
A Declarative Approach to Hardening Services
Against QoS Vulnerabilities

Young-Woo Kwon and Eli Tilevich
Dept. of Computer Science

Virginia Tech
Blacksburg, VA 24060

Email: {ywkwon,tilevich}@cs.vt.edu

Abstract—The Quality of Service (QoS) in a distributed
service-oriented application can be negatively affected by a
variety of factors. Network volatility, hostile exploits, poor service
management, all can prevent a service-oriented application from
delivering its functionality to the user. This paper puts forward
a novel approach to improving the reliability, security, and
availability of service-oriented applications. To counter service
vulnerabilities, a special service detects vulnerabilities as they
emerge at runtime, and then hardens the applications by dy-
namically deploying special components. The novelty of our
approach lies in using a declarative framework to express both
vulnerabilities and hardening strategies in a domain-specific
language, independent of the service infrastructure in place.
Thus, our approach will make it possible to harden service-
oriented applications in a disciplined and systematic fashion.

I. INTRODUCTION

The mainstream software paradigm has been transitioning
from software-as-a-product (SaaP) to software-as-a-service
(SaaS). SaaS is a computing modality that comprises a collec-
tion of services—encapsulated units of computing functional-
ity accessed by clients through public interfaces. Distributed
service-oriented applications—accessed remotely across the
network—are rapidly becoming the preferred building blocks
for the majority of modern computing domains. The popularity
of distributed service-oriented applications stems from the
general software engineering benefits of SaaS, including low
coupling, strong encapsulation, ease of discovery, and reduced
maintenance costs.

Despite their numerous benefits, distributed services may
not provide the requisite levels of reliability and security,
particularly when operated in volatile network environments,
attacked by hackers, or not properly maintained and managed.
To that end, this paper describes a new approach that can
harden distributed service-oriented applications against three
major threats to the QoS: (1) network volatility—services are
often accessed through disconnected and limited networks,
for which the service must be properly adapted; (2) secu-
rity exploits—a distributed service-oriented application can
be exploited by an adversary for nefarious purposes, and
must be protected against all known and future exploits; (3)
administrative mismanagement—a distributed service-oriented
application and its clients may be upgraded according to
conflicting schedules, thus requiring runtime adaptation to
avoid service protocol mismatches.

To harden distributed service-oriented applications against
the important vulnerability classes described above, we pro-
pose declarative hardening. Specifically, we design and imple-
ment a DSL for expressing hardening policies. DSL combine
high expressiveness, conciseness, and simplicity by providing
constructs that are custom tailored for a given domain. In
our case, the target domain is hardening distributed service-
oriented applications. A service compiler translates the policies
to a hardening components for a target service infrastructure
in place. Finally, a hardening framework should be able to
integrate the generated hardening components with a dis-
tributed service-oriented application, thereby equipping it with
the capacity to counteract the specified vulnerabilities. Thus,
this approach harmoniously combines several state-of-the-art
technologies to address an important set of vulnerabilities that
plague distributed service-oriented applications.

The uniqueness of the proposed approach lies in the follow-
ing advantages over the current state of the art: (1) a declar-
ative approach—we introduce a domain-specific language
for describing both service vulnerabilities and the hardening
strategies to eliminate them; (2) a compilation of declarative
hardening specifications—our compiler is capable of generat-
ing working code for Open Service Gateway Initiative (OSGi)
service infrastructure; (3) reusable hardening components—
strategies are reusable across multiple applications and do-
mains; (4) separation of concerns—reliability/security special-
ists can focus on their respective areas of expertise.

As our experimental platform, we use a well-known dis-
tribution middleware system—CXF-DOSGi—which enable
service-oriented computing in Java. We have created a hard-
ening framework which can harden any remote OSGi ap-
plication, enabling it to cope with network volatility, se-
curity exploits, and mismanaged API. We provide a new
programming language for expressing hardening policies and
strategies, which can also be reused across applications. The
programmer describes hardening policies and strategies. Then,
the hardening framework handles all the underlying machinery
required to harden the remote OSGi application.

In our experiments, we have executed a realistic OSGi appli-
cation to measure efficiency and performance. By comparing
the execution of the original and hardened version, we have
assessed their respective ability to complete the execution, the
total time taken to arrive to a result, and the overhead of the

hardening functionality. Our results indicate that it is feasible
and useful to systematically harden existing service oriented
applications with the ability to cope with vulnerabilities.

The rest of this paper is structured as follows. Section II
introduces the concepts and technologies used in this work.
Section III describes our proposed approach, including the
proposed hardening language and hardening framework. Sec-
tion IV evaluates the utility and efficiency of the proposed
approach through a performance benchmark and a case study.
Section V compares our approach to the existing state of the
art. Finally, Section VI presents future research directions and
concluding remarks.

II. BACKGROUND

In the following discussion, we first describe service ori-
ented architectures and their distributed versions. Then, we
introduce the three types of vulnerabilities that can affect
the QoS of distributed service-oriented applications and are
addressed by our approach.

A. Service Oriented Architecture

Service-Oriented Architecture (SOA) has been recently em-
ployed as a means of providing uniform access to a variety
of computing resources across multiple application domains.
In SOA, software components are provided as services, self-
encapsulated units of functionality accessed through a public
interface. The core principles of SOA can be summarized as
follows [9]:

• Loose Coupling: Services minimize dependencies and
are aware only of each other.

• Abstraction: Services abstract away their underlying
implementation details from their clients.

• Reusability: Services provide reusable functionality.
• Autonomy: Services control their environment and re-

sources to provide consistency and reliability during the
execution.

• Statelessness: Services avoid maintaining any state to
facilitate failure recovery and minimize resource con-
sumption.

• Discoverability: Services can be effectively discovered
and interpreted through standard protocols.

• Composability: Services compose effectively regardless
of their size and complexity.

This work uses the following service technologies.
1) OSGi: The Open Service Gateway Initiative (OSGi)

provides a platform for implementing services [21]. It allows
any Java class to be used as a service by publishing it as
a service bundle. OSGi manages published bundles, allowing
them to use each other’s services. OSGi manages the lifecycle
of a bundle (i.e., moving between install, start, stop, update,
and delete stages) and allows it to be added and removed at
runtime.

