM SIGCOMM workshop on
Delay-tolerant networking (WDTN’05). ACM, 244–251.

[20] Peng Jiang, John Bigham, Eliane Bodanese, and Emmanuel Claudel. 2011. Pub-
lish/subscribe delay-tolerant message-oriented middleware for resilient commu-
nication. Communications Magazine, IEEE 49, 9 (2011), 124–130.

[21] David Koll, Jun Li, and Xiaoming Fu. 2014. SOUP: an online social network by the
people, for the people. In Proceedings of the 2014 ACM conference on SIGCOMM.
ACM, 143–144.

[22] Gerd Kortuem. 2002. Proem: a middleware platform for mobile peer-to-peer
computing. ACM SIGMOBILE Mobile Computing and Communications Review 6,
4 (2002), 62–64.

[23] Gerd Kortuem, Jay Schneider, Dustin Preuitt, Thaddeus G Cowan Thompson,
Stephen Fickas, and Zary Segall. 2001. When peer-to-peer comes face-to-face:
Collaborative peer-to-peer computing in mobile ad-hoc networks. In Proceedings
of 1st International Conference on Peer-to-Peer Computing (P2P’01). IEEE, 75–91.

[24] Niko Kotilainen, Matthieu Weber, Mikko Vapa, and Juori Vuori. 2005. Mobile
Chedar-a peer-to-peer middleware for mobile devices. In Proceedings of the 3rd
IEEE International Conference on Pervasive Computing and Communications Work-
shops (PerCom’05 WorkShop). IEEE, 86–90.

[25] Young-Woo Kwon and Eli Tilevich. 2012. Energy-efficient and fault-tolerant
distributed mobile execution. In Proceedings of the 32th IEEE International Con-
ference on Distributed Computing Systems (ICDCS’12). IEEE, 586–595.

[26] Young-Woo Kwon and Eli Tilevich. 2014. Cloud refactoring: automated transi-
tioning to cloud-based services. Automated Software Engineering 21, 3 (2014),
345–372.

[27] Chaoying Ma and Jean Bacon. 1998. COBEA: A CORBA-based event architecture.
In Proceedings of the 4th conference on USENIX Conference on Object-Oriented
Technologies and Systems-Volume 4. USENIX Association, 9–9.

[28] Marco Mamei, Franco Zambonelli, and Letizia Leonardi. 2003. Tuples on the air:
A middleware for context-aware computing in dynamic networks. In Proceedings
of 23rd International Conference on Distributed Computing Systems Workshops
(ICDCS’03 Workshop). IEEE, 342–347.

[29] Eugene E Marinelli. 2009. Hyrax: cloud computing on mobile devices using MapRe-
duce. Technical Report. DTIC Document.

[30] René Meier and Vinny Cahill. 2002. Steam: Event-based middleware for wireless
ad hoc networks. In ICDCS’02 Workshop. IEEE, 639–644.

[31] Amy L Murphy, Gian Pietro Picco, and Gruia-Catalin Roman. 2006. LIME: A
coordination model and middleware supporting mobility of hosts and agents.
ACM Transactions on Software Engineering and Methodology (TOSEM) 15, 3 (2006),
279–328.

[32] Kazuhiro Nakao and Yukikazu Nakamoto. 2012. Toward remote service invoca-
tion in android. In Proceedings of the 9th International Conference on Ubiquitous
Intelligence & Computing and 9th International Conference on Autonomic & Trusted
Computing (UIC’12). IEEE, 612–617.

[33] Andrés Neyem, Sergio F Ochoa, José A Pino, and Rubén Darío Franco. 2012.
A reusable structural design for mobile collaborative applications. Journal of
Systems and Software 85, 3 (2012), 511–524.

[34] Cătălin Nicutar, Dragoş Niculescu, and Costin Raiciu. 2014. Using Cooperation
for Low Power Low Latency Cellular Connectivity. In Proceedings of the 10th ACM
International on Conference on emerging Networking Experiments and Technologies.
ACM, 337–348.