OSGi is a mature software component platform. It has been
widely adopted by multiple industry and research stakeholders,
organized into the OSGi Alliance. OSGi is used in large

commercial projects, including the Spring framework1 and
Eclipse2, which use this platform to update and manage
plug-ins. The OSGi standard is currently implemented by
several open-source projects, including Apache Felix3, and
Knopflerfish4. Despite its versatility, OSGi was mainly used
for inter-bundle communication within a single host.

2) OSGi Remote Services: Recently, the OSGi alliance re-
leased the OSGi R4.2 specification that describes how remote
OSGi services can be discovered and used [21]. The OSGi
R4.2 specification does not specify how remote OSGi services
should be accessed. Instead, the specification codifies only how
remote service interfaces should be discovered and retrieved.
Once a remote service interface is obtained, it is up to the
implementor of this specification how interface methods are
to be invoked at a remote OSGi framework and how their
results are to be transferred back to the caller. The first
reference implementation of R4.2 is Apache CXF-DOSGi5,
which implements the specification as Web services, using
SOAP over HTTP for transmission and WSDL contracts for
exposing services. In addition, RBI-OSGi [17] is the first
non-RPC implementation of the OSGi R4.2 specification.
RBI-OSGi does not require any changes to remote service
interfaces, which are discovered and bound using a standard
OSGi registry. Furthermore, R-OSGi [24] that was introduced
prior to the standard OSGi remote services enables proxy-
based distribution for services, providing proxies as OSGi
bundles.

B. QoS Vulnerabilities

A distributed service-oriented application becomes vulner-
able to several threats. Specifically, the network connecting
remote services may be subject to volatility—temporary net-
work outages. Rendering a service remotely accessible can
make it vulnerable to security exploits—although security is a
vast research area, here we focus only on the security issues
pertaining to distribution. A recent study has determined that
out of the known 39 OSGi vulnerabilities, as many as 20
vulnerabilities (e.g., exposing internal representation, flaws in
parameter validation, and invalid work flow) [22] are specific
to accessing services remotely. Finally, when services are
remote to each other, they can evolve independently, thus
causing version inconsistency problems.

1) Network Volatility: A remote service can be accessed
through various networks, which are subject to network volatil-
ity due to various conditions such as random channel errors,
node mobility, and congestion. For example, WiFi networks
transmit radio signals, which are volatile, often making it
impossible to reach a 100% reliability. Another condition
causing network volatility is congestion, which occurs when
radio channels interfere with each other or multiple data is
transmitted concurrently over the same radio link.

1http://www.springsource.org/
2http://www.eclipse.org/
3http://felix.apache.org/
4http://www.knopflerfish.org/
5http://cxf.apache.org/distributed-osgi.html

When the underlying network fails, a distributed service-
oriented application will typically signal an error to the end
user, who can then decide on how to proceed. The user, for
example, could choose to check the network connection and
restart the application. The purpose of hardening strategies is
to enable a distributed service-oriented application to continue
executing when the underlying network becomes unavailable.
A recent survey [18] classifies disconnected operation tech-
niques as well as how they can be applied to improve the
overall system dependability. Specifically, the most common
disconnected operations are: caching—that employs caching
techniques to store a subset of remote data locally, so that it
could be retrieved and used by remote service requests when
the network becomes unavailable; hoarding—that prefetches
all the remote data needed for successfully completing any re-
mote service invocation; queuing—that intercepts and records
remote requests made to an unreachable remote service, and
the recorded requests are then replayed when the service be-
comes available; and replication—that maintains a local copy
of a remote component, so that when the remote component
becomes unreachable, the local copy is used.

2) Security Exploits: The openness engendered by SaaS is
a double-edged sword. On the one hand, any client can access
a distributed service-oriented application through its public
interfaces. On the other hand, unless a proper authentication
scheme is put in place, the distributed service-oriented appli-
cation can become exposed to malicious clients. According to
the literature [22], distributed service-oriented applications are
particularly vulnerable to the following threats:

a) Software Defects: can cause faults and failures in
distributed service-oriented applications. For example, a logic
bug may allow clients access certain methods without au-
thentication (i.e., bypassing the invocation of authenticate()).
Such bugs expose systems to security exploits that can render
services unavailable. Eventually, the bugs should be fixed by
modifying the source code, but a hardening strategy can also
be developed to handle such software defects. For example,
recently proposed approaches accomplish that through runtime
verification which monitor systems and synthesize corrective
functionality [6].

b) Improper Parameter Validation: exposes service
methods to malicious clients that can pass illegal parameters,
thus leading to undesirable outcomes. For example, accessing
a parameter exceeding the available memory can render the
service unavailable.

c) Invalid Access: has two types of vulnerability
patterns—exposing internal representation and accessing from
malicious clients. Exposed internal representation enables to
execute code that should be hidden, thereby triggering un-
expected system behavior or enabling malicious clients to
access sensitive data. In addition, remote services should be
protected from malicious clients. To deal with such invalid
accesses, authorization and access control are commonly used
techniques.

3) Service Mismanagement: Service-oriented applications
rely on loosely-coupled remote interfaces, each of which could

evolve independently. When the vendor releases a new version
of the application, the users can update different services at
different times. As a result, the device can try to communicate
with the old service interface. If the service interface has
changed, the requested service methods may no longer be
available.

C. Domain-Specific Language and Security Policies

A domain-specific language (DSL) is a programming lan-
guage designed to solve problems in a particular domain.
Compared to general-purpose languages (e.g., C, C++, Java,
etc.) DSLs are custom tailored for the domain at hand,
providing expressivenesses and ease of use advantages. DSL
encapsulates its domain expertise, making it easier for non-
expert programmers to craft effective solutions for problems
in the target domain.

In security research, domain-specific policy languages have
been proposed to describe authorization and access control [8],
[13]. These languages address the poor fit of general purpose
languages to describe all the numerous low-level security
issues that occur at the systems level. Equipped with such
a DSL, programmers can easily express sophisticated security
configurations.

III. DECLARATIVE HARDENING

Next, we first outline our proposed solution and then
describe our hardening language and hardening framework,
respectively.

A. Solution Overview

To harden distributed service-oriented applications against
the important vulnerability classes described above, we pro-
pose declarative hardening. Figure 1 depicts how our ap-
proach leverages the expressive power of DSLs, flexibility of
the service compilation, and the adaptivity of the hardening
framework. Specifically, we design and implement a DSL for
expressing hardening policies. DSL combine high expressive-
ness, conciseness, and simplicity by providing constructs that
are custom tailored for a given domain. In our case, the target
domain is hardening distributed service-oriented applications.
A service compiler translates the policies to a hardening
components for a target service infrastructure in place. In our
case, the target service infrastructure is the OSGi framework.
Finally, our hardening framework seamlessly integrate the
generated hardening components with a distributed service-
oriented application, thereby equipping it with the capacity
to counteract the specified vulnerabilities. Thus, our approach
harmoniously combines several state-of-the-art technologies to
elegantly address an important set of vulnerabilities that plague
distributed service-oriented applications.

B. Hardening Policy Language—HPL
One of the key novelties of our approach is using a DSL

for describing vulnerabilities and their hardening strategies.
We call our language Hardening Policy Language (HPL). In
designing HPL, we aim at combining both expressiveness and
ease of use. The specific design goals include:

Vulnerability

Description
HPL

Compiler

Hardening

Framework

Hardening

Strategy

Hardening
Expert

Hardening Policy

Core Strategy
Component

Library

Custom Hardening

Components

Distributed

SOA

Service

Service Service

Service

Fig. 1. Approach Overview.

Policy (ServiceConfig | NetworkHardening | SecurityHardening
| ServiceAPIHardening | HardeningStrategy)

Begin
PolicyName => [name] ;
ServiceName => [name] ;
Config => ([config types] is [type])+ ;

Condition => //Network Volatility
(NetworkEvent([event]))

When (Execution | Call) [From | To] [flow])+ ;
Config => ([config types] is [type])+ ;
Then => ([strategy]) ;

Condition => //Security Exploits
((Execution | NotExecution | Call | NotCall)

[flow] [From | To] [url])+ ;
((ParamChecking [flow] [From | To] [url]

Using Strategy [strategy])+ ;
(Access From [url])+ ;
Then => ([strategy]) ;

Condition => //Mismanaged Service Interface
(Exception([exception])

When (Execution | Call) ([flow]))+ ;
((Execution | Call) [flow] [From|To] [url])+ ;
Then => ([strategy]) ;

End

Fig. 2. Language constructs.

• Expressiveness—a reliability/security expert should be
able to express any kind of vulnerability easily, with the
resulting code being easy to understand, maintain, and
evolve.

• Extensibility—it should be possible to integrate existing
security and reliability policies with HPL policies.

• Platform Independence—HPL policies should be plat-
form independent, with the same policy compilable to
any service platform.

Figure 2 shows how the HPL is constructed. To provide
fault-tolerance and security defense to distributed service-
oriented applications, what the programmer should do is only
to write a policy script in HPL. First of all, hardening policies
consist of five types of policy, including Service Configuration,
Network Hardening, Security Hardening, Service API Hard-
ening, and Hardening Strategy. Each policy mainly consists
of a set of conditions which describes specific vulnerable

situations and applicable hardening strategies. In the following
sections, we detail how our HPL can effectively express
remote services, vulnerabilities and hardening strategies.

An HPL policy can then be compiled to a specific service
platform. For example, if the platform is Java-based, our HPL
compiler generates hardening Java components that implement
interface HardeningEventListener:

public interface HardeningEventListener {
public Object eventNotified (HardeningEvent event);
}

The interface is implemented by our core strategy component
library (See Figure 1), which supplies OSGi-specific hard-
ening components. Reliability/security experts also is able to
extend the library with new hardening components that han-
dle newly discovered vulnerabilities. The method eventNotified
takes HardeningEvent which contains invocation information,
including a service object, method information, URL, vulner-
ability type, exception, etc.

1) Hardening Services with HPL:
Service Configurations: Figure 3 shows an HPL policy that

can configure different operational environments. In particular,
the programmer can specify device types (e.g., mobile, server,
etc), network types (e.g., WiFi, 3G, LAN, etc), network
conditions (e.g., delay, loss, and jitter), service types (e.g.,
conversational, streaming, interactive, background), and a re-
quired QoS-level (e.g., best-effort, guaranteed, etc). Through
configuration settings, the programmer can detail characteris-
tics of the remote service, thereby making it possible to pro-
vide different hardening scenarios according to dynamically
changing environment.

Network Volatility: Figure 4 presents an HPL hardening
policy that can make a service resilient network volatility. The
policy is identified by its name and the NetworkHardening
type. The same policy can be applied to multiple services
by using different service identifiers. The policy contains
vulnerability conditions and a hardening strategy descrip-
tion. The NetworkEvent keyword describes system network
events such as disconnection, reconnection, packets loss, and
normal operation. The optional When keyword monitors all
the exceptions or events related to a specific method. The

Policy ServiceConfig
Begin

PolicyName => [policy name] ;
ServiceName => [service name] ;
Config =>

DeviceType is [mobile | server | ...]
NetworkType is [WiFi | 3G | LAN | ...]
NetworkCondition.{delay,loss, jitter }

is {([high |med|low])+}
ServiceType is

[conversational | streaming | interactive |background]
QoS is [best−effort | guaranteed | ...] ;

End

Fig. 3. A script describing service configurations.

programmer specifies the conditions using the Execution
and Call keywords. These keywords specify the execution
locations to be monitored. The HPL compiler generates aspects
to intercept application-level exceptions and system events,
raised in response to experiencing volatility.

An HPL policy can be configured for different operational
environments by specifying the distributed service-oriented
application’s device types, network links (i.e., bandwidth/la-
tency), and required QoS.