[35] Jörg Ott, Esa Hyytia, Pasi Lassila, Tobias Vaegs, and Jussi Kangasharju. 2011.
Floating content: Information sharing in urban areas. In Proceedings of the 2011
IEEE International Conference on Pervasive Computing and Communications (Per-
Com’11). IEEE, 136–146.

[36] Maria Papadopouli and Henning Schulzrinne. 2001. Design and implementation
of a peer-to-peer data dissemination and prefetching tool for mobile users. In
Proceedings of the first NY Metro Area Networking workshop (NYMAN’01).

[37] Guilhem Paroux, Ludovic Martin, Julien Nowalczyk, and Isabelle Demeure. 2007.
Transhumance: A power sensitive middleware for data sharing on mobile ad hoc
networks. In Proceedings of the 7th international Workshop on Applications and
Services in Wireless Networks (ASWN’07).

[38] Pierluigi Plebani, Cinzia Cappiello, Marco Comuzzi, Barbara Pernici, and Sandeep
Yadav. 2012. MicroMAIS: executing and orchestrating Web services on con-
strained mobile devices. Software: Practice and Experience 42, 9 (2012), 1075–1094.

[39] Gruia-Catalin Roman, Radu Handorean, and Rohan Sen. 2006. Tuple space coor-
dination across space and time. In Coordination Models and Languages. Springer,
266–280.

[40] Ahmed Salem and Tamer Nadeem. 2014. Colphone: A smartphone is just a piece
of the puzzle. In Proceedings of the 2014 ACM International Joint Conference on
Pervasive and Ubiquitous Computing: Adjunct Publication. ACM, 263–266.

[41] Genaro Saucedo-Tejada, Sonia Mendoza, and Dominique Decouchant. 2013.
F2FMI: A toolkit for facilitating face-to-face mobile interaction. Expert Systems
with Applications 40, 15 (2013), 6173–6184.

[42] Cong Shi, Vasileios Lakafosis, Mostafa H Ammar, and Ellen W Zegura. 2012.
Serendipity: enabling remote computing among intermittently connected mobile
devices. In Proceedings of the thirteenth ACM international symposium on Mobile
Ad Hoc Networking and Computing (MobiHoc’12). ACM, 145–154.

[43] Eli Tilevich and Young-Woo Kwon. 2014. Cloud-based execution to improve
mobile application energy efficiency. Computer 47, 1 (2014), 75–77.

[44] Maarten Van Steen, Philip Homburg, and Andrew S Tanenbaum. 1999. Globe: A
wide-area distributed system. IEEE concurrency 7, 1 (1999), 70–78.

[45] Alf Inge Wang, Tommy Bjornsgard, and Kim Saxlund. 2007. Peer2me-rapid
application framework for mobile peer-to-peer applications. In Proceedings of the
2007 International Symposium on Collaborative Technologies and Systems (CTS’07).
IEEE, 379–388.

[46] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D Stott Parker. 2007. Map-
reduce-merge: simplified relational data processing on large clusters. In Proceed-
ings of the 2007 ACM SIGMOD international conference on Management of data.
ACM, 1029–1040.

[47] Pengfei Zhou, Mo Li, and Guobin Shen. 2014. Use it free: Instantly knowing
your phone attitude. In Proceedings of the 20th annual international conference on
Mobile computing and networking. ACM, 605–616.

11

http://dx.doi.org/10.1002/cpe.3197

	Abstract
	1 Introduction
	1.1 Motivating Scenarios
	1.2 Research Challenges and Contribution

	2 Identifying Requirements
	2.1 Methodology
	2.2 Results

	3 RQL Design
	4 Runtime Design
	4.1 Ensuring Energy Efficiency
	4.2 Reducing Latency
	4.3 Incentive Strategy
	4.4 Privacy and Security

	5 Reference Implementation
	6 Evaluation
	6.1 Programmability
	6.2 Experiment Setup
	6.3 Local and Remote Energy Evaluation
	6.4 Local and Remote RQL Latency Experiments

	7 Related Work
	8 Conclusion
	References