A repository of readily-available hardening components for
network volatility will be reusable out-of-the-box and will also
serve as building blocks for custom strategies. For network
volatility, the hardening components will be based on widely
used disconnected operations.

Policy NetworkHardening
Begin

PolicyName => [policy name];
ServiceName => [service name];
Condition => NetworkEvent([event])

When (Execution | Call) [From | To] [flow])+ ;
Config =>

DeviceType is [mobile | server | ...]
NetworkType is [WiFi | 3G | LAN | ...]
NetworkCondition.{delay, loss , jitter } is
{([high | med | low])+}

ServiceType is
[conversational | streaming | interactive | background]

QoS is [best−effort | guaranteed | ...] ;
Then => Apply Strategy([strategy name]);

End

Fig. 4. Hardening a service against network volatility.

Security Exploits: Figure 5 depicts an HPL policy for
hardening a distributed service-oriented application against
security exploits. In particular, we aim at application level
security exploits of distributed service-oriented applications.
Defenses against low-level attacks, such as sniffing, spoofing,
etc., have been thoroughly integrated with modern network
stacks. To detect software defects, we adopt the notion of
a legitimate program control flow—allowable sequences of
service method calls—expressed through the Execution,
NotExecution, Call, NotCall keywords. These keywords
parameterize our HPL compiler to generate runtime monitors
that can detect and counteract exploits.

To defend a distributed service-oriented application against
malicious clients, HPL features the Access, Call, and
Execution keywords. By controlling the control flow of a ser-
vice, our approach prevents malicious clients from exploiting
the openness espoused by SaaS architectures. After a service’s
public interface is published, traditional service platforms
exercise little control over how clients use this interface.
Our approach adds auditing capabilities to the execution of
a service by enforcing its control flow and access control.

To guard the execution of a service against improper ser-
vice method parameters, HPL features the ParamChecking
keyword that can be used to generate parameter inspection
components. Parameters can be verified to hold certain values
or not to surpass certain allocated memory thresholds.

In terms of the specific hardening strategies, suspicious
clients can be handled by expressing in HPL a custom written
component that will be invoked to counteract the detected ex-
ploits. For example, the client’s connection can be terminated,
a security enhancer strategy can be installed to prevent future
exploits, or a service can be registered to be resuscitated if the
detected penetration does end up bringing it down.

Security enhancers strategies encapsulate well-known se-
curity mechanisms such as security protocols, cryptogra-
phy, authentication, and authorization schemes. Because these
schemes incur a performance cost, one could choose to activate
them only if necessary. For example, if unauthorized use of a
service is detected, the client’s connection will be terminated
and an access control strategy can be deployed to control
which clients can use the service in the future.

Finally, service resuscitators attempt to return a service to
a clean state before or after encountering a fault [28]. Among
the strategies that can be useful are micro-restart [5] and
checkpoint-restart [15]. Upon detecting a potentially illegal
parameter in the example above, a restart strategy can be
installed to restart the service if the illegal parameter does
bring down the service.

Policy SecurityHardening
Begin

PolicyName => [policy name];
ServiceName => [service name];
Condition =>

((Execution | NotExecution) ([flow]) From [url])+;
Then => Apply Strategy([strategy name]);

Condition =>
((Call | NotCall) ([flow]) To [url])+;
Then => Apply Strategy([strategy name]);

Condition =>
ParamChecking([flow]) Using Strategy([strategy name]);
Then => Apply Strategy([strategy name]);

Condition =>
Access (From | To) [url]+ ;
Then => Apply Strategy([strategy name]);

End

Fig. 5. Hardening a service against security vulnerabilities.

Service Mismanagement: Figure 6 shows an HPL policy
to harden a distributed service-oriented application against
being mismanaged during upgrades. The Exception keyword

adds monitoring capabilities to invoking a service through an
obsolete public interface. In response to detecting such version
mismatch, a hardening strategy can automatically generate a
service adapter, initiate a dynamic upgrade, or schedule an
upgrade at a later point. The Execution or Call keywords
provide fine-grained capabilities in monitoring for service
mismanagement (e.g., at the method or client location levels).

The problem of mismanaged service interface in distributed
service-oriented applications is well-known [4]. Our approach
explores how this vulnerability can be handled systematically.
Handling this problem is closely related to managing API
evolution, a highly-active area of recent research. Recent ap-
proaches include explicit documentation, automatic inference
and refactorings, compatibility layers, etc. These approaches
provides valuable insights for the design of hardening strate-
gies to handle mismanaged service interfaces.

Policy ServiceAPIHardening
Begin

PolicyName => [policy name];
ServiceName => [service name];
Condition =>

Exception([exception]
When (Execution|Call) ([flow] (From|To) [url]))+;

Then => Apply Strategy([strategy name);
Condition =>

((Execution | Call) [flow] (From | To) [url])+ ;
Then => Apply Strategy([strategy name);

End

Fig. 6. Hardening a service against mismanaged service interfaces.

2) Hardening Strategy: Fig 7 shows an HPL script that
expresses a hardening strategy. To that end, HPL features
several keywords that define basic execution directives—
Execute, Reject, Throw, Stop, Delegate, Replace, etc.
The directives constitute atomic operational units and are
expected to be provided as part of the core component library.
Using the directives, the programmer can implement service-
specific strategies or extend the existing hardening strategies.
A strategy script starts with the HardeningStrategy key-
word, followed by a policy name and service identifier. Then,
the Implements block describes strategy implementations that
consist of the predefined execution directives and custom
components that have to be custom implemented for the
service platform in place. Our HPL compiler translates HPL
scripts to components and distributed aspects that is integrated
with distributed service-oriented applications.

C. Dynamically Composable Hardening Framework

In the following section, we discuss the system architecture
of the hardening framework. The key objective of this work is
to explore how policies can be interpreted and instantiated in
the hardening framework and applied to an existing distributed
service-oriented application that may have been written with-
out fault-tolerance capabilities in mind.

The purpose of the hardening framework is to harden a
distributed service-oriented application with resiliency to cope
with vulnerabilities.

Policy HardeningStrategy
Begin

PolicyName => [policy name];
ServiceName => [service name];

Implements {
Method public Object eventNotified (HardeningEvent event)
{

@Execute(event);
@Reject(event);
@Throw(Exception());
... // Implement custom hardening strategies

} ;
}

End

Fig. 7. Describing a hardening strategy.

In designing the hardening framework, we pursue the fol-
lowing goals:

1) Transparency—any hardening strategy and the harden-
ing framework should not affect the core functionality
of the underlying OSGi framework and applications.

2) Flexibility—the hardening framework should be capable
of adding or removing policies at any time without
having to stop the application.

3) Efficiency—the hardening framework should not affect
significantly the performance of the OSGi application .

Next, we discuss the system architecture of the hardening
framework. Modern state-of-the-art middleware infrastructures
reports various low-level symptoms of something going wrong
in the execution of remote services (e.g., link failure, node
mobility, non-existing service methods, etc.) by means of
application-level exceptions. The hardening framework inter-
cepts such application-level exceptions as well as the events
signaling some changes in low-level service execution (e.g., a
successful network reconnection). Then, the hardening frame-
work handles application-level exceptions by triggering a
hardening strategy.

OSGi

Distribution Middleware

Distributed Service Application

Hardening
Policy 1

Hardening
Policy 2

Hardening
Policy N

4. Runtime
Trace

3. Hardening-Policy Status Notification

Trace

Analyzer

6
. H

a
rd

en
in

g

O
p

er
a

ti
o

n
s

Runtime Monitor

Policy

Reader

Hardening Framework

Event

Handler

Hardening-Policy Manager

2. Policy
Registration, Removal,

and Modification

5
. E

ve
n

t
N

o
ti

fi
ca

ti
o

n

1
. P

o
lic

y
In

st
a

n
ti

a
ti

o
n

Fig. 8. The hardening framework.

Figure 8 shows how the hardening framework was inte-
grated with the OSGi framework and existing services. The
hardening framework periodically reads hardening policies

from the specified policy repository. Then, our HPL compiler
translates hardening policies and strategy descriptions to XML
documents and runtime binaries (e.g., Java bytecode). The
hardening policy manager instantiates vulnerability conditions,
so that the hardening framework can detect vulnerabilities
by comparing vulnerability conditions with runtime traces. A
hardening strategy is a standard OSGi service that implements
HardeningEventListener interface. Then, the dynamically gener-
ated or pre-deployed hardening strategies are registered to the
OSGi framework, and the hardening policy manager keeps
track of their statuses (e.g., registration, unregistration, update,
etc) for dynamic loading and unloading.

In addition, according to the standard OSGi specifica-
tion, ServiceHook enables other services to intercept OSGi
framework events. Thus, when a distributed service-oriented
application starts its remote service, the hardening framework
creates a runtime monitor which intercepts remote service
invocations and catches exceptions and events. Such traces are
analyzed by the trace analyzer and forwarded to the registered
hardening strategies to counteract the found vulnerabilities.

D. Discussion
The approach described has specific engineering objectives,

creating pragmatic new technologies that can make distributed
service-oriented applications more available, reliable, and se-
cure. One important question concerns whether availability,
reliability, and security can be effectively reasoned about and
implemented as orthogonal cross-cutting concerns, separate
from the core functionality of a given distributed service-
oriented application. The scientific consensus has been that
it is impossible to achieve this objective in full generality.
However, these concerns can be quite effectively separated in
certain domains and execution environments.

Being specifically tailored to address the problems of a
given domain, DSLs can be powerful and effective tools.
However, learning a new DSL takes an additional effort that
may negatively affect programmer productivity. Although we
designed HPL to be easy to learn and use, programmers tend
to differ in their ability to learn new languages. As a result,
introducing HPL in the programmer’s tool chain may initially
inconvenience some programmers.

Finally, to yield its intended benefits, our approach relies on
the existence of state-of-the art adaptation facilities of the un-
derlying middelware infrastructure. Although OSGi has all the
facilities required to support our approach, other middleware
platforms may lack some advanced features such as deploying
and undeploying services at runtime. In future work, we plan
to explore how generalizable our approach is.

IV. EVALUATION

We evaluated the effectiveness and performance of our
hardening framework through a micro benchmark and a larger
case study.

A. Micro Benchmark
For this experiment, we have used Lucene, a widely-used

Java search engine library distributed as an OSGi bundle.

Among the capabilities provided by Lucene are indexing files
and retrieving indexes of a given search word. We used Lucene
to implement a dictionary service that given a word can return
its definition, synonyms and neighboring words.

All the experiments were conducted on the client machine
running 3.0 GHz Intel Dual-Core CPU, 2 GB RAM, Windows
XP, JVM 1.6.0 13 (build 1.6.0 13-b03), and the server machine
running 1.8 GHz Intel Dual-Core CPU, 2.5 GB RAM, Win-
dows 7, JVM 1.6.0 16 (build 1.6.0 16-b01, connected via a
local area network (LAN) with a 100Mbps bandwidth, and
1ms latency.

In this benchmark, we measured the performance overhead
for CXF-DOSGi middleware platform. Specifically, we exam-
ined how the service can be effectively executed, in terms of
the total execution time when our declarative service hardening
module is introduced. Each benchmark method calls three
services in sequence, repeating each service call 100 times, and
then reporting the total execution time. The results show that as
the number of policies grows, 30 hardening policies experience
a performance overhead of about 10%, which shows that our
approach is practical. If a service-oriented application can
afford to run 10% slower, it can benefit from our approach.

B. Case Study: OneBusAway
OneBusAway6 is a bus information system that enables

passengers of the local transportation system to track the
location and movement of commuter buses over the Internet
and using mobile devices [10]. OneBusAway system provides
several APIs for different devices, including REST APIs for
web applications, iPhone APIs, and SMS APIs.

Policy ServiceConfig
Begin

PolicyName => onebusaway configs;
ServiceName => OneBusAway;
Config =>

DeviceType is mobile &&
NetworkCondition.{dealy, loss, jitter }

is {high, high , high} &&
NetworkType is 3G &&
ServiceType is interactive &&
QoS is best−effort ;

End

Fig. 9. An HPL policy describing OneBusAway configurations.

1) Describing OneBusAway Configurations: Figure 9
shows how a OneBusAway client service can be configured.
The service configurations are used for both the server and
clients to determine an appropriate hardening strategy. In this
case study, since the OneBusAway service aims at providing
bus schedule in real time at any location, we assume that a
client is a mobile device using a 3G network. Thus, network
conditions such as delay, loss, and jitters are relatively high.
The service type is interactive and the required QoS level
is best-effort. Of course, the service configuration can be
differently set according to changes of network conditions or
types of a client device.

6http://www.onebusaway.org/

Policy NetworkHardening
Begin

PolicyName => onebusaway net hardening;
ServiceName => OneBusAway;
Condition =>

NetworkEvent(Disconnection && Normal)
When Execution(List<StopBean> StopsForLocation(∗));
Config =>

QoS is best−effort &&
DeviceType is mobile &&
NetworkType is 3G &&
ServiceType is interactive &&
NetworkCondition.{delay, loss, jitter }

is {high, high , high} ;
Then => Apply Strategy(Caching);

End

Fig. 10. An HPL policy against network volatility.

2) Hardening OneBusAway Against Network Volatility:
Figure 10 depicts an HPL policy to harden the OneBusAway
service against network volatility. We harden the method
List<StopBean> StopsForLocation(∗), which immediately returns
bus stops’ information for given location. When network
events are raised from a distribution middleware system, the
Caching strategy will be applied. The caching strategy stores
all remote method invocation requests and results when the
network is operating normally. Then, the strategy retrieves
results from the cache. Thus, NetworkEvent takes two types
of events—Disconnection and Normal.

3) Hardening OneBusAway Against Security Vulnerabili-
ties: Figure 11 shows an HPL policy to harden the OneB-
usAway service against security exploits. This policy script
describes four types of security vulnerabilities. First, to hide
the remote method CurrentTime(), the remote service rejects all
requests. Typically, removing a method from public service
interface requires changing the interface’s source code. Our
hardening policy, however, makes it possible to hide service
methods as needed. This is accomplished by declining all the
client calls to the removed methods.

Second vulnerability is passing improper parameters to the

Policy SecurityHardening
Begin

PolicyName => onebusaway sec hardening;
ServiceName => OneBusAway;
Condition =>

Execution(TimeBean CurrentTime()) ;
Then => Apply Strategy(Reject);

Condition =>
ParamChecking(List<StopBean> StopsForLocation(∗))

Using Strategy (Checker);
Then => Apply Strategy(Reject);

Condition =>
NotExecution(void authenticate (∗)) && Execution(∗);
Then => Apply Strategy(Reject);

Condition =>
Access From [malicious url];
Then => Apply Strategy(Reject);

End

Fig. 11. An HPL policy against security exploits.

method List<StopBean> StopsForLocation(∗). Since this method
does not validate location data, it throws NullPointerException in
case of that location data (i.e., longitude and latitude) are out
of range. To inspect parameters, we use the Checker strategy.

The third vulnerability is a logic flow that can allow mali-
cious clients to bypass authentication. For this experiment, we
created a new method void authenticate(∗) for checking clients’
credentials. Thus, before calling any method in OneBusAway,
clients should first set their user name that is subsequently
used for authenticating all service method invocations from
that client. If the method void authenticate(∗) is not invoked, all
requests are denied. The last vulnerability suspicious clients
potentially misusing a service. To counter this vulnerability,
the Access keyword monitors connected clients and can reject
all requests from any specified URL.

Policy ServiceAPIHardening
Begin

PolicyName => onebusaway API hardening;
ServiceName => OneBusAway;
Condition =>

Exception(NoSuchMethodException)
When Execution(List<StopBean> StopsForLocation(∗)) ;

Then => Apply Strategy(Adapter);
End

Fig. 12. An HPL policy against the mismanaged service.

4) Hardening OneBusAway Against Mismanaged Service:
Figure 12 shows an HPL policy to harden the OneBusAway
service against mismanaged service. For this experiment, we
added an integer argument for logging client’s ID to the
method List<StopBean> StopsForLocation(). Thus, when clients
request List<StopBean> StopsForLocation() without specifying
their ID, the remote service will throw NoSuchMethodException.
The Adapter strategy supplies the missed parameter and then
invokes the updated method.

5) Describing a Hardening Strategy: Figure 13 presents
an HPL policy that creates a Caching strategy to be used for
network volatility hardening. In this example, we simply store
execution results in a HashTable. This caching strategy stores
all results during normal operations and then retrieves their
results when the network becomes unavailable.

V. RELATED WORK

Although modern society intrinsically depends on software
systems, all computing systems are prone to unreliability.
Complex distributed systems often fail to deliver the expected
quality of service (QoS), when their constituent components
fail. This lack of reliability negatively affect the overall
system’s trustworthiness. Indeed, defects in deployed software
systems cost the US economy billions of dollars annually [26]

Our approach is related to several research domains, which
include automated fault tolerance, security hardening, adaptive
and fault-tolerant middleware, and aspect oriented software
construction. This work synthesizes and enhances some exist-
ing common hardening strategies. In the following discussion,
we outline the main research domains from which this work

Policy HardeningStrategy
Begin

PolicyName => onebusaway caching strategy;

Implements {
Method public Object eventNotified (HardeningEvent event) {

if (@Caching == null) {
@CreateStorage

(@Caching, HashTable<HardeningEvent, Object>);
}
if (event .TYPE == NETWORK NORMAL) {

Object result = @Execute(event);
@Store(@Caching, event, result);
} else if (event .TYPE == NETWORK DISCONNECTION) {

Object result = @Retrieve(event);
if (result != null) { return result ; }
else { @Throw(Exception("Network Disconnection"));}
}
} ;
}

End

Fig. 13. Describing a caching hardening strategy.

draws inspiration and borrows well-established and verified
solutions.

a) DSL for Reliability and Security: Much research
explored DSLs to solve reliability problems. In the field of
security, policy-based approach has been widely explored in
the last decade. Among recently introduced policy languages
are including Ponder [8] and Rei [13]. Ponder defines autho-
rization and security management policies. Because policies
are separated from a system, it can adapt to changing require-
ments by disabling or replacing policies without restarting.
Rei can be used to define different kinds of policies, includ-
ing security, privacy, management, and conversation. These
policy languages have inspired the design of HPL. However,
HPL focuses on application-level security and also aims at
availability and reliability.

GRAFT [29] automatically specializes middleware for fault-
tolerance. It employs Component Availability Modeling Lan-
guage (CAML) to annotate a distributed application’s model,
and then automatically specializes the application’s middle-
ware for domain-specific fault-tolerant requirements. GRAFT
also uses a DSL to express the requested fault-tolerance
functionality. Although similar to our approach in terms of
adopting domain-specific approach, GRAFT only copes with
reliability problems. On the other hand, our approach counter-
acts availability and security, as well as reliability.

Business Process Execution Language (BPEL) is a standard
language that defines business processes for Web services. A
BPEL program can, for example, express that a Web service be
composed through a business process involving some existing
Web services. To handle failures in BPEL processes, various
monitoring techniques have been proposed [11], [2], [19], [3].
Our approach shares the same goal with these techniques,
but we strive to achieve greater transparency in detecting
anomalies and flexibility in deploying solution components.
Unlike the prior state of the art, our approach does not require
any modification to the underlying middleware infrastructure

(e.g., Web service runtime or the BPEL execution engine).
Our approach also deploys special-purpose components to
counter the detected vulnerabilities. Furthermore, our approach
is flexible and dynamic: special failure-handling components
can be deployed at runtime without having to interrupt the
execution.

Some of recent research has focused on providing failure
handling mechanisms at runtime by using the Aspect-Oriented
Programming (AOP) technique, which enables inserting failure
handling modules into an unmodified BPEL. However, when-
ever weaving occurs at deployment time [2], new failure types
cannot be handled dynamically. Although reference [19], [3]
presents a runtime failure handling mechanism, it can only
handle restricted failure types (e.g., service failure) because
they were built on top of the existing BPEL specification.
As compared to these approaches, our framework includes
both a dynamically composable failure handling language
and its execution runtime system. Our approach thus equips
programmers with the ability to cope with various service
QoS vulnerabilities by simply describing a new policy script
and dynamically instantiating the required hardening strate-
gies. Finally, most BPEL-based approaches have focused on
handling failures at a service provider. However, our approach
enables failure handling at both the server and client parts
of an service-based application. Thus, whenever a service
provider cannot be modified, the service can still be hardened
by deploying our framework only at the service consumer side.

b) Fault-Tolerant Middleware: A number of techniques
for making existing systems fault tolerant [12], [23], [16] are
related to our approach. JReplica [12] expresses via AOP how
adaptable fault tolerance can be added through replication.
Reference [23] describes how fault tolerance can be added
to CORBA components by automatically instantiating dis-
tributed replicated components. DR-OSGi [16] is a component
framework to harden distributed service-oriented applications
against network volatility. DR-OSGi avoids modifying source
code explicitly and enables the reuse of disconnected oper-
ations across different applications. Arora and Kulkarni [1]
have shown that fault-tolerant systems feature two types of
components that they called detectors and correctors. They
have argued that enhancing a fault-tolerant system with a set of
fault-tolerant components will lead to a fault-tolerant system.
They have also suggested that this division can serve as a basis
for designing component-based fault tolerant systems.

Our approach based on above techniques enables the pro-
grammer to harden distributed service-oriented applications
without having to modify their source code explicitly. By
avoiding ad-hoc modification that can be tedious and error-
prone, our approach not only hardens distributed service-
oriented applications more systematically, but also enables
greater reuse of the hardening strategies across different dis-
tributed service-oriented applications.

c) Security as a Separate Concern: Our approach treats
security as a separate concern. A popular technology for
modularizing cross-cutting concerns is AOP [14], which
has been successfully used in prior systems for introducing

security-related functionality [30]. In addition, several special
security libraries and frameworks are AOP-based, including
Java Security Aspect Library(JSAL) [7], Security Annotation
Framework [25], and Spring Security [27]. What makes AOP
a promising technology for implementing our approach is its
ability to weave in concerns at runtime, without restarting
the application. This runtime adaption ability aligns well with
the dynamic nature of the OSGi infrastructure. AOP is not
the only approach for encapsulating security functionality. A
middleware-based approach such as CORBA Security Service
[20] has been shown successful for modularizing security
functionality, including authentication, authorization, confi-
dentiality, integrity, and auditing.

VI. FUTURE WORK AND CONCLUSIONS

In future work, we plan to focus on increasing the gen-
erality and heterogeneity of our approach, so that the same
HPL policy could be flexibly compiled into platform-specific
component instantiations. Another direction will explore the
complexities of applying multiple hardening strategies to the
same service: the strategies should be able to coexist without
interference.

In this paper, we have introduced Declarative Hardening,
a promising approach for systematically hardening service
applications to cope with network volatility, security exploits,
and service mismanagement. Our HPL language is an ex-
pressive a powerful abstraction for the programmer to de-
scribe various hardening policies. The HPL compiler translates
policy scripts to hardening components, which are applied
to distributed service-oriented applications at runtime. The
micro benchmark and case study showed effectiveness of our
approach. As we rely on greater numbers of network-enabled
devices with network volatility, security exploits, and service
mismanagement remain a permanent presence. Declarative
hardening explores how these vulnerabilities can be handled
declaratively, providing a systematic and reusable solution.

ACKNOWLEDGMENTS

The authors would like to thank the MESOCA anonymous
reviewers, whose comments helped improve this paper’s pre-
sentation. This research is supported by the National Science
Foundation through the grant CCF-1116565.

REFERENCES

[1] A. Arora and S. Kulkarni. Detectors and correctors: a theory of fault-
tolerance components. In The 1998 18 th International Conference on
Distributed Computing Systems, pages 436–443, 1998.

[2] L. Baresi and S. Guinea. Towards dynamic monitoring of ws-bpel
processes. In B. Benatallah, F. Casati, and P. Traverso, editors, Service-
Oriented Computing - ICSOC 2005, volume 3826 of Lecture Notes in
Computer Science, pages 269–282, 2005.

[3] L. Baresi, S. Guinea, M. Pistore, and M. Trainotti. Dynamo + astro:
An integrated approach for bpel monitoring. volume 0, pages 230–237,
Los Alamitos, CA, 2009.

[4] K. Becker, A. Lopes, D. S. Milojicic, J. Pruyne, and S. Singhal.
Automatically determining compatibility of evolving services. In ICWS
’08: Proceedings of the 2008 IEEE International Conference on Web
Services, pages 161–168, Washington D.C., 2008.

[5] G. Candea and A. Fox. Recursive restartability: turning the reboot
sledgehammer into a scalpel. In Hot Topics in Operating Systems, 2001.
Proceedings of the Eighth Workshop on, pages 125–130, May 2001.

[6] F. Chen and G. Roşu. Mop: an efficient and generic runtime verifica-
tion framework. In Proceedings of the 22nd annual ACM SIGPLAN
conference on Object-oriented programming systems and applications,
OOPSLA ’07, pages 569–588, New York, NY, USA, 2007. ACM.

[7] M. H. Chunlei, C. Wang, and L. Zhang. Toward a reusable and generic
security aspect library. In In AOSD:AOSDSEC 04: AOSD Technology
for Application-level Security, 2004.

[8] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. A language for
specifying security and management policies for distributed systems.
Imperial College Research Report DoC, 1, 2000.

[9] T. Erl. Service-Oriented Architecture: Concepts, Technology, and De-
sign. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2005.

[10] B. Ferris, K. Watkins, and A. Borning. Onebusaway: results from
providing real-time arrival information for public transit. In Proceedings
of the 28th international conference on Human factors in computing
systems, CHI ’10, pages 1807–1816, 2010.

[11] S. Guinea, L. Baresi, G. Spanoudakis, and O. Nano. Comprehensive
monitoring of bpel processes. IEEE Internet Computing, 99, 2009.

[12] J. L. Herrero, F. Sanchez, O. Sanchez, and M. Toro. Fault tolerance AOP
approach. In Workshop on AOP and Separation of Concerns, pages 44–
52, 2001.

[13] L. Kagal, T. Finin, and A. Joshi. A policy language for a pervasive
computing environment. Policies for Distributed Systems and Networks,
IEEE International Workshop on, 0:63, 2003.

[14] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. In European
Conference on Object-Oriented Programming(ECOOP 97), 1997.

[15] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging operating systems
with time-traveling virtual machines. In ATEC ’05: Proceedings of the
annual conference on USENIX Annual Technical Conference, pages 1–1,
Berkeley, CA, USA, 2005. USENIX Association.

[16] Y.-W. Kwon, E. Tilevich, and T. Apiwattanapong. DR-OSGi: Hard-
ening distributed components with network volatility resiliency. In
Proceedings of the ACM/IFIP/USENIX 10th International Middleware
Conference (Middleware 2009), 2009.

[17] Y.-W. Kwon, E. Tilevich, and W. R. Cook. An assessment of middleware
platforms for accessing remote services. In Proceedings of the 2010
IEEE International Conference on Services Computing, SCC ’10, 2010.

[18] M. Mikic-Rakic and N. Medvidovic. A classification of discon-
nected operation techniques. In Proceedings of the 32nd EUROMI-
CRO Conference on Software engineering and Advanced Applications
(EUROMICRO-SEAA’06), 2006.

[19] O. Moser, F. Rosenberg, and S. Dustdar. Non-intrusive monitoring and
service adaptation for ws-bpel. In Proceeding of the 17th international
conference on World Wide Web, WWW ’08, pages 815–824, New York,
NY, USA, 2008. ACM.

[20] Object Management Group. The CORBA security service specification.
Specification, Object Management Group, 2002.

[21] OSGi Alliance. OSGi release 4.1 specification. Specification, 2010.
[22] P. Parrend and S. Frénot. Classification of component vulnerabilities

in java service oriented programming (sop) platforms. In CBSE ’08:
Proceedings of the 11th International Symposium on Component-Based
Software Engineering, pages 80–96, 2008.

[23] A. Polze, J. Schwarz, and M. Malek. Automatic generation of fault-
tolerant CORBA-services. In Proceedings of the Technology of Object-
Oriented Languages and Systems (TOOLS 2000), 2000.

[24] J. S. Rellermeyer, G. Alonso, and T. Roscoe. R-OSGi: Distributed
applications through software modularization. In Proceedings of the
ACM/IFIP/USENIX 8th International Middleware Conference, Newport
beach, CA, USA, November 2007.

[25] Security Annotation Framework. http://safr.sourceforge.net/.
[26] D. Scott. Assessing the costs of application downtime. Technical report,

Gartner Group, 1998. www.gartner.com.
[27] Spring Security. http://static.springsource.org/spring-security/site/.
[28] M. Sullivan and R. Chillarege. Software defects and their impact on

system availability-a study of field failures in operating systems. In
Fault-Tolerant Computing, 1991. FTCS-21. Digest of Papers., Twenty-
First International Symposium, pages 2–9, Jun 1991.

[29] S. Tambe, A. Dabholkar, J. Balasubramanian, and A. Gokhale. Au-
tomating middleware specializations for fault tolerance. In Proceedings
of the International Symposium on Object/component/service-oriented
Real-time distributed Computing (ISORC 2009), March 2009.

[30] J. Viega, J. T. Bloch, and P. Ch. Applying aspect-oriented programming
to security. Cutter IT Journal, 14:31–39, 2001.

